Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Phys Rev Lett ; 130(26): 263601, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37450830

ABSTRACT

Exceptional points (EPs) in non-Hermitian systems have recently attracted wide interest and spawned intriguing prospects for enhanced sensing. However, EPs have not yet been realized in thermal atomic ensembles, which is one of the most important platforms for quantum sensing. Here we experimentally observe EPs in multilevel thermal atomic ensembles and realize enhanced sensing of the magnetic field for 1 order of magnitude. We take advantage of the rich energy levels of atoms and construct effective decays for selected energy levels by employing laser coupling with the excited state, yielding unbalanced decay rates for different energy levels, which finally results in the existence of EPs. Furthermore, we propose the optical polarization rotation measurement scheme to detect the splitting of the resonance peaks, which makes use of both the absorption and dispersion properties and shows an advantage with enhanced splitting compared with the conventional transmission measurement scheme. Additionally, in our system both the effective coupling strength and decay rates are flexibly adjustable, and thus the position of the EPs are tunable, which expands the measurement range. Our Letter not only provides a new controllable platform for studying EPs and non-Hermitian physics, but also provide new ideas for the design of EP-enhanced sensors and opens up realistic opportunities for practical applications in the high-precision sensing of magnetic field and other physical quantities.


Subject(s)
Magnetic Fields , Physics , Vibration
2.
Phys Rev Lett ; 130(19): 193602, 2023 May 12.
Article in English | MEDLINE | ID: mdl-37243661

ABSTRACT

Narrow linewidth is a long-pursued goal in precision measurement and sensing. We propose a parity-time symmetric (PT-symmetric) feedback method to narrow the linewidths of resonance systems. By using a quadrature measurement-feedback loop, we transform a dissipative resonance system into a PT-symmetric system. Unlike the conventional PT-symmetric systems that typically require two or more modes, here the PT-symmetric feedback system contains only a single resonance mode, which greatly extends the scope of applications. The method enables remarkable linewidth narrowing and enhancement of measurement sensitivity. We illustrate the concept in a thermal ensemble of atoms, achieving a 48-fold narrowing of the magnetic resonance linewidth. By applying the method in magnetometry, we realize a 22-times improvement of the measurement sensitivity. This work opens the avenue for studying non-Hermitian physics and high-precision measurements in resonance systems with feedback.

3.
Phys Rev Lett ; 125(12): 123901, 2020 Sep 18.
Article in English | MEDLINE | ID: mdl-33016716

ABSTRACT

Optical nonreciprocity is an essential property for a wide range of applications, such as building nonreciprocal optical devices that include isolators and circulators. The realization of optical nonreciprocity relies on breaking the symmetry associated with Lorentz reciprocity, which typically requires stringent conditions such as introducing a strong magnetic field or a high-finesse cavity with nonreciprocal coupling geometry. Here we discover that the collision effect of thermal atoms, which is undesirable for most studies, can induce broadband optical nonreciprocity. By exploiting the thermal atomic collision, we experimentally observe magnet-free and cavity-free optical nonreciprocity, which possesses a high isolation ratio, ultrabroad bandwidth, and low insertion loss simultaneously. The maximum isolation ratio is close to 40 dB, while the insertion loss is less than 1 dB. The bandwidth for an isolation ratio exceeding 20 dB is over 1.2 GHz, which is 2 orders of magnitude broader than typical resonance-enhanced optical isolators. Our work paves the way for the realization of high-performance optical nonreciprocal devices and provides opportunities for applications in integrated optics and quantum networks.

SELECTION OF CITATIONS
SEARCH DETAIL