ABSTRACT
BACKGROUND: Salt sensitivity of blood pressure (SSBP) is an intermediate phenotype of hypertension and is a predictor of long-term cardiovascular events and death. However, the genetic structures of SSBP are uncertain, and it is difficult to precisely diagnose SSBP in population. So, we aimed to identify genes related to susceptibility to the SSBP, construct a risk evaluation model, and explore the potential functions of these genes. METHODS AND RESULTS: A genome-wide association study of the systemic epidemiology of salt sensitivity (EpiSS) cohort was performed to obtain summary statistics for SSBP. Then, we conducted a transcriptome-wide association study (TWAS) of 12 tissues using FUSION software to predict the genes associated with SSBP and verified the genes with an mRNA microarray. The potential roles of the genes were explored. Risk evaluation models of SSBP were constructed based on the serial P value thresholds of polygenetic risk scores (PRSs), polygenic transcriptome risk scores (PTRSs) and their combinations of the identified genes and genetic variants from the TWAS. The TWAS revealed that 2605 genes were significantly associated with SSBP. Among these genes, 69 were differentially expressed according to the microarray analysis. The functional analysis showed that the genes identified in the TWAS were enriched in metabolic process pathways. The PRSs were correlated with PTRSs in the heart atrial appendage, adrenal gland, EBV-transformed lymphocytes, pituitary, artery coronary, artery tibial and whole blood. Multiple logistic regression models revealed that a PRS of P < 0.05 had the best predictive ability compared with other PRSs and PTRSs. The combinations of PRSs and PTRSs did not significantly increase the prediction accuracy of SSBP in the training and validation datasets. CONCLUSIONS: Several known and novel susceptibility genes for SSBP were identified via multitissue TWAS analysis. The risk evaluation model constructed with the PRS of susceptibility genes showed better diagnostic performance than the transcript levels, which could be applied to screen for SSBP high-risk individuals.
Subject(s)
Blood Pressure , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Blood Pressure/genetics , Gene Expression Profiling , Hypertension/genetics , Transcriptome , Polymorphism, Single Nucleotide , Male , Risk Assessment , Female , Sodium Chloride, Dietary/adverse effectsABSTRACT
BACKGROUND: Disability was a major public health problem in China. However, the prevalence of disabilities in community-dwelling adults and their relationships to chronic physical conditions were unclear. We aimed to estimate the prevalence of disabilities and associated factors among a large community-based cohort in China. METHODS: Participants who were local permanent residents aged 18 years or above and completed the disability assessments were selected from the Cohort study on Chronic Disease of Communities Natural Population in Beijing, Tianjin and Hebei (CHCN-BTH) from 2017 to 2019. Disability was assessed using five questions about impairments and activity limitations based on the International Classification of Functioning (ICF), Disability and Health. Univariate, multivariate and multilevel logistic regressions were conducted to estimate the associations between disabilities and associated factors. RESULTS: Totally, 12,871 community-dwelling adults completed the survey. Among of them, 12.9% (95% CI: 12.3%-13.5%) reported having any disability. The prevalence of any disability was significantly higher in participants who were older age, widowed, retired and smokers, had higher BMI, average monthly income < 5000 RMB, lower education level, lower physical exercise frequency and heavy physical labor. Multilevel logistic regressions showed that there were significant associations between disabilities with chronic physical conditions, especially in the vision impairment with lower back pain, and hearing impairment as well as difficulty walking without special equipment with injuries. CONCLUSIONS: Many Chinese adults suffered from disabilities. Sustained efforts should be made to develop specific population-based health promotion and prevention programs for disabilities in China. TRAIL REGISTRATION: ChiCTR1900024725 (25/07/2019).
Subject(s)
Disabled Persons , Retirement , Adult , Humans , Cohort Studies , Prevalence , China , East Asian PeopleABSTRACT
Over the years, microbiome research has achieved tremendous advancements driven by culture-independent meta-omics approaches. Despite extensive research, our understanding of the functional roles and causal effects of the microbiome on phenotypes remains limited. In this study, we focused on the rumen metaproteome, combining it with metatranscriptome and metabolome data to accurately identify the active functional distributions of rumen microorganisms and specific functional groups that influence feed efficiency. By integrating host genetics data, we established the potentially causal relationships between microbes-proteins/metabolites-phenotype, and identified specific patterns in which functional groups of rumen microorganisms influence host feed efficiency. We found a causal link between Selenomonas bovis and rumen carbohydrate metabolism, potentially mediated by bacterial chemotaxis and a two-component regulatory system, impacting feed utilization efficiency of dairy cows. Our study on the nutrient utilization functional groups in the rumen of high-feed-efficiency dairy cows, along with the identification of key microbiota functional proteins and their potentially causal relationships, will help move from correlation to causation in rumen microbiome research. This will ultimately enable precise regulation of the rumen microbiota for optimized ruminant production.
ABSTRACT
BACKGROUND: We aimed to determine whether depressive, anxiety, stress symptoms were associated with the risk of elevated blood pressure by performing longitudinal cohort and Mendelian Randomization (MR) analyses. METHODS: We used data from the Cohort Study on Chronic Disease of Community Natural Population in the Beijing-Tianjin-Hebei region (CHCN-BTH) from 2017 to 2021. The Depression-Anxiety-Stress Scale was used to evaluate the depressive, anxiety, stress symptoms. The longitudinal associations between depressive, anxiety, stress symptoms and elevated blood pressure were estimated using Cox proportional regression models. Two-sample MR analysis was performed using the Inverse-variance weighted (IVW), weighted median, and MR-Egger to explore the causal relationships between depressive, anxiety, stress symptoms and elevated blood pressure. RESULTS: In total, 5624 participants were included. The risk of SBP ≥ 140 mmHg or DBP ≥ 90 mmHg was significantly higher in participants with baseline anxiety symptoms (HR = 1.48, 95 % CI: 1.03 to 2.12, P = 0.033; HR = 1.56, 95 % CI: 1.05 to 2.32, P = 0.028), especially in men and individuals with higher educational levels, independent of baseline depression and anxiety at the two-year follow-up. The two-sample MR analysis showed positive associations between depressive, anxiety, stress symptoms and elevated blood pressure. LIMITATION: Self-reported mental health symptoms, relatively shorter follow-up duration and the European-derived genome-wide association study data for MR analysis. CONCLUSIONS: Anxiety symptoms were positively associated with elevated blood pressures in the longitudinal analysis independent of depression, stress, and other confounders. The results were verified in MR analysis, providing evidence for causal effects of anxiety symptoms on the risk of elevated blood pressure.
Subject(s)
Hypertension , Mendelian Randomization Analysis , Male , Humans , Blood Pressure , Cohort Studies , Genome-Wide Association Study , Anxiety/epidemiology , Anxiety/genetics , Hypertension/epidemiology , Hypertension/geneticsABSTRACT
BACKGROUND: Dairy cows utilize human-inedible, low-value plant biomass to produce milk, a low-cost product with rich nutrients and high proteins. This process largely relies on rumen microbes that ferment lignocellulose and cellulose to produce volatile fatty acids (VFAs). The VFAs are absorbed and partly metabolized by the stratified squamous rumen epithelium, which is mediated by diverse cell types. Here, we applied a metagenomic binning approach to explore the individual microbes involved in fiber digestion and performed single-cell RNA sequencing on rumen epithelial cells to investigate the cell subtypes contributing to VFA absorption and metabolism. RESULTS: The 52 mid-lactating dairy cows in our study (parity = 2.62 ± 0.91) had milk yield of 33.10 ± 6.72 kg. We determined the fiber digestion and fermentation capacities of 186 bacterial genomes using metagenomic binning and identified specific bacterial genomes with strong cellulose/xylan/pectin degradation capabilities that were highly associated with the biosynthesis of VFAs. Furthermore, we constructed a rumen epithelial single-cell map consisting of 18 rumen epithelial cell subtypes based on the transcriptome of 20,728 individual epithelial cells. A systematic survey of the expression profiles of genes encoding candidates for VFA transporters revealed that IGFBP5+ cg-like spinous cells uniquely highly expressed SLC16A1 and SLC4A9, suggesting that this cell type may play important roles in VFA absorption. Potential cross-talk between the microbiome and host cells and their roles in modulating the expression of key genes in the key rumen epithelial cell subtypes were also identified. CONCLUSIONS: We discovered the key individual microbial genomes and epithelial cell subtypes involved in fiber digestion, VFA uptake and metabolism, respectively, in the rumen. The integration of these data enables us to link microbial genomes and epithelial single cells to the trophic system. Video abstract.
Subject(s)
Lactation , Rumen , Animal Feed/analysis , Animals , Cattle , Diet/veterinary , Digestion , Female , Fermentation , Metagenome/genetics , Pregnancy , Rumen/metabolism , Sequence Analysis, RNAABSTRACT
BACKGROUND: As the global population continues to grow, competition for resources between humans and livestock has been intensifying. Increasing milk protein production and improving feed efficiency are becoming increasingly important to meet the demand for high-quality dairy protein. In a previous study, we found that milk protein yield in dairy cows was associated with the rumen microbiome. The objective of this study was to elucidate the potential microbial features that underpins feed efficiency in dairy cows using metagenomics, metatranscriptomics, and metabolomics. RESULTS: Comparison of metagenomic and metatranscriptomic data revealed that the latter was a better approach to uncover the associations between rumen microbial functions and host performance. Co-occurrence network analysis of the rumen microbiome revealed differential microbial interaction patterns between the animals with different feed efficiency, with high-efficiency animals having more and stronger associations than low-efficiency animals. In the rumen of high-efficiency animals, Selenomonas and members of the Succinivibrionaceae family positively interacted with each other, functioning as keystone members due to their essential ecological functions and active carbohydrate metabolic functions. At the metabolic level, analysis using random forest machine learning suggested that six ruminal metabolites (all derived from carbohydrates) could be used as metabolic markers that can potentially differentiate efficient and inefficient microbiomes, with an accuracy of prediction of 95.06%. CONCLUSIONS: The results of the current study provided new insights into the new ruminal microbial features associated with feed efficiency in dairy cows, which may improve the ability to select animals for better performance in the dairy industry. The fundamental knowledge will also inform future interventions to improve feed efficiency in dairy cows. Video Abstract.
Subject(s)
Animal Feed , Rumen , Animal Feed/analysis , Animals , Cattle , Diet/veterinary , Female , Fermentation , Lactation , Rumen/metabolismABSTRACT
BACKGROUND: Antimicrobial resistance is one of the most urgent threat to global public health, as it can lead to high morbidity, mortality, and medical costs for humans and livestock animals. In ruminants, the rumen microbiome carries a large number of antimicrobial resistance genes (ARGs), which could disseminate to the environment through saliva, or through the flow of rumen microbial biomass to the hindgut and released through feces. The occurrence and distribution of ARGs in rumen microbes has been reported, revealing the effects of external stimuli (e.g., antimicrobial administrations and diet ingredients) on the antimicrobial resistance in the rumen. However, the host effect on the ruminal resistome and their interactions remain largely unknown. Here, we investigated the ruminal resistome and its relationship with host feed intake and milk protein yield using metagenomic sequencing. RESULTS: The ruminal resistome conferred resistance to 26 classes of antimicrobials, with genes encoding resistance to tetracycline being the most predominant. The ARG-containing contigs were assigned to bacterial taxonomy, and the majority of highly abundant bacterial genera were resistant to at least one antimicrobial, while the abundances of ARG-containing bacterial genera showed distinct variations. Although the ruminal resistome is not co-varied with host feed intake, it could be potentially linked to milk protein yield in dairy cows. Results showed that host feed intake did not affect the alpha or beta diversity of the ruminal resistome or the abundances of ARGs, while the Shannon index (R2 = 0.63, P < 0.01) and richness (R2 = 0.67, P < 0.01) of the ruminal resistome were highly correlated with milk protein yield. A total of 128 significantly different ARGs (FDR < 0.05) were identified in the high- and low-milk protein yield dairy cows. We found four ruminal resistotypes that are driven by specific ARGs and associated with milk protein yield. Particularly, cows with low milk protein yield are classified into the same ruminal resistotype and featured by high-abundance ARGs, including mfd and sav1866. CONCLUSIONS: The current study uncovered the prevalence of ARGs in the rumen of a cohort of lactating dairy cows. The ruminal resistome is not co-varied with host feed intake, while it could be potentially linked to milk protein yield in dairy cows. Our results provide fundamental knowledge on the prevalence, mechanisms and impact factors of antimicrobial resistance in dairy cattle and are important for both the dairy industry and other food animal antimicrobial resistance control strategies.
ABSTRACT
Aripiprazole, metformin, and paeoniae-glycyrrhiza decoction (PGD) have been widely used as adjunctive treatments to reduce antipsychotic (AP)-induced hyperprolactinemia in patients with schizophrenia. However, the comparative efficacy and safety of these medications have not been previously studied. A network meta-analysis of randomized controlled trials (RCTs) was conducted to compare the efficacy and safety between aripiprazole, metformin, and PGD as adjunctive medications in reducing AP-induced hyperprolactinemia in schizophrenia. Both international (PubMed, PsycINFO, EMBASE, and Cochrane Library databases) and Chinese (WanFang, Chinese Biomedical, and Chinese National Knowledge infrastructure) databases were searched from their inception until January 3, 2019. Data were analyzed using the Bayesian Markov Chain Monte Carlo simulations with the WinBUGS software. A total of 62 RCTs with 5,550 participants were included in the meta-analysis. Of the nine groups of treatments included, adjunctive aripiprazole (<5 mg/day) was associated with the most significant reduction in prolactin levels compared to placebo (posterior MD = -65.52, 95% CI = -104.91, -24.08) and the other eight treatment groups. Moreover, adjunctive PGD (>1:1) was associated with the lowest rate of all-cause discontinuation compared to placebo (posterior odds ratio = 0.45, 95% CI = 0.10, 3.13) and adjunctive aripiprazole (>10 mg/day) was associated with fewer total adverse drug events than placebo (posterior OR = 0.93, 95% CI = 0.65, 1.77) and other eight treatment groups. In addition, when risperidone, amisulpride, and olanzapine were the primary AP medications, adjunctive paeoniae/glycyrrhiza = 1:1, aripiprazole <5 mg/day, and aripiprazole >10 mg/day were the most effective treatments in reducing the prolactin levels, respectively. Adjunctive aripiprazole, metformin, and PGD showed beneficial effects in reducing AP-induced hyperprolactinemia in schizophrenia, with aripiprazole (<5 mg/day) being the most effective one.
ABSTRACT
The Paramisgurnus dabryanus was exposed to air to assess the changes in plasma, liver and muscle free amino acid (FAA) contents. The FAA concentrations in plasma, liver and muscle of P. dabryanus were significantly affected by aerial exposure (P < 0.05). After 12 h of aerial exposure, the plasma glutamate contents increased significantly (P < 0.05) and reached peak value at 24 h of air exposure. With increasing air exposure time, the plasma alanine contents increased significantly and more dramatically than the control values (P < 0.05). From 24 to 48 h of aerial exposure, the liver free glutamate contents increased significantly and reached the peak value at 48 h of air exposure (P < 0.05). The liver free alanine contents in air exposure group were markedly higher than these values in the control group (P < 0.05). After 72 h of air exposure, the muscle free glutamate contents increased markedly (P < 0.05) and were significantly higher than the control values (P < 0.05). The muscle free alanine contents remained at constant values during the first 12 h of aerial exposure (P > 0.05), thereafter, these concentrations increased significantly until the end of experiment (P < 0.05). Our results showed that glutamate and NH4 + could be used to synthesize glutamine via glutamine synthetase to convert internal ammonia into non-toxic glutamine in P. dabryanus during air exposure. Furthermore, the P. dabryanus could catabolize several certain amino acids, leading alanine form to reduce endogenous ammonia production. The decrease in tissue free glutamate, arginine and proline in P. dabryanus indicated that these certain amino acids should be the starting substrate to be converted to alanine and energy.