ABSTRACT
BACKGROUND AIMS: Gingival mesenchymal stem cells (GMSCs) demonstrate high proliferation, trilineage differentiation and immunomodulatory properties. Parkinson disease (PD) is the second most common type of neurodegenerative disease. This study aimed to explore the effect and mechanism of GMSC-based therapy in 6-hydroxydopamine-induced PD rats. METHODS: RNA sequencing and quantitative proteomics technology was used to validate the neuroprotective role of GMSCs therapeutic in 6-Hydroxydopamine -induced PD model in vitro and in vivo. Western blotting, immunofluorescence and real-time quantitative PCR verified the molecular mechanism of GMSCs treatment. RESULTS: Intravenous injection of GMSCs improved rotation and forelimb misalignment behavior, enhanced the anti-apoptotic B-cell lymphoma 2/B-cell lymphoma 2-associated X axis, protected tyrosine hydroxylase neurons, decreased the activation of astrocytes and reduced the astrocyte marker glial fibrillary acidic protein and microglia marker ionized calcium-binding adaptor molecule 1 in the substantia nigra and striatum of PD rats. The authors found that GMSCs upregulated nerve regeneration-related molecules and inhibited metabolic disorders and the activation of signal transducer and activator of transcription 3. GMSCs showed a strong ability to protect neurons and reduce mitochondrial membrane potential damage and reactive oxygen species accumulation. The safety of GMSC transplantation was confirmed by the lack of tumor formation following subcutaneous transplantation into nude mice for up to 8 weeks. CONCLUSIONS: The authors' research helps to explain the mechanism of GMSC-based therapeutic strategies and promote potential clinical application in Parkinson disease.
Subject(s)
Mesenchymal Stem Cells , Neurodegenerative Diseases , Parkinson Disease , Animals , Calcium/metabolism , Gingiva , Glial Fibrillary Acidic Protein/metabolism , Humans , Mice , Mice, Nude , Neurons/metabolism , Oxidopamine/metabolism , Oxidopamine/pharmacology , Oxidopamine/therapeutic use , Parkinson Disease/therapy , Proto-Oncogene Proteins c-bcl-2/metabolism , Rats , Reactive Oxygen Species/metabolism , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/pharmacology , STAT3 Transcription Factor/therapeutic use , Tyrosine 3-Monooxygenase/metabolism , Tyrosine 3-Monooxygenase/pharmacology , Tyrosine 3-Monooxygenase/therapeutic useABSTRACT
BACKGROUND AIMS: Stem cells from human exfoliated deciduous teeth (SHED) play a significant role in tissue engineering and regenerative medicine. Angiogenesis is crucial in tissue regeneration and a primary target of regenerative medicine. As a first-line anti-diabetic drug, metformin demonstrates numerous valuable impacts on stem cells. This study aimed to explore metformin's impact and mechanism of action on SHED-mediated angiogenesis. METHODS: First, cell proliferation; flow cytometry; osteogenic, adipogenic and chondrogenic induction; and proteomics analyses were conducted to explore the role of metformin in SHED. Subsequently, migration and tube formation assays were used to evaluate chemotaxis and angiogenesis enhancement by SHED pre-treated with metformin under co-culture conditions in vitro, and relative messenger RNA expression levels were determined by quantitative reverse transcription polymerase chain reaction. Finally, nude mice were used for in vivo tube formation assay, and sections were analyzed through immunohistochemistry staining with anti-human CD31 antibody. RESULTS: Metformin significantly promoted SHED proliferation as well as osteogenic, adipogenic and chondrogenic differentiation. Proteomics showed that metformin significantly upregulated 124 differentially abundant proteins involved in intracellular processes, including various proteins involved in cell migration and angiogenesis, such as MAPK1. The co-culture system demonstrated that SHED pre-treated with metformin significantly improved the migration and angiogenesis of human umbilical vein endothelial cells. In addition, SHED pre-treated with metformin possessed greater ability to promote angiogenesis in vivo. CONCLUSIONS: In summary, the authors' findings illustrate metformin's mechanism of action on SHED and confirm that SHED pre-treated with metformin exhibits a strong capacity for promoting angiogenesis. This helps in promoting the application of dental pulp-derived stem cells pre-treated with metformin in regeneration engineering.
Subject(s)
Metformin , Tissue Engineering , Animals , Cell Differentiation , Cell Proliferation , Cells, Cultured , Dental Pulp , Human Umbilical Vein Endothelial Cells , Humans , Metformin/pharmacology , Mice , Mice, Nude , RNA, Messenger/metabolism , Stem Cells , Tooth, DeciduousABSTRACT
Stem cells from human exfoliated deciduous teeth (SHED) can be used as a potential clinical material. But the use of xenogeneic ingredients will increase the risk of zoonotic disease transmission. Human platelet lysate (HPL) is a potential surrogate and used in human cell expansion with reliability in clinical applications. In this study, we synthesized chitosan/gelatin/gellan gum hydrogel supplemented with HPL and investigated the effect of 3D culture for SHED. TMT-tagged proteomics was used to decipher the secretome protein profiles of SHEDs and a total of 3209 proteins were identified, of which 23 were up-regulated and 192 were down-regulated. The results showed that hydrogel supplemented with HPL promoted SHED proliferation. After induction, the hydrogel coating contributed to osteogenic differentiation, adipogenic differentiation and differentiation into neural-like cells of SHED. SHED encapsulated in a hydrogel promotes migration and angiogenesis of HUVEC. In conclusion, our research found that hydrogel supplemented with HPL can be used as a method for SHED in standardized production and can contribute to the clinical application of SHED in cell therapy.
Subject(s)
Mesenchymal Stem Cells , Osteogenesis , Cell Differentiation , Humans , Hydrogels/pharmacology , Reproducibility of ResultsABSTRACT
Human gingival mesenchymal stem cells (GMSCs) are derived from migratory neural crest stem cells and have the potential to differentiate into neurons. Metformin can inhibit stem-cell aging and promotes the regeneration and development of neurons. In this study, we investigated the potential of metformin as an enhancer on neuronal differentiation of GMSCs in the growth environment of chitosan hydrogel. The crosslinked chitosan/ß-glycerophosphate hydrogel can form a perforated microporous structure that is suitable for cell growth and channels to transport water and macromolecules. GMSCs have powerful osteogenic, adipogenic and chondrogenic abilities in the induction medium supplemented with metformin. After induction in an induction medium supplemented with metformin, Western blot and immunofluorescence results showed that GMSCs differentiated into neuron-like cells with a significantly enhanced expression of neuro-related markers, including Nestin (NES) and ß-Tubulin (TUJ1). Proteomics was used to construct protein profiles in neural differentiation, and the results showed that chitosan hydrogels containing metformin promoted the upregulation of neural regeneration-related proteins, including ATP5F1, ATP5J, NADH dehydrogenase (ubiquinone) Fe-S protein 3 (NDUFS3), and Glutamate Dehydrogenase 1 (GLUD1). Our results help to promote the clinical application of stem-cell neural regeneration.
Subject(s)
Chitosan , Mesenchymal Stem Cells , Metformin , Cell Differentiation , Cells, Cultured , Chitosan/chemistry , Gingiva , Humans , Hydrogels/chemistry , Mesenchymal Stem Cells/metabolism , Metformin/metabolism , Metformin/pharmacology , NeuronsABSTRACT
The SARS-CoV-2 Omicron variant, which was classified as a variant of concern (VOC) by the World Health Organization on 26 November 2021, has attracted worldwide attention for its high transmissibility and immune evasion ability. The existing COVID-19 vaccine has been shown to be less effective in preventing Omicron variant infection and symptomatic infection, which brings new challenges to vaccine development and application. Here, we evaluated the immunogenicity and safety of an Omicron variant COVID-19 inactivated vaccine containing aluminum and CpG adjuvants in a variety of animal models. The results showed that the vaccine candidate could induce high levels of neutralizing antibodies against the Omicron variant virus and binding antibodies, and significantly promoted cellular immune response. Meanwhile, the vaccine candidate was safe. Therefore, it provided more foundation for the development of aluminum and CpG as a combination adjuvant in human vaccines.
Subject(s)
Alum Compounds , COVID-19 Vaccines , COVID-19 , Animals , Humans , Aluminum , SARS-CoV-2 , COVID-19/prevention & control , Adjuvants, Immunologic , Immunity, Cellular , Antibodies, Neutralizing , Vaccines, Inactivated , Antibodies, ViralABSTRACT
There are some concerns about the safety of live attenuated yellow fever vaccines (YF-live), particularly viscerotropic adverse events, which have a high mortality rate. The cellular production of the vaccine will not cause these adverse effects and has the potential to extend applicability to those who have allergic reactions, immunosuppression, and age. In this study, inactivated yellow fever (YF) was prepared and adsorbed with Alum/CpG. The cellular and humoral immunities were investigated in a mouse model. The results showed that Alum/CpG (20 µg/mL) could significantly increase the binding and neutralizing activities of the antibodies against YF. Moreover, the antibody level at day 28 after one dose was similar to that of the attenuated vaccine, but significantly higher after two doses. At the same time, Alum/CpG significantly increased the levels of IFN-γ and IL-4 cytokines.
ABSTRACT
As the most common neurodegenerative disease, Alzheimer's disease (AD) exhibits an incomprehensible pathogenesis, which has led to the continuous failure of drug development in recent years. Although neuronal damage is considered a pathological feature of AD, treatment strategies targeting ß-amyloid (Aß) have not achieved beneficial effects. In-depth research on glial cells has revealed the strong importance and application prospects of astrocytes in the recovery of cognitive functions. This review summarizes the role of astrocytes in AD and the possibility of therapeutic strategies targeting astrocytes. Astrocytes are involved in brain lipid metabolism and can regulate the synthesis and degradation of Aß to affect the pathology of AD. The tau protein is phosphorylated by astrocytes, and this phosphorylation leads to the formation of neurofibrillary tangles (NFTs). Astrocytes can express a variety of receptors and inflammatory factors and participate in the neuroinflammatory process and the release of proinflammatory mediators. When the glutamate produced by the neurons is not cleared by astrocytes, neurons undergo apoptosis due to blocked cell metabolism. Therapies for astrocytes are highly efficient, and these include stem cell therapy, gene editing technology, astrocyte transformation and chemical drugs. Here, we discuss the advantages and disadvantages of animal and cell models applied to the study of targeted astrocyte therapies. This study helps elucidate the mechanism of astrocytes in AD and promotes the clinical application of potential therapeutic strategies targeting astrocytes.
Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Animals , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Astrocytes , Neurodegenerative Diseases/metabolism , Amyloid beta-Peptides/metabolism , NeuronsABSTRACT
Diabetes mellitus (DM) is a worldwide chronic epidemic disease of impaired glucose metabolism. Transplantation of mesenchymal stem cells (MSCs) is considered a promising emerging treatment strategy for diabetes. However, the harsh internal environment of DM patients can inhibit the treatment effects of transplanted MSCs. Fortunately, this adverse effect can be reversed by resveratrol (Res). Therefore, we investigated and summarized relevant studies on the combined treatment of diabetes with MSCs and resveratrol. This review presents the therapeutic effects of this combination therapy strategy on DM in glycemic control, anti-inflammatory, anti-oxidative stress and anti-fibrotic. Moreover, this review explained the mechanisms of MSCs and resveratrol in diabetes treatment from 3 aspects, including promoting cell survival and inhibiting apoptosis, inhibiting histiocyte fibrosis, and improving glucose metabolism. These findings help to understand in-depth mechanisms of the treatment of DM and help to propose a potential treatment strategy for DM and its complications.
Subject(s)
Diabetes Mellitus , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Diabetes Mellitus/drug therapy , Fibrosis , Glucose/metabolism , Humans , Mesenchymal Stem Cells/metabolism , Resveratrol/metabolism , Resveratrol/pharmacology , Resveratrol/therapeutic useABSTRACT
Neurodegenerative diseases (NDs) are aging-related diseases that involve the death of neurons in the brain. Dysregulation of protein homeostasis leads to the production of toxic proteins or the formation of aggregates, which is the pathological basis of NDs. Small heat shock proteins (HSPB) is involved in the establishment of a protein quality control (PQC) system to maintain cellular homeostasis. HSPB can be secreted into the extracellular space and delivered by various routes, especially extracellular vehicles (EVs). HSPB plays an important role in influencing the aggregation phase of toxic proteins involved in heat shock transcription factor (HSF) regulation, oxidative stress, autophagy and apoptosis pathways. HSPB conferred neuroprotective effects by resisting toxic protein aggregation, reducing autophagy and reducing neuronal apoptosis. The HSPB treatment strategies, including targeted PQC system therapy and delivery of EVs-HSPB, can improve disease manifestations for NDs. This review aims to provide a comprehensive insight into the impact of HSPB in NDs and the feasibility of new technology to enhance HSPB expression and EVs-HSPB delivery for neurodegenerative disease.
Subject(s)
Heat-Shock Proteins, Small , Neurodegenerative Diseases , Humans , Heat-Shock Proteins/metabolism , Heat-Shock Proteins, Small/metabolism , Neurodegenerative Diseases/metabolism , Protein AggregatesABSTRACT
The pathology of Alzheimer's disease (AD) is complex and heterogeneous, and there are currently no drugs that can stop its progression. The failure of traditional chemical small-molecule drug development showed the weakness of single target and made researchers look to cell therapy with multiple regulatory effects. Stem cells from human exfoliated deciduous teeth (SHED) are a kind of neural crest-derived mesenchymal stem cells which have broad prospects in the treatment of neurodegenerative diseases. In this study, we demonstrated the therapeutic effects of SHED in AD mice, including behavioral improvement, neuronal protection, and alleviation of neuroinflammation. Tracking experiments on SHED showed that some of the transplanted cells could enter the brain. To elucidate the role played by the majority of cells transplanted into veins, blood proteomic assays were performed. Data are available via ProteomeXchange with identifier PXD030313. Among the altered proteins, the PPAR pathway related to energy metabolism was considered to be an important signaling pathway involved in regulation through gene ontology analysis and pathway analysis. Western blot showed that the transplantation of SHED improved the glucose metabolism in AD mice by increasing the PPARγ signaling pathway. These results suggested that SHED have a potential in relieving AD pathological symptoms and improving behavioral cognition. The therapeutic mechanism of SHED is related to up-regulating PPARγ signaling pathway and reducing neuronal damage.
Subject(s)
Alzheimer Disease , PPAR gamma , Alzheimer Disease/metabolism , Alzheimer Disease/therapy , Animals , Cell Differentiation , Humans , Mice , PPAR gamma/metabolism , Proteomics , Stem Cells/metabolism , Tooth, DeciduousABSTRACT
BACKGROUND: Fecal microbiota transplant (FMT) is a potential treatment approach for many diseases. Alzheimer's disease (AD) and cancer have been proven to have a specific antagonistic relationship to FMT. OBJECTIVE: This article aims to explore whether intestinal flora transplantation from cancer individuals can ameliorate cognitive impairment. METHODS: Morris water maze and object recognition tests were performed to assess cognitive function after the fecal flora from tumor-bearing and WT mice were transplanted into AD mice by gavage. The effect of flora transplantation on AD was analyzed by thioflavin T staining, western blot, and 16S RNA sequencing. RESULTS: AD mice with FMT significantly improved short-term memory level and cognitive ability compared with Tgâ+âNaCl group. Inflammatory factors in the plasma were regulated, and Aß plaques burden in the hippocampus and cortex were decreased. FMT in the tumor-bearing group showed a higher significant amelioration in symptoms compared to the healthy group. 16S RNA sequencing revealed that FMT treatments could reverse the increased Firmicutes and Prevotella and the decreased Bacteroidetes, Bacteroides, and Sutterella in AD mice. AD mice transplanted with tumor-bearing mice feces additionally increased the density of Oscillospira, Odoribacter, and AF12. Furthermore, the predicted functional analyses showed that the metabolism of inorganic and organic salts in the intestinal flora of AD mice was also reversed by FMT. CONCLUSION: Intestinal flora transplantation from tumor-bearing mice can ameliorate the cognitive impairment of AD mice.
Subject(s)
Alzheimer Disease , Gastrointestinal Microbiome , Neoplasms , Alzheimer Disease/therapy , Animals , Cognition , Fecal Microbiota Transplantation , Humans , MiceABSTRACT
Parkinson's disease (PD), the second most common neurodegenerative disease worldwide, is caused by the loss of dopaminergic (DAergic) neurons in the substantia nigra resulting in a series of motor or non-motor disorders. Current treatment methods are unable to stop the progression of PD and may bring certain side effects. Cell replacement therapy has brought new hope for the treatment of PD. Recently, human dental tissue-derived mesenchymal stem cells have received extensive attention. Currently, dental pulp stem cells (DPSCs) and stem cells from human exfoliated deciduous teeth (SHED) are considered to have strong potential for the treatment of these neurodegenerative diseases. These cells are considered to be ideal cell sources for the treatment of PD on account of their unique characteristics, such as neural crest origin, immune rejection, and lack of ethical issues. In this review, we briefly describe the research investigating cell therapy for PD and discuss the application and progress of DPSCs and SHED in the treatment of PD. This review offers significant and comprehensive guidance for further clinical research on PD.
Subject(s)
Mesenchymal Stem Cells , Neurodegenerative Diseases , Parkinson Disease , Cell Differentiation , Dental Pulp , Dopaminergic Neurons , Humans , Parkinson Disease/therapy , Tooth, DeciduousABSTRACT
Human umbilical cord mesenchymal stem cells (hUC-MSCs) are a potential clinical material in regenerative medicine applications. Metformin has shown safety and effectiveness as a clinical drug. However, the effect of metformin as a treatment on hUC-MSCs is unclear. Our research aimed to explore the effects of metformin on the osteogenesis, adipogenesis and angiogenesis of hUC-MSCs, and attempted to explain the molecular fluctuations of metformin through the mapping of protein profiles. Proliferation assay, osteogenic and adipogenic differentiation induction, cell cycle, flow cytometry, quantitative proteomics techniques and bioinformatics analysis were used to detect the influences of metformin treatment on hUC-MSCs. Our results demonstrated that low concentrations of metformin promoted the proliferation of hUC-MSCs, but high concentrations of metformin inhibited it. Metformin exhibited promotion of osteogenesis but inhibition of adipogenesis. Metformin treated hUC-MSCs up-regulated the expression of osteogenic marker ALP, OCN and RUNX2, but down-regulated the expression of adipogenic markers PPARγ and LPL. Proteomics analysis found that up-regulation of differentially expressed proteins in metformin treatment group involved the biological process of cell migration in Gene Ontology analysis. Metformin enhanced cell migration of HUVEC in a co-culture system, and hUC-MSCs treated with metformin exhibited stronger angiogenesis in vitro and in vivo compared to the hUC-MSCs group. The results of RT-qPCR revealed that the SCF and VEGFR2 were raised in metformin treatment. This study can promote the application of hUC-MSCs treated with metformin to tissue engineering for vascular reconstruction and angiogenesis.