Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Opt Lett ; 49(10): 2849-2852, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748178

ABSTRACT

Energy-time (E-T) entanglement is widely employed in long-distance quantum entanglement distribution due to its strong robustness against transmission fluctuations. In this Letter, we report what we believe to be the first silicon monolithically integrated E-T entanglement system, which integrates the photon sources, wavelength demultiplexers, and Franson interferometers on a single chip. Also, by utilizing low-loss multimode waveguides in Franson interferometers, we measured an on-chip quantum interference visibility of 99.66% (±0.47%), to our knowledge one of the highest values for integrated E-T entanglement systems reported to date. The quantum interference after 1- and 5-km fiber propagation shows visibilities of 96.72% (±0.78%) and 97.46% (±1.23%), respectively. These results demonstrate the potential of using silicon monolithic integration for advance E-T entanglement-based quantum communication networks.

2.
Nat Commun ; 15(1): 436, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38200000

ABSTRACT

Integrated spectrometers offer the advantages of small sizes and high portability, enabling new applications in industrial development and scientific research. Integrated Fourier-transform spectrometers (FTS) have the potential to realize a high signal-to-noise ratio but typically have a trade-off between the resolution and bandwidth. Here, we propose and demonstrate the concept of the two-dimensional FTS (2D-FTS) to circumvent the trade-off and improve scalability. The core idea is to utilize 2D Fourier transform instead of 1D Fourier transform to rebuild spectra. By combining a tunable FTS and a spatial heterodyne spectrometer, the interferogram becomes a 2D pattern with variations of heating power and arm lengths. All wavelengths are mapped to a cluster of spots in the 2D Fourier map beyond the free-spectral-range limit. At the Rayleigh criterion, the demonstrated resolution is 250 pm over a 200-nm bandwidth. The resolution can be enhanced to 125 pm using the computational method.

SELECTION OF CITATIONS
SEARCH DETAIL