Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Cell ; 181(3): 590-603.e16, 2020 04 30.
Article in English | MEDLINE | ID: mdl-32272060

ABSTRACT

Conversion of glial cells into functional neurons represents a potential therapeutic approach for replenishing neuronal loss associated with neurodegenerative diseases and brain injury. Previous attempts in this area using expression of transcription factors were hindered by the low conversion efficiency and failure of generating desired neuronal types in vivo. Here, we report that downregulation of a single RNA-binding protein, polypyrimidine tract-binding protein 1 (Ptbp1), using in vivo viral delivery of a recently developed RNA-targeting CRISPR system CasRx, resulted in the conversion of Müller glia into retinal ganglion cells (RGCs) with a high efficiency, leading to the alleviation of disease symptoms associated with RGC loss. Furthermore, this approach also induced neurons with dopaminergic features in the striatum and alleviated motor defects in a Parkinson's disease mouse model. Thus, glia-to-neuron conversion by CasRx-mediated Ptbp1 knockdown represents a promising in vivo genetic approach for treating a variety of disorders due to neuronal loss.


Subject(s)
Neurogenesis/physiology , Neuroglia/metabolism , Retinal Ganglion Cells/metabolism , Animals , CRISPR-Cas Systems/physiology , Cell Differentiation/physiology , Cells, Cultured , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Disease Models, Animal , Dopamine/metabolism , Gene Expression Regulation/genetics , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Male , Mice , Mice, Inbred C57BL , Nervous System Diseases/metabolism , Neurons/metabolism , Parkinson Disease/metabolism , Polypyrimidine Tract-Binding Protein/genetics , Polypyrimidine Tract-Binding Protein/metabolism , Retinal Ganglion Cells/physiology
2.
Nat Methods ; 20(7): 1029-1036, 2023 07.
Article in English | MEDLINE | ID: mdl-37231266

ABSTRACT

As a miniature RNA-guided endonuclease, IscB is presumed to be the ancestor of Cas9 and to share similar functions. IscB is less than half the size of Cas9 and thus more suitable for in vivo delivery. However, the poor editing efficiency of IscB in eukaryotic cells limits its in vivo applications. Here we describe the engineering of OgeuIscB and its corresponding ωRNA to develop an IscB system that is highly efficient in mammalian systems, named enIscB. By fusing enIscB with T5 exonuclease (T5E), we found enIscB-T5E exhibited comparable targeting efficiency to SpG Cas9 while showing reduced chromosome translocation effects in human cells. Furthermore, by fusing cytosine or adenosine deaminase with enIscB nickase, we generated miniature IscB-derived base editors (miBEs), exhibiting robust editing efficiency (up to 92%) to induce DNA base conversions. Overall, our work establishes enIscB-T5E and miBEs as versatile tools for genome editing.


Subject(s)
CRISPR-Cas Systems , Deoxyribonuclease I , Animals , Humans , Deoxyribonuclease I/genetics , Deoxyribonuclease I/metabolism , Gene Editing , Cytosine , RNA/genetics , Mammals/genetics , Mammals/metabolism
3.
Nat Methods ; 18(5): 499-506, 2021 05.
Article in English | MEDLINE | ID: mdl-33941935

ABSTRACT

Competitive coevolution between microbes and viruses has led to the diversification of CRISPR-Cas defense systems against infectious agents. By analyzing metagenomic terabase datasets, we identified two compact families (775 to 803 amino acids (aa)) of CRISPR-Cas ribonucleases from hypersaline samples, named Cas13X and Cas13Y. We engineered Cas13X.1 (775 aa) for RNA interference experiments in mammalian cell lines. We found Cas13X.1 could tolerate single-nucleotide mismatches in RNA recognition, facilitating prophylactic RNA virus inhibition. Moreover, a minimal RNA base editor, composed of engineered deaminase (385 aa) and truncated Cas13X.1 (445 aa), exhibited robust editing efficiency and high specificity to induce RNA base conversions. Our results suggest that there exist untapped bacterial defense systems in natural microbes that can function efficiently in mammalian cells, and thus potentially are useful for RNA-editing-based research.


Subject(s)
CRISPR-Cas Systems , RNA Editing , RNA, Bacterial , Animals , Bacterial Proteins , Cell Line , Cloning, Molecular , Databases, Nucleic Acid , Dogs , Humans , Mice , RNA Interference
4.
Mol Ther ; 31(12): 3520-3530, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37915172

ABSTRACT

Otoferlin (OTOF) gene mutations represent the primary cause of hearing impairment and deafness in auditory neuropathy. The c.2485C>T (p. Q829X) mutation variant is responsible for approximately 3% of recessive prelingual deafness cases within the Spanish population. Previous studies have used two recombinant AAV vectors to overexpress OTOF, albeit with limited efficacy. In this study, we introduce an enhanced mini-dCas13X RNA base editor (emxABE) delivered via an AAV9 variant, achieving nearly 100% transfection efficiency in inner hair cells. This approach is aimed at treating OTOFQ829X, resulting in an approximately 80% adenosine-to-inosine conversion efficiency in humanized OtofQ829X/Q829X mice. Following a single scala media injection of emxABE targeting OTOFQ829X (emxABE-T) administered during the postnatal day 0-3 period in OtofQ829X/Q829X mice, we observed OTOF expression restoration in nearly 100% of inner hair cells. Moreover, auditory function was significantly improved, reaching similar levels as in wild-type mice. This enhancement persisted for at least 7 months. We also investigated P5-P7 and P30 OtofQ829X/Q829X mice, achieving auditory function restoration through round window injection of emxABE-T. These findings not only highlight an effective therapeutic strategy for potentially addressing OTOFQ829X-induced hearing loss but also underscore emxABE as a versatile toolkit for treating other monogenic diseases characterized by premature termination codons.


Subject(s)
Deafness , Hearing Loss, Central , Hearing Loss , Animals , Mice , Gene Editing , Hearing Loss/genetics , Hearing Loss/therapy , Mutation
5.
Molecules ; 28(14)2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37513193

ABSTRACT

A facile sol-gel spin coating method has been proposed for the synthesis of spin-coated ZnO nanofilms on ITO substrates. The as-prepared ZnO-nanofilm-based W/ZnO/ITO memory cell showed forming-free and tunable nonvolatile multilevel resistive switching behaviors with a high resistance ratio of about two orders of magnitude, which can be maintained for over 103 s and without evident deterioration. The tunable nonvolatile multilevel resistive switching phenomena were achieved by modulating the different set voltages of the W/ZnO/ITO memory cell. In addition, the tunable nonvolatile resistive switching behaviors of the ZnO-nanofilm-based W/ZnO/ITO memory cell can be interpreted by the partial formation and rupture of conductive nanofilaments modified by the oxygen vacancies. This work demonstrates that the ZnO-nanofilm-based W/ZnO/ITO memory cell may be a potential candidate for future high-density, nonvolatile, memory applications.

6.
Molecules ; 28(9)2023 Apr 30.
Article in English | MEDLINE | ID: mdl-37175244

ABSTRACT

A facile hydrothermal process has been developed to synthesize the α-Fe2O3 nanowire arrays with a preferential growth orientation along the [110] direction. The W/α-Fe2O3/FTO memory device with the nonvolatile resistive switching behavior has been achieved. The resistance ratio (RHRS/RLRS) of the W/α-Fe2O3/FTO memory device exceeds two orders of magnitude, which can be preserved for more than 103s without obvious decline. Furthermore, the carrier transport properties of the W/α-Fe2O3/FTO memory device are dominated by the Ohmic conduction mechanism in the low resistance state and trap-controlled space-charge-limited current conduction mechanism in the high resistance state, respectively. The partial formation and rupture of conducting nanofilaments modified by the intrinsic oxygen vacancies have been suggested to be responsible for the nonvolatile resistive switching behavior of the W/α-Fe2O3/FTO memory device. This work suggests that the as-prepared α-Fe2O3 nanowire-based W/α-Fe2O3/FTO memory device may be a potential candidate for applications in the next-generation nonvolatile memory devices.

8.
Int J Biol Macromol ; 258(Pt 1): 128794, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38110166

ABSTRACT

Sustainable and renewable biomass-derived porous carbon (BPC) have garnered considerable attention owing to their low cost, high specific surface area, and outstanding electrochemical performance. However, the subpar energy density severely restricts the applications of BPC in high-energy-density devices. Herein, a high-surface-area porous carbon with multiple heteroatoms doping was derived from rapeseed meals by hydrothermal carbonization and high-temperature activation. The rapeseed meal-derived activated carbon (RMAC) exhibits a remarkable surface area of 3291 m2 g-1 and is doped with nitrogen (1.05 at.%), oxygen (7.4 at.%), phosphorus (0.31 at.%), and sulfur, resulting in an impressive specific capacitance of 416 F g-1 at 1 A g-1. Furthermore, even after 10,000 cycles, the optimized RMAC-800 electrode maintains 92 % of its initial capacitance, attesting to its exceptional performance. Through comprehensive density functional theory (DFT) calculations, the elements O, N, P, and S can significantly enhance the electron negativity and density, improving the adsorption and diffusion of K+ to attain a high capacitance. To assess the RMAC-800's practical performance, an asymmetric supercapacitor with 1 M [BMIM]BF4/AN electrolyte was produced that delivered a high energy density of 195.94 Wh kg-1 at a power density of 1125 W kg-1. Thus, we propose an eco-friendly strategy for producing BPC materials with outstanding electrochemical performance for supercapacitors.


Subject(s)
Brassica napus , Brassica rapa , Adsorption , Potassium , Biomass , Porosity , Physical Phenomena , Charcoal
9.
Mol Ther Nucleic Acids ; 33: 750-761, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37621413

ABSTRACT

Mutations in Rhodopsin (RHO) gene commonly cause autosomal dominant retinitis pigmentosa (adRP) without effective therapeutic treatment so far. Compared with genomic DNA-targeting CRISPR-Cas9 system, Cas13 edits RNA for therapeutic applications, avoiding the risk of causing permanent changes in the genome. In particular, a compact and high-fidelity Cas13X (hfCas13X) recently has been developed to degrade targeted RNA with minimal collateral effects and could also be packaged in a single adeno-associated virus for efficient in vivo delivery. In this study, we engineered single-guide RNA for hfCas13X to specifically knock down human mutant Rhodopsin transcripts RHO-P23H with minimal effect on wild-type transcripts. Moreover, treatment with hfCas13X alleviated the adRP progression in both RHO-P23H overexpression-induced and humanized hRHOP23H/WT mouse models. Our study indicates the potential of hfCas13X in treating adRP caused by RHO mutations and other genetic diseases.

10.
J Clin Invest ; 133(3)2023 02 01.
Article in English | MEDLINE | ID: mdl-36512423

ABSTRACT

Approximately 10% of monogenic diseases are caused by nonsense point mutations that generate premature termination codons (PTCs), resulting in a truncated protein and nonsense-mediated decay of the mutant mRNAs. Here, we demonstrate a mini-dCas13X-mediated RNA adenine base editing (mxABE) strategy to treat nonsense mutation-related monogenic diseases via A-to-G editing in a genetically humanized mouse model of Duchenne muscular dystrophy (DMD). Initially, we identified a nonsense point mutation (c.4174C>T, p.Gln1392*) in the DMD gene of a patient and validated its pathogenicity in humanized mice. In this model, mxABE packaged in a single adeno-associated virus (AAV) reached A-to-G editing rates up to 84% in vivo, at least 20-fold greater than rates reported in previous studies using other RNA editing modalities. Furthermore, mxABE restored robust expression of dystrophin protein to over 50% of WT levels by enabling PTC read-through in multiple muscle tissues. Importantly, systemic delivery of mxABE by AAV also rescued dystrophin expression to averages of 37%, 6%, and 54% of WT levels in the diaphragm, tibialis anterior, and heart muscle, respectively, as well as rescued muscle function. Our data strongly suggest that mxABE-based strategies may be a viable new treatment modality for DMD and other monogenic diseases.


Subject(s)
Muscular Dystrophy, Duchenne , Animals , Mice , CRISPR-Cas Systems , Disease Models, Animal , Dystrophin/genetics , Gene Editing/methods , Genetic Therapy/methods , Muscle, Skeletal/metabolism , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/therapy , RNA Editing , Humans
11.
Nat Biotechnol ; 41(1): 108-119, 2023 01.
Article in English | MEDLINE | ID: mdl-35953673

ABSTRACT

CRISPR-Cas13 systems have recently been used for targeted RNA degradation in various organisms. However, collateral degradation of bystander RNAs has limited their in vivo applications. Here, we design a dual-fluorescence reporter system for detecting collateral effects and screening Cas13 variants in mammalian cells. Among over 200 engineered variants, several Cas13 variants including Cas13d and Cas13X exhibit efficient on-target activity but markedly reduced collateral activity. Furthermore, transcriptome-wide off-targets and cell growth arrest induced by Cas13 are absent for these variants. High-fidelity Cas13 variants show similar RNA knockdown activity to wild-type Cas13 but no detectable collateral damage in transgenic mice or adeno-associated-virus-mediated somatic cell targeting. Thus, high-fidelity Cas13 variants with minimal collateral effects are now available for targeted degradation of RNAs in basic research and therapeutic applications.


Subject(s)
CRISPR-Cas Systems , RNA , Animals , Mice , CRISPR-Cas Systems/genetics , RNA/genetics , RNA Stability/genetics , Mice, Transgenic , Transcriptome , Mammals/genetics
12.
Sci Transl Med ; 14(654): eabn0449, 2022 07 20.
Article in English | MEDLINE | ID: mdl-35857824

ABSTRACT

Programmable RNA editing tools enable the reversible correction of mutant transcripts, reducing the potential risk associated with permanent genetic changes associated with the use of DNA editing tools. However, the potential of these RNA tools to treat disease remains unknown. Here, we evaluated RNA correction therapy with Cas13-based RNA base editors in the myosin VI p.C442Y heterozygous mutation (Myo6C442Y/+) mouse model that recapitulated the phenotypes of human dominant-inherited deafness. We first screened several variants of Cas13-based RNA base editors and guide RNAs (gRNAs) targeting Myo6C442Y in cultured cells and found that mini dCas13X.1-based adenosine base editor (mxABE), composed of truncated Cas13X.1 and the RNA editing enzyme adenosine deaminase acting on RNA 2 deaminase domain variant (ADAR2ddE488Q), exhibited both high efficiency of A > G conversion and low frequency of off-target edits. Single adeno-associated virus (AAV)-mediated delivery of mxABE in the cochlea corrected the mutated Myo6C442Y to Myo6WT allele in homozygous Myo6C442Y/C442Y mice and resulted in increased Myo6WT allele in the injected cochlea of Myo6C442Y/+ mice. The treatment rescued auditory function, including auditory brainstem response and distortion product otoacoustic emission up to 3 months after AAV-mxABE-Myo6 injection in Myo6C442Y/+ mice. We also observed increased survival rate of hair cells and decreased degeneration of hair bundle morphology in the treated compared to untreated control ears. These findings provide a proof-of-concept study for RNA editing tools as a therapeutic treatment for various semidominant forms of hearing loss and other diseases.


Subject(s)
Deafness , Hearing Loss , Animals , Mice , Genes, Dominant , Hair Cells, Auditory , Hearing Loss/genetics , Hearing Loss/therapy , RNA
13.
Nat Cell Biol ; 23(1): 99-108, 2021 01.
Article in English | MEDLINE | ID: mdl-33398178

ABSTRACT

Detection of endogenous signals and precise control of genetic circuits in the natural context are essential to understand biological processes. However, the tools to process endogenous information are limited. Here we developed a generalizable endogenous transcription-gated switch that releases single-guide RNAs in the presence of an endogenous promoter. When the endogenous transcription-gated switch is coupled with the highly sensitive CRISPR-activator-associated reporter we developed, we can reliably detect the activity of endogenous genes, including genes with very low expression (<0.001 relative to Gapdh; quantitative-PCR analysis). Notably, we could also monitor the transcriptional activity of typically long non-coding RNAs expressed at low levels in living cells using this approach. Together, our method provides a powerful platform to sense the activity of endogenous genetic elements underlying cellular functions.


Subject(s)
Mouse Embryonic Stem Cells/metabolism , Neuroblastoma/genetics , Neuroblastoma/metabolism , Promoter Regions, Genetic , RNA, Guide, Kinetoplastida/metabolism , RNA, Long Noncoding/metabolism , RNA, Messenger/metabolism , Animals , CRISPR-Cas Systems , HEK293 Cells , Humans , Mice , Mouse Embryonic Stem Cells/cytology , Neuroblastoma/pathology , RNA, Guide, Kinetoplastida/genetics , RNA, Long Noncoding/genetics , RNA, Messenger/genetics
14.
Guang Pu Xue Yu Guang Pu Fen Xi ; 30(4): 1136-40, 2010 Apr.
Article in Zh | MEDLINE | ID: mdl-20545180

ABSTRACT

Based on special relativity, the formation mechanism of characteristic X-ray has been studied, and the influence of rotational mass effect on X-ray spectrum has been given. A calculation formula of the X-ray wavelength based upon special relativity was derived. Error analysis was carried out systematically for the calculation values of characteristic wavelength, and the rules of relative error were obtained. It is shown that the values of the calculation are very close to the experimental values, and the effect of rotational mass effect on the characteristic wavelength becomes more evident as the atomic number increases. The result of the study has some reference meaning for the spectrum analysis of characteristic X-ray in application.

16.
Genome Biol ; 20(1): 101, 2019 05 22.
Article in English | MEDLINE | ID: mdl-31118069

ABSTRACT

Base editing installs a precise nucleotide change in specific gene loci without causing a double-strand break. Its efficiency in human embryos is generally low, limiting its utility in functional genetic studies. Here, we report that injecting base editors into human cleaving two-cell and four-cell embryos results in much higher (up to 13-fold) homozygotic nucleotide substitution efficiency as opposed to MII oocytes or zygotes. Furthermore, as a proof-of-principle study, a point mutation can be efficiently corrected by our method. Our study indicates that human cleaving embryos provide an efficient base editing window for robust gene disruption and correction.


Subject(s)
Embryo Research , Embryo, Mammalian , Gene Editing/methods , Humans
SELECTION OF CITATIONS
SEARCH DETAIL