Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Ecotoxicol Environ Saf ; 284: 116902, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39173224

ABSTRACT

Benzalkonium chloride (BAC) is a broad-spectrum antibacterial agent that possesses cleaning and bactericidal properties, but impact of BAC on wellbeing of aquatic organisms remains uncertain. Consequently, in this current study, we have examined the immunotoxic potential of BAC in zebrafish embryos, thus marking it as the pioneering effort in this field. According to the findings, zebrafish embryos exposed to BAC exhibited a decline in yolk area that varied with the concentration, along with a significant decrease in the count of neutrophils, macrophages, red blood cells, and thymus T-cells. We observed significantly up-regulated expression of immune-related signaling genes such as cxcl-c1c, il-8, tir4 and inf-γ, but expression of nf-κb was downregulated. In addition, we observed a marked reduction in the number of hematopoietic stem cells in zebrafish larvae after BAC exposure, which could be the result of oxidative stress-mediated apoptosis. We found that compared with the control group, the number of red blood cells in juvenile zebrafish in BAC-exposure group was significantly down-regulated, which could be attributed to hematopoietic stem cell defect. Astaxanthin restored immune cells and hematopoietic stem cells after BAC exposure, whereas Inhibitor of Wnt Response-1(IWR-1) restored neutrophils after BAC exposure. The research findings demonstrated that exposure to BAC displayed harmful effects on the development and immune system of zebrafish embryos. These effects might be associated with alterations in reactive oxygen species(ROS) levels and activation of the Wnt signaling pathway caused by BAC.

2.
Transl Cancer Res ; 12(4): 1006-1020, 2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37180669

ABSTRACT

Background: Some studies have shown that daucosterol has potential anti-tumor activity, but its therapeutic effect on multiple myeloma (MM) has not been reported. This study aimed to evaluate the therapeutic effect daucosterol against MM and explore its possible mechanism through network pharmacology. Methods: We collected daucosterol and approved drugs for MM, and their potential target profiles were obtained. We used 2 major methods to collect the gene sets related to the physiological process of MM. Based on the protein-protein interaction (PPI) network in the STRING database, the correlation between the therapeutic targets of daucosterol and MM-related genes was calculated by using the random walk with restart (RWR) algorithm to systematically evaluate the therapeutic potential of daucosterol for MM. On this basis, through intersection analysis, the potential targets of daucosterol in treating MM were identified, and the signaling pathways were mined. Furthermore, the key targets were identified. Finally, the regulatory relationship between the predicted daucosterol and potential targets was verified by molecular docking method, and the interaction mode between daucosterol and key targets was analyzed. Results: A total of 13 approved drugs reported to treat MM were retrieved from the DrugBank database. A total of 35 potential targets of daucosterol were obtained, including 8 known targets and 27 newly predicted targets. In the PPI network, the target of daucosterol was significantly correlated with MM-related genes, indicating that it has therapeutic potential for MM. A total of 18 therapeutic targets for MM were obtained, which were significantly enriched in the FoxO signaling pathway, prostate cancer, the PI3K-Akt signaling pathway, insulin resistance, the AMPK signaling pathway, and pathways related to the regulation of TP53. The core targets were HSP90AA1, MDM2, GSK3B, AKT3, PRKAA1, and PRKAB1. Molecular docking suggested that daucosterol had potential direct regulatory effects on 13 of the 18 predicted targets. Conclusions: This study highlights the use of daucosterol as a promising therapeutic drug for MM treatment. These data provide new insights into the potential mechanism of daucosterol in the treatment of MM, which may provide references for subsequent research and even the clinical treatment.

3.
Mol Biosyst ; 11(2): 394-406, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25406390

ABSTRACT

Recently, the development of Src/Abl (c-Src/Bcr-Abl tyrosine kinases) dual inhibitors has attracted considerable attention from the research community for treatment of malignancies. In order to explore the different structural features impacting the Src and Abl inhibitory activities of N(9)-arenethenyl purines and to investigate the molecular mechanisms of ligand-receptor interactions, a molecular modeling study combining the three-dimensional quantitative structure-activity relationship (3D-QSAR), molecular docking and molecular dynamics (MD) simulations was performed. The obtained CoMFA (comparative molecular field analysis) models exhibited satisfactory internal and external predictability. The plots of the CoMFA fields could be used to investigate the structural differences between DFG-in (targeting the active enzyme conformation) and DFG-out (targeting the inactive enzyme conformation) inhibitors. The key amino acid residues were identified by docking studies, and the detailed binding modes of the compounds with different activities were determined by MD simulations. The binding free energies gave a good correlation with the experimental determined activities. In an energetic analysis, the MM-PBSA (molecular mechanics Poisson-Boltzmann surface) energy decomposition revealed that the van der Waals interactions were the major driving force for the binding of the DFG-in and DFG-out compounds to Src and Abl, especially the hydrophobic interactions between ligands and residues Ala403/380, Asp404/381, and Phe405/382 in DFG-out Src and Abl complexes. They also help to stabilize the DFG-out conformations. These results can offer useful references for designing novel potential DFG-in and DFG-out dual Src/Abl inhibitors.


Subject(s)
Fusion Proteins, bcr-abl/antagonists & inhibitors , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Kinase Inhibitors/chemistry , Purines/chemistry , Quantitative Structure-Activity Relationship , src-Family Kinases/antagonists & inhibitors , Amino Acid Sequence , Fusion Proteins, bcr-abl/metabolism , Hydrogen Bonding , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL