Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 867
Filter
Add more filters

Publication year range
1.
Nature ; 603(7900): 284-289, 2022 03.
Article in English | MEDLINE | ID: mdl-35236981

ABSTRACT

Homo sapiens was present in northern Asia by around 40,000 years ago, having replaced archaic populations across Eurasia after episodes of earlier population expansions and interbreeding1-4. Cultural adaptations of the last Neanderthals, the Denisovans and the incoming populations of H. sapiens into Asia remain unknown1,5-7. Here we describe Xiamabei, a well-preserved, approximately 40,000-year-old archaeological site in northern China, which includes the earliest known ochre-processing feature in east Asia, a distinctive miniaturized lithic assemblage with bladelet-like tools bearing traces of hafting, and a bone tool. The cultural assembly of traits at Xiamabei is unique for Eastern Asia and does not correspond with those found at other archaeological site assemblages inhabited by archaic populations or those generally associated with the expansion of H. sapiens, such as the Initial Upper Palaeolithic8-10. The record of northern Asia supports a process of technological innovations and cultural diversification emerging in a period of hominin hybridization and admixture2,3,6,11.


Subject(s)
Archaeology , Hominidae , Tool Use Behavior , Animals , Bone and Bones , China , History, Ancient , Humans , Neanderthals
2.
Nature ; 612(7941): 658-660, 2022 12.
Article in English | MEDLINE | ID: mdl-36543953

ABSTRACT

Pulsar wind nebulae are formed when outflows of relativistic electrons and positrons hit the surrounding supernova remnant or interstellar medium at a shock front. The Vela pulsar wind nebula is powered by a young pulsar (B0833-45, aged 11,000 years)1 and located inside an extended structure called Vela X, which is itself inside the supernova remnant2. Previous X-ray observations revealed two prominent arcs that are bisected by a jet and counter jet3,4. Radio maps have shown high linear polarization of 60% in the outer regions of the nebula5. Here we report an X-ray observation of the inner part of the nebula, where polarization can exceed 60% at the leading edge-approaching the theoretical limit of what can be produced by synchrotron emission. We infer that, in contrast with the case of the supernova remnant, the electrons in the pulsar wind nebula are accelerated with little or no turbulence in a highly uniform magnetic field.

3.
Proc Natl Acad Sci U S A ; 121(11): e2313123121, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38437546

ABSTRACT

Organized flaking techniques to obtain predetermined stone tools have been traced back to the early Acheulean (also known as mode 2) in Africa and are seen as indicative of the emergence of advanced technical abilities and in-depth planning skills among early humans. Here, we report one of the earliest known examples of prepared core technology in the archaeological record, at the Cenjiawan (CJW) site in the Nihewan basin of China, dated 1.1 Mya. The operational schemes reconstructed from the CJW refit sets, together with shaping patterns observed in the retouched tools, suggest that Nihewan basin toolmakers had the technical abilities of mode 2 hominins, and developed different survival strategies to adapt to local raw materials and environments. This finding predates the previously earliest known prepared core technology from Eurasia by 0.3 My, and the earliest known mode 2 sites in East Asia by a similar amount of time, thus suggesting that hominins with advanced technologies may have migrated into high latitude East Asia as early as 1.1 Mya.


Subject(s)
Hominidae , Technology , Humans , Animals , Asia, Eastern , China , Africa
4.
Cell Mol Life Sci ; 81(1): 282, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38943031

ABSTRACT

Cetuximab resistance has been a major challenge for head and neck squamous cell carcinoma (HNSCC) patients receiving targeted therapy. However, the mechanism that causes cetuximab resistance, especially microRNA (miRNA) regulation, remains unclear. Growing evidence suggests that miRNAs may act as "nuclear activating miRNAs" for targeting promoter regions or enhancers related to target genes. This study elucidates a novel mechanism underlying cetuximab resistance in HNSCC involving the nuclear activation of KDM7A transcription via miR-451a. Herein, small RNA sequencing, quantitative real-time polymerase chain reaction (qRT‒PCR) and fluorescence in situ hybridization (FISH) results provided compelling evidence of miR-451a nuclear enrichment in response to cetuximab treatment. Chromatin isolation via RNA purification, microarray analysis, and bioinformatic analysis revealed that miR-451a interacts with an enhancer region in KDM7A, activating its expression and further facilitating cetuximab resistance. It has also been demonstrated that the activation of KDM7A by nuclear miR-451a is induced by cetuximab treatment and is AGO2 dependent. Logistic regression analyses of 87 HNSCC samples indicated the significance of miR-451a and KDM7A in the development of cetuximab resistance. These discoveries support the potential of miR-451a and KDM7A as valuable biomarkers for cetuximab resistance and emphasize the function of nuclear-activating miRNAs.


Subject(s)
Cetuximab , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic , Head and Neck Neoplasms , MicroRNAs , Squamous Cell Carcinoma of Head and Neck , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Cetuximab/pharmacology , Drug Resistance, Neoplasm/genetics , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/metabolism , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Jumonji Domain-Containing Histone Demethylases/genetics , Jumonji Domain-Containing Histone Demethylases/metabolism , Argonaute Proteins/genetics , Argonaute Proteins/metabolism , Animals , Mice , Cell Nucleus/metabolism , Cell Nucleus/genetics , Female , Mice, Nude
5.
Eur Heart J ; 45(37): 3871-3885, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-38976370

ABSTRACT

BACKGROUND AND AIMS: Valve interstitial cells (VICs) undergo a transition to intermediate state cells before ultimately transforming into the osteogenic cell population, which is a pivotal cellular process in calcific aortic valve disease (CAVD). Herein, this study successfully delineated the stages of VIC osteogenic transformation and elucidated a novel key regulatory role of lumican (LUM) in this process. METHODS: Single-cell RNA-sequencing (scRNA-seq) from nine human aortic valves was used to characterize the pathological switch process and identify key regulatory factors. The in vitro, ex vivo, in vivo, and double knockout mice were constructed to further unravel the calcification-promoting effect of LUM. Moreover, the multi-omic approaches were employed to analyse the molecular mechanism of LUM in CAVD. RESULTS: ScRNA-seq successfully delineated the process of VIC pathological transformation and highlighted the significance of LUM as a novel molecule in this process. The pro-calcification role of LUM is confirmed on the in vitro, ex vivo, in vivo level, and ApoE-/-//LUM-/- double knockout mice. The LUM induces osteogenesis in VICs via activation of inflammatory pathways and augmentation of cellular glycolysis, resulting in the accumulation of lactate. Subsequent investigation has unveiled a novel LUM driving histone modification, lactylation, which plays a role in facilitating valve calcification. More importantly, this study has identified two specific sites of histone lactylation, namely, H3K14la and H3K9la, which have been found to facilitate the process of calcification. The confirmation of these modification sites' association with the expression of calcific genes Runx2 and BMP2 has been achieved through ChIP-PCR analysis. CONCLUSIONS: The study presents novel findings, being the first to establish the involvement of lumican in mediating H3 histone lactylation, thus facilitating the development of aortic valve calcification. Consequently, lumican would be a promising therapeutic target for intervention in the treatment of CAVD.


Subject(s)
Aortic Valve Stenosis , Aortic Valve , Calcinosis , Histones , Lumican , Osteogenesis , Animals , Calcinosis/genetics , Calcinosis/pathology , Calcinosis/metabolism , Aortic Valve/pathology , Aortic Valve/metabolism , Lumican/metabolism , Lumican/genetics , Humans , Aortic Valve Stenosis/genetics , Aortic Valve Stenosis/metabolism , Aortic Valve Stenosis/pathology , Mice , Osteogenesis/genetics , Osteogenesis/physiology , Histones/metabolism , Core Binding Factor Alpha 1 Subunit/metabolism , Core Binding Factor Alpha 1 Subunit/genetics , Mice, Knockout , Male , Bone Morphogenetic Protein 2/metabolism , Bone Morphogenetic Protein 2/genetics
6.
Br J Cancer ; 131(2): 387-402, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38849478

ABSTRACT

BACKGROUND: It appears that tumour-infiltrating neoantigen-reactive CD8 + T (Neo T) cells are the primary driver of immune responses to gastrointestinal cancer in patients. However, the conventional method is very time-consuming and complex for identifying Neo T cells and their corresponding T cell receptors (TCRs). METHODS: By mapping neoantigen-reactive T cells from the single-cell transcriptomes of thousands of tumour-infiltrating lymphocytes, we developed a 26-gene machine learning model for the identification of neoantigen-reactive T cells. RESULTS: In both training and validation sets, the model performed admirably. We discovered that the majority of Neo T cells exhibited notable differences in the biological processes of amide-related signal pathways. The analysis of potential cell-to-cell interactions, in conjunction with spatial transcriptomic and multiplex immunohistochemistry data, has revealed that Neo T cells possess potent signalling molecules, including LTA, which can potentially engage with tumour cells within the tumour microenvironment, thereby exerting anti-tumour effects. By sequencing CD8 + T cells in tumour samples of patients undergoing neoadjuvant immunotherapy, we determined that the fraction of Neo T cells was significantly and positively linked with the clinical benefit and overall survival rate of patients. CONCLUSION: This method expedites the identification of neoantigen-reactive TCRs and the engineering of neoantigen-reactive T cells for therapy.


Subject(s)
Antigens, Neoplasm , CD8-Positive T-Lymphocytes , Gastrointestinal Neoplasms , Lymphocytes, Tumor-Infiltrating , Machine Learning , Single-Cell Analysis , Humans , CD8-Positive T-Lymphocytes/immunology , Gastrointestinal Neoplasms/immunology , Gastrointestinal Neoplasms/genetics , Gastrointestinal Neoplasms/pathology , Single-Cell Analysis/methods , Antigens, Neoplasm/immunology , Antigens, Neoplasm/genetics , Lymphocytes, Tumor-Infiltrating/immunology , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Transcriptome
7.
Anal Chem ; 96(21): 8696-8704, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38751030

ABSTRACT

Carbonyl sulfide (OCS) is a toxic gas produced during industrial processes that poses risks to both human health and industrial equipment. Therefore, detecting OCS concentrations plays a crucial role in early hazard warning. This paper presents an online system for detecting OCS at the ppb level using thermal conversion and spectral reconstruction filtering differential optical absorption spectroscopy (SRF-DOAS). First, OCS, which is not suitable for DOAS due to its weak absorption characteristics, is completely transformed into SO2 with strong absorption characteristics under high-temperature conditions. Then, the spectral reconstruction filtering method (SRF) is proposed to eliminate the noise and interference. The core idea of the method is to arrange the spectrum according to the spectral intensity from small to large rather than wavelength, reconstructing the spectrum into a new spectrum with linear characteristics. The reconstructed spectrum can remove noise and interference by linear fitting and retain the characteristic of SO2 oscillation absorption. Next, we demonstrate the ability of the reconstructed spectral method to remove noise and interference by comparing the spectra of the inverse-reconstructed gas mixture and SO2. The relative deviation of 0.88% at 100 ppb and detection limit of 7.26 ppb*m for OCS were obtained using the SRF-DOAS method. Finally, the reliability of the system was confirmed by measurements of OCS concentrations in mixture gas of OCS and air, as well as in human exhaled breath.

8.
Small ; 20(42): e2402867, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38850185

ABSTRACT

A considerable challenge in CO2 reduction reaction (CO2RR) to produce high-value-added chemicals comes from the adsorption and activation of CO2 to form intermediates. Herein, an amino-induced spillover strategy aimed at significantly enhancing the CO2 adsorption and activation capabilities of CdS supported on N-doped mesoporous hollow carbon sphere (NH2-CdS/NMHCS) for highly efficient CO2RR is presented. The prepared NH2-CdS/NMHCS exhibits a high CO Faradaic efficiency (FECO) exceeding 90% from -0.8 to -1.1 V versus reversible hydrogen electrode (RHE) with the highest FECO of 95% at -0.9 V versus RHE in H cell. Additional experimental and theoretical investigations demonstrate that the alkaline -NH2 group functions as a potent trapping site, effectively adsorbing the acidic CO2, and subsequently triggering CO2 spillover to CdS. The amino modification-induced CO2 spillover, combined with electron redistribution between CdS and NMHCS, not only readily achieves the spontaneous activation of CO2 to *COOH but also greatly reduces the energy required for the conversion of *COOH to *CO intermediate, thus endowing NH2-CdS/NMHCS with significantly improved reaction kinetics and reduced overpotential for CO2-to-CO conversion. It is believed that this research can provide valuable insights into the development of electrocatalysts with superior CO2 adsorption and activation capabilities for CO2RR application.

9.
J Antimicrob Chemother ; 79(8): 1938-1950, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38873816

ABSTRACT

BACKGROUND: The concentrations of linezolid, its optimal regimen and the associated side effects in elderly patients remain unclear. METHODS: In this multicentre, prospective study, elderly patients receiving linezolid at four tertiary hospitals in Beijing between May 2021 and December 2022 were included. Linezolid concentrations and haematological toxicity were monitored dynamically. Risk factors for linezolid overexposure and moderate-to-severe linezolid-induced thrombocytopenia (M/S LIT) were analysed, and a predictive model of M/S LIT was developed. RESULTS: A total of 860 linezolid concentrations were measured in 313 patients. The median trough concentrations of linezolid were 24.4 (15.3, 35.8) mg/L at 36-72 h and 26.1 (17.0, 38.1) mg/L at 5-10 days (P = 0.132). Severe linezolid exposure was independently associated with age, estimated glomerular filtration rate (eGFR) and the worst SOFA score (SOFA1), and we further recommended dose regimens for elderly patients based on these findings. The incidences of linezolid-induced thrombocytopenia(LIT) and M/S LIT were 73.5% and 47.6%, respectively. M/S LIT was independently correlated with treatment duration, average trough concentration (TDMa), baseline platelet count, eGFR and baseline SOFA score (SOFA0). The developed nomogram predicted M/S LIT with an area under the curve of 0.767 (95% CI 0.715-0.820), a sensitivity of 71.1% and a specificity of 73.2%. CONCLUSIONS: Linezolid trough concentrations increased dramatically in the elderly, by about 10 mg/L in patients aged 65-80 years, followed by a further increase of 10 mg/L for every 10 years of age. Therapeutic drug monitoring is recommended in elderly patients receiving linezolid. The developed nomogram may predict M/S LIT and guide dosage adjustments of linezolid. Clinical trial registration number: ChiCTR2100045707.


Subject(s)
Anti-Bacterial Agents , Drug Monitoring , Linezolid , Nomograms , Thrombocytopenia , Humans , Linezolid/adverse effects , Linezolid/pharmacokinetics , Linezolid/administration & dosage , Aged , Male , Female , Prospective Studies , Anti-Bacterial Agents/adverse effects , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/administration & dosage , Thrombocytopenia/chemically induced , Aged, 80 and over , Risk Factors , Middle Aged
10.
Ann Surg Oncol ; 31(6): 4019-4021, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38480563

ABSTRACT

BACKGROUND: Currently, an effective tracer technique for lymphatic drainage during laparoscopic surgery has not been established. This study aimed to elucidate a new fluorescence, imaging technique targeting the hepatic lymphatic drainage area, using indocyanine green (ICG). METHODS: A patient diagnosed with intrahepatic cholangiocarcinoma (ICC) located in segment 8 of the liver was injected with ICG into the connective tissue of the Glisson pedicle supplied by the lesion's liver segment, avoiding the bile duct, portal vein, and hepatic artery. This was performed under the guidance of laparoscopic ultrasonographic localization to trace the lymph nodes. RESULTS: The lymphatic drainage area traced intraoperatively by ICG was consistent with the definition of the right regional lymph nodes for ICC. The lymph nodes were dissected, followed by addition of a fluorescence tracer. CONCLUSIONS: Mastering intraoperative ultrasonic puncture technology can enable effective and accurate tracing of the lymph nodes of the liver segment where the lesion is located. However, the technical standards for this methodology need to be established through further studies.


Subject(s)
Bile Duct Neoplasms , Coloring Agents , Indocyanine Green , Laparoscopy , Humans , Bile Duct Neoplasms/surgery , Bile Duct Neoplasms/diagnostic imaging , Bile Duct Neoplasms/pathology , Cholangiocarcinoma/surgery , Cholangiocarcinoma/diagnostic imaging , Cholangiocarcinoma/pathology , Coloring Agents/administration & dosage , Drainage/methods , Indocyanine Green/administration & dosage , Laparoscopy/methods , Liver Neoplasms/surgery , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/pathology , Lymph Node Excision/methods , Lymph Nodes/surgery , Lymph Nodes/diagnostic imaging , Lymph Nodes/pathology , Prognosis
11.
Ann Surg Oncol ; 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39373921

ABSTRACT

BACKGROUND: There is little information regarding the impact of the number of concurrent metabolic syndrome (MetS) risk factors on the textbook outcomes (TO) in patients with hepatocellular carcinoma (HCC) following liver resection. PATIENTS AND METHODS: Data from patients who underwent liver resection between 2015 and 2023 in a multicenter database were retrospectively reviewed (N = 3156). According to the guidelines, MetS risk factors include obesity, hypertension, diabetes, and dyslipidemia. RESULTS: In this study, 2056 (65.1%) patients achieved TO. The incidence of TO was 63.1% in patients with ≥ 1 MetS risk factor, which was lower than that in patients without any MetS risk factors (67.5%, P = 0.011). As the number of MetS risk factors increased, the probability of not achieving TO gradually increased. The non-TO rates in patients with no, 1, 2, and ≥ 3 MetS risk factors were 32.5%, 35.9%, 37.6% and 40.2%, respectively (Ptrend = 0.005). Multivariate logistic regression confirmed that the number of MetS risk factors (0 as a reference; 1, OR 1.220, 95% CI 1.029-1.447, P = 0.022; 2, OR 1.397, 95% CI 1.113-1.755, P = 0.004; ≥ 3, OR 1.647, 95% CI 1.197-2.264, P = 0.002) independently contributed to non-TO in patients with HCC after liver resection. Both the 5-year recurrence-free survival (TO: 50.7% versus non-TO: 43.9%, P < 0.001) and overall survival rates (TO: 71.0% versus non-TO: 58.7%, P < 0.001) of TO patients were significantly better than those of non-TO patients. CONCLUSIONS: Concurrent MetS risk factors can adversely impact TO achievement in patients with HCC after liver resection. The more risk factors patients have, the less likely they are to achieve TO.

12.
Cytokine ; 183: 156737, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39217915

ABSTRACT

BACKGROUND: Opioid activation of the microglia or macrophage Toll-like receptor 4 (TLR4) and associated inflammatory cytokine release are implicated in opioid-induced hyperalgesia and tolerance. The cyclic GMP-AMP synthase/stimulator of interferon genes (cGAS-STING) signaling pathway, activated by double-stranded DNA including mitochondrial DNA (mtDNA), has emerged as another key mediator of inflammatory responses. This study tested the hypothesis that morphine induces immune inflammatory responses in microglia and macrophages involving TLR4 and cGAS-STING pathway. METHODS: BV2 microglia and Raw 264.7 (Raw) macrophage cells were exposed to morphine with and without a STING inhibitor (C176) for 6 h or TLR 4 inhibitor (TAK242) for 24 h. Western blotting and RT-qPCR analyses assessed TLR4, cGAS, STING, nuclear factor-kappa B (NF-κB), and pro-inflammatory cytokine expression. Morphine-induced mitochondria dysfunction was quantified by reactive oxygen species (ROS) release using MitoSOX, mtDNA release by immunofluorescence, and RT-qPCR. Polarization of BV2 and Raw cells was assessed by inducible nitric oxide (iNOS) and CD86 expression. The role of mtDNA on morphine-related inflammation was investigated by mtDNA depletion of the cells with ethidium bromide (EtBr) or cell transfection of mtDNA extracted from morphine-treated cells. RESULTS: Morphine significantly increased the expression of TLR4, cGAS, STING, p65 NF-κB, and cytokines (IL-6 and TNF-α) in BV2 and Raw cells. Morphine-induced mitochondrial dysfunction by increased ROS and mtDNA release; the increased iNOS and CD86 evidenced inflammatory M1-like phenotype polarization. TLR4 and STING inhibitors reduced morphine-induced cytokine release in both cell types. The transfection of mtDNA activated inflammatory signaling proteins, cytokine release, and polarization. Conversely, mtDNA depletion led to the reversal of these effects. CONCLUSION: Morphine activates the cGAS-STING pathway in macrophage cell types. Inhibition of the STING pathway can be an additional method to overcome immune cell inflammation-related morphine tolerance and opioid-induced hyperalgesia.


Subject(s)
Inflammation , Macrophages , Membrane Proteins , Morphine , Nucleotidyltransferases , Signal Transduction , Toll-Like Receptor 4 , Toll-Like Receptor 4/metabolism , Animals , Mice , Signal Transduction/drug effects , Morphine/pharmacology , Nucleotidyltransferases/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Inflammation/metabolism , RAW 264.7 Cells , Macrophages/metabolism , Macrophages/drug effects , DNA, Mitochondrial/metabolism , Microglia/metabolism , Microglia/drug effects , Cytokines/metabolism , Reactive Oxygen Species/metabolism , Mitochondria/metabolism , Mitochondria/drug effects , NF-kappa B/metabolism , Cell Line
13.
Opt Lett ; 49(18): 5083-5086, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39270235

ABSTRACT

In this Letter, we propose a low-complexity adaptive multipath interference (MPI) and channel noise mitigation (AMCM) scheme in the receiver digital signal processing (DSP) for bandwidth-limited intensity modulation and direct detection (IM/DD) transmission systems. Following channel equalization, MPI and channel noise are distributed in the low- and high-frequency parts, respectively, and exhibit the characteristics of bandstop filtering. The proposed AMCM is designed based on optimized detection, which incorporates an adaptive bandpass filter (BPF) and a log-maximum a posteriori estimation with a lookup table-based fixed number of surviving states (LUT-based FS-MAP) decoder. The adaptive BPF is capable of mitigating the MPI and channel noise based on spectral distribution. Moreover, the LUT-based FS-MAP decoder can eliminate intersymbol interference (ISI) introduced by the BPF. The proposed AMCM is implemented in an O-band 56-Gbaud IM/DD optical 4-level pulse amplitude modulation (PAM-4) system with a 10.7-GHz bandwidth over a 10-km standard single-mode fiber with different linewidths. The results demonstrate that the proposed AMCM scheme can enhance signal-to-interference ratio (SIR) tolerance to 11 dB with only three real-valued multiplications per symbol, achieving a 7% hard-decision forward error correction threshold. To the best of our knowledge, for the first time, this represents the inaugural instance of optimized detection being employed for MPI mitigation.

14.
Opt Lett ; 49(13): 3644-3647, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38950230

ABSTRACT

Entangled dynamic and deterministic inter-symbol interferences (ISIs) induced by complicated channel impairments, limit the transmission capacity of intensity modulation and direct detection (IM/DD) systems. This Letter proposes a colored noise-suppressed channel shortening filter (CNS-CSF)-enabled maximum a posteriori (MAP) estimation (CNS-CSF-MAP) scheme to disentangle and mitigate deterministic and dynamic ISIs, where the CNS-CSF is deployed to perform the optimized dynamic ISI equalization with equalization-enhanced noise suppression, and the subsequent MAP algorithm is used to eliminate the residual deterministic ISI. The performance of the CNS-CSF-MAP scheme is evaluated and demonstrated in a C-band 61-Gb/s 100-km optical on-off keying (OOK) IM/DD system. The experimental results show that the proposed CNS-CSF-MAP scheme reaches the 20% and 7% forward error correction (FEC) thresholds at received optical powers (ROPs) of -6.6 dBm and -4 dBm, achieving 0.5- and 1.5-dB gains over a conventional post-filter-enabled MAP (PF-MAP) scheme.

15.
Opt Lett ; 49(2): 318-321, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38194558

ABSTRACT

Multi-focusing of light is a crucial capability for photonic devices that can be effectively achieved by precisely modulating the phase delay on the incident wavefront. However, integrating functional structures into optical fibers for remote light focusing remains challenging due to the complex device design and limited fabrication approaches. Here, we present the design and fabrication of metalens array on the end-face of a tailored single-mode step-index fiber for focusing light field into closely packed focal spot array. The metalenses are configured based on the fractional Talbot effect and benefit a modular design capability. Light passing through the optical fiber can be focused into different focal planes. With a synergistic 3D laser nanoprinting technique based on two-photon polymerization, high-quality meta-fibers are demonstrated for focusing light parallelly with a uniform numerical aperture (NA) as high as approximately 0.77. This may facilitate various applications such as optical trapping, generation of sophisticated beam profiles, and boosting light coupling efficiencies.

16.
Oncology ; 102(3): 206-216, 2024.
Article in English | MEDLINE | ID: mdl-37517399

ABSTRACT

INTRODUCTION: BRCA1/2 germline mutations are the most well-known genetic determinants for breast cancer. However, the distribution of germline mutations in non-BRCA1/2 cancer susceptibility genes in Chinese breast cancer patients is unclear. The association between clinical characteristics and germline mutations remains to be explored. METHODS: Consecutive breast cancer patients from Peking University People's Hospital were enrolled. Clinical characteristics were collected, and next-generation sequencing was performed using blood samples of participants to identify pathogenic/likely pathogenic (P/LP) germline mutations in 32 cancer susceptibility genes including homologous recombination repair (HRR) genes. RESULTS: A total of 885 breast cancer patients underwent the detection of germline mutations. 107 P/LP germline mutations of 17 genes were identified in 116 breast cancer patients including 79 (8.9%) in BRCA1/2 and 40 (4.5%) in 15 non-BRCA1/2 genes. PALB2 was the most frequently mutated gene other than BRCA1/2 but still relatively rare (1.1%). There were 38 novel P/LP germline variants detected. P/LP germline mutations in BRCA1/2 were significantly associated with onset age (p < 0.001), the family history of breast/ovarian cancer (p = 0.010), and molecular subtype (p < 0.001), while being correlated with onset age (p < 0.001), site of breast tumor (p = 0.028), and molecular subtype (p < 0.001) in HRR genes. CONCLUSIONS: The multiple-gene panel prominently increased the detection rate of P/LP germline mutations in 32 cancer susceptibility genes compared to BRCA1/2 alone. Onset younger than or equal to 45 years of age, bilateral and triple-negative breast cancer patients may be more likely to be recommended for detecting P/LP germline mutations in HRR genes.


Subject(s)
Breast Neoplasms , Triple Negative Breast Neoplasms , Humans , Female , Breast Neoplasms/pathology , Germ-Line Mutation , BRCA1 Protein/genetics , Genetic Predisposition to Disease , BRCA2 Protein/genetics , Triple Negative Breast Neoplasms/genetics , High-Throughput Nucleotide Sequencing
17.
Mov Disord ; 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39229657

ABSTRACT

BACKGROUND: Primary familial brain calcification (PFBC) is a monogenic disorder characterized by bilateral calcifications in the brain. The genetic basis remains unknown in over half of the PFBC patients, indicating the existence of additional novel causative genes. NAA60 was a recently reported novel causative gene for PFBC. OBJECTIVE: The aim was to identify the probable novel causative gene in an autosomal recessive inherited PFBC family. METHODS: We performed a comprehensive genetic study on a consanguineous Chinese family with 3 siblings diagnosed with PFBC. We evaluated the effect of the variant in a probable novel causative gene on the protein level using Western blot, immunofluorescence, and coimmunoprecipitation. Possible downstream pathogenic mechanisms were further explored in gene knockout (KO) cell lines and animal models. RESULTS: We identified a PFBC co-segregated homozygous variant of c.460_461del (p.D154Lfs*113) in NAA60. Functional assays showed that this variant disrupts NAA60 protein localization to Golgi and accelerated protein degradation. The mutant NAA60 protein alters its interaction with the PFBC-related proteins PiT2 and XPR1, affecting intracellular phosphate homeostasis. Further mass spectrometry analysis in NAA60 KO cell lines revealed decreased expression of multiple brain calcification-associated proteins, including reduced folate carrier (RFC), a folate metabolism-related protein. CONCLUSIONS: Our study replicated the identification of NAA60 as a novel causative gene for autosomal recessive PFBC, demonstrating our causative variant leads to NAA60 loss of function. The NAA60 loss of function disrupts not only PFBC-related proteins (eg, PiT2 and XPR1) but also a wide range of other brain calcification-associated membrane protein substrates (eg, RFC), and provided a novel probable pathogenic mechanism for PFBC. © 2024 International Parkinson and Movement Disorder Society.

18.
FASEB J ; 37(11): e23239, 2023 11.
Article in English | MEDLINE | ID: mdl-37843818

ABSTRACT

Platelets are highly involved in inflammation and organ injury under pathological conditions. The mitophagy in platelets may restrict hyperactivation of the inflammasome and relieve acute kidney injury (AKI). Cecal ligation puncture (CLP)/LPS-induced AKI Triggering receptor expressed on myeloid cells (TREM-1)-knockout mice models were established. Additionally, septic patients with AKI were also included. TREM-1 expression in platelets and inflammasome activation were examined. Platelet transfer assays were performed to investigate the contribution of platelet TREM-1 to renal injury. Mitophagy was evaluated in the context of inflammation. BNIP3L/Nix knockout mice were used to examine the relationship between platelet mitophagy and inflammatory activation. The results showed that the level of TREM-1 was increased and the platelet inflammasome was hyperactivated in CLP mice and septic patients, and TREM-1 activated platelet inflammasomes. TREM-1 deletion significantly abrogated hyperactivation of the platelet inflammasome and dramatically reduced AKI, whereas ablation of the mitophagy receptor BNIP3L/Nix induced the accumulation of damaged mitochondria and hyperactivation of platelet inflammasomes in CLP mice. BNIP3L/Nix controlled platelet inflammasome activation, and an amplification loop of platelet inflammasome activation and dysfunctional mitochondria controlled sepsis-related AKI. Therefore, targeting TREM-1 and NLRP3/BNIP3L in platelets may represent a novel therapeutic strategy for treating septic AKI.


Subject(s)
Acute Kidney Injury , Sepsis , Humans , Mice , Animals , Inflammasomes/metabolism , Mitophagy , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Triggering Receptor Expressed on Myeloid Cells-1 , Acute Kidney Injury/metabolism , Apoptosis Regulatory Proteins , Mice, Knockout , Membrane Proteins/genetics , Mitochondrial Proteins
19.
BMC Infect Dis ; 24(1): 57, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38191304

ABSTRACT

BACKGROUND AND AIM: Two oral antivirals (Nirmatrelvir- ritonavir and Azvudine) are widely used in China practice during the Omicron wave of the pandemic. However, little evidence regarding the real-world effectiveness of these two oral antivirals in in-hospital patients. We aimed to evaluate the clinical effectiveness of nirmatrelvir-ritonavir versus azvudine among adult hospitalized patients with COVID-19. METHODS: This retrospective cohort study used data from three Chinese PLA General Hospital medical centres. Hospitalized patients with COVID-19 treated with azvudine or nirmatrelvir-ritonavir from Dec 10, 2022, to February 20, 2023, and did not require invasive ventilation support on admission were eligible for inclusion. RESULTS: After exclusions and propensity-score matching, the final analysis included 486 azvudine recipients and 486 nirmatrelvir-ritonavir recipients. By 28 days of initiation of the antivirus treatment, the crude incidence rate of all-cause death was similar in both types of antivirus treatment (nirmatrelvir-ritonavir group 2.8 events 1000 person-days [95% CI, 2.1-3.6] vs azvudine group 3.4 events/1000 person-days [95% CI, 2.6-4.3], P = 0.38). Landmark analysis showed that all-cause death was lower in the nirmatrelvir-ritonavir (3.5%) group than the azvudine (6.8%, P = 0.029) within the initial 10-day admission period, while no significant difference was observed for results between 10 and 28 days follow-up. There was no significant difference between the nirmatrelvir-ritonavir group and the azvudine group in cumulative incidence of the composite disease progression event (8.6% with nirmatrelvir-ritonavir vs. 10.1% with azvudine, HR, 1.22; 95% CI 0.80-1.86, P = 0.43). CONCLUSION: Among patients hospitalized with COVID-19 during the omicron wave in Beijing, similar in-hospital clinical outcomes on 28 days were observed between patients receiving nirmatrelvir-ritonavir and azvudine. However, it is worth noticing that nirmatrelvir-ritonavir appears to hold an advantage over azvudine in reducing early mortality. Further randomized controlled trials are needed to verify the efficacy of those two antivirus medications especially in early treatment.


Subject(s)
COVID-19 , Adult , Humans , Retrospective Studies , Ritonavir/therapeutic use , COVID-19 Drug Treatment , Inpatients , Hospitals, General , Antiviral Agents/therapeutic use
20.
Bioorg Chem ; 150: 107532, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38852312

ABSTRACT

Staphylococcus aureus is considered to be an extracellular pathogen. However, survival of S.aureus within host cells may cause long-term colonization and clinical failure. Current treatments have poor efficacy in clearing intracellular bacteria. Antibody-antibiotic conjugates (AACs) is a novel strategy for eliminating intracellular bacteria. Herein, we use KRM-1657 as payload of AAC for the first time, and we conjugate it with anti S. aureus antibody via a dipeptide linker (Valine-Alanine) to obtain a novel AAC (ASAK-22). The ASAK-22 exhibits good in vitro pharmacokinetic properties and inhibitory activity against intracellular MRSA, with 100 µg/mL of ASAK-22 capable of eliminating intracellular MRSA to the detection limit. Furthermore, the in vivo results demonstrate that a single administration of ASAK-22 significantly reduces the bacterial burden in the bacteremia model, which is superior to the vancomycin treatment.


Subject(s)
Anti-Bacterial Agents , Methicillin-Resistant Staphylococcus aureus , Microbial Sensitivity Tests , Animals , Humans , Mice , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Dose-Response Relationship, Drug , Immunoconjugates/chemistry , Immunoconjugates/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Mice, Inbred BALB C , Molecular Structure , Staphylococcal Infections/drug therapy , Structure-Activity Relationship , Rifamycins/chemistry , Rifamycins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL