Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Sci Food Agric ; 104(11): 6649-6656, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38529727

ABSTRACT

BACKGROUND: The present study aimed to investigate the cryoprotective effect of epigallocatechin gallate (EGCG) replacing sucrose on surimi during frozen storage. Substitution or partial substitution of 0.1% EGCG for sucrose (1.5%) was added to surimi, and the surimi samples without and with commercial cryoprotectants (4% sucrose and 4% sorbitol) were used as the control group. RESULTS: The results obtained suggest that, with the increase in frozen storage time, the structural performance of surimi protein gradually weakened (e.g. the decrease in the surface hydrophobicity, the increase in the total sulfhydryl and solubility, and the protein myosin heavy chain bands became shallow) and surimi gel quality gradually deteriorated (e.g. the decrease in water-holding capacity, gel strength and all texture profile attributes). However, compared with the other three group surimi samples during the frozen period, the surimi proteins with partial replacement of sucrose by EGCG had a higher total sulfhydryl group content and solubility of proteins, as well as lower surface hydrophobicity of protein, suggesting that the addition of EGCG as a partial substitute for sucrose can enhance the antifreeze ability of surimi. Meanwhile, the surimi gel with the partial replacement of sucrose by EGCG had a higher water retention capacity, gel strength and texture attributes (e.g. hardness, springiness, cohesiveness, chewiness, and resilience), indicating that the addition of EGCG as a partial substitute for sucrose can inhibit the deterioration of surimi gel quality. CONCLUSION: Overall, EGCG partially replacing sucrose can play an alternative cryoprotectant with a lower sweetness to prevent the quality of surimi from deteriorating. © 2024 Society of Chemical Industry.


Subject(s)
Catechin , Cryoprotective Agents , Fish Products , Food Preservation , Food Storage , Freezing , Sucrose , Cryoprotective Agents/chemistry , Cryoprotective Agents/pharmacology , Catechin/analogs & derivatives , Catechin/chemistry , Animals , Fish Products/analysis , Sucrose/chemistry , Food Preservation/methods , Hydrophobic and Hydrophilic Interactions , Solubility
2.
Food Chem ; 449: 138957, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38608600

ABSTRACT

The effects of microwave drying (MD), hot air drying (HAD), vacuum hot air drying (VD), and vacuum freeze drying (VFD) on the volatile profiles of Penaeus vannamei were investigated. A total of 89 and 94 volatile compounds were identified by headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) and monolithic material sorptive extraction gas chromatography-mass spectrometry (MMSE-GC-MS), respectively. Orthogonal partial least squares-discriminant analysis (OPLS-DA) and variable influence on projection (VIP) models were utilized to select characteristic volatiles and key marker compounds (e.g., octanal, 1-octen-3-ol, 2-methyl-butanal, 2-ethyl-furan, and trimethyl-pyrazine) to discriminate among four drying methods. Based on synthesis of odor descriptions and sensory evaluation, it was found that P. vannamei via MD, HAD, and VD greatly reduced the fishy and generated roasted, fatty, and smoked odors. This study systematically analyzed the aroma characteristics of four traditional dried P. vannamei products, which may provide theoretical guidance for industrial production.


Subject(s)
Gas Chromatography-Mass Spectrometry , Odorants , Penaeidae , Solid Phase Microextraction , Volatile Organic Compounds , Animals , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/isolation & purification , Solid Phase Microextraction/methods , Odorants/analysis , Penaeidae/chemistry , Humans , Taste , Desiccation/methods
3.
Food Chem X ; 22: 101439, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38756472

ABSTRACT

This study examined the effect of Flavourzyme and Lactobacillus plantarum (L. plantarum) on protein degradation and flavor development during grass carp fermentation. The control groups comprised natural fermentation and fermentation with L. plantarum. Compared with the two control samples, those exposed to combined Flavourzyme and L. plantarum fermentation exhibited lower moisture content and enhanced protein hydrolysis, which accelerated the production of water-soluble taste substances (trichloroacetic acid-soluble peptides and free amino acids). The electronic tongue and electronic nose results indicated that the grass carp subjected to combined fermentation way displayed a more intense umami taste and aroma. Moreover, the sensory evaluation results confirmed that the combined fermentation method significantly improved the taste and odor attributes of fermented grass carp. In conclusion, combined fermentation with Flavourzyme and L. plantarum may effectively reduce fermentation time and enhance the flavor of fermented grass carp products.

4.
Food Chem ; 458: 140233, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38964093

ABSTRACT

To analyze the effect of various drying treatments (microwave drying (MD), hot air drying (HAD), vacuum drying (VD), and vacuum freeze drying (VFD)) on taste compounds in Penaeus vannamei, relevant indicators such as free amino acids, 5'-nucleotides, and organic acids were performed. Multidimensional infrared spectroscopy (MM-IR) results found that there were notable variations in taste properties of P. vannamei. There were 18 autocorrelation peaks in 3400-900 cm-1 were screened using second-derivative infrared spectroscopy (SD-IR) and two-dimensional correlation infrared spectroscopy (2DCOS-IR). Variations in functional groups were the major contributors to taste profiles. The TAV of glutamic acid (Glu), guanine (GMP), and inosinemonphosphate (IMP) were greater than one and had notable impacts on taste profiles. VD had the highest equivalent umami value, followed by VFD, HAD, and MD. This study may provide a theoretical guide for the production of dried P. vannamei products on an industrial scale.

5.
Food Chem ; 450: 139150, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38688226

ABSTRACT

This study aimed to investigate taste substances of shrimp heads stored at 20 °C, 4 °C, -3 °C, and - 18 °C, and the correlation between taste substances and 25 key volatile substances. Notably, samples stored at 20 °C showed significant changes in bitter amino acids and hypoxanthine, and quickly deteriorated. Samples stored at 4 °C for 14 d or - 3 °C for 30 d facilitated the development of umami amino acids, sweet amino acids, and IMP. Furthermore, samples stored at -18 °C for 30 d demonstrated no significant changes in taste profile. Changes in taste substances through quantitative analysis were consistent with changes in taste profile through e-tongue analysis. Based on the results of O2PLS (VIP > 1), Cys, Arg, Glu, Ser, Val, Ala, Ile, ADP, and IMP were correlated with 25 key volatile substances. This study provides fundamental data for the storage, transportation, and value-added utilization of shrimp heads.


Subject(s)
Amino Acids , Penaeidae , Shellfish , Taste , Temperature , Volatile Organic Compounds , Animals , Volatile Organic Compounds/chemistry , Penaeidae/chemistry , Amino Acids/chemistry , Amino Acids/analysis , Shellfish/analysis , Food Storage
SELECTION OF CITATIONS
SEARCH DETAIL