Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.030
Filter
Add more filters

Publication year range
1.
Lancet ; 402(10395): 27-40, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37245517

ABSTRACT

BACKGROUND: Early control of elevated blood pressure is the most promising treatment for acute intracerebral haemorrhage. We aimed to establish whether implementing a goal-directed care bundle incorporating protocols for early intensive blood pressure lowering and management algorithms for hyperglycaemia, pyrexia, and abnormal anticoagulation, implemented in a hospital setting, could improve outcomes for patients with acute spontaneous intracerebral haemorrhage. METHODS: We performed a pragmatic, international, multicentre, blinded endpoint, stepped wedge cluster randomised controlled trial at hospitals in nine low-income and middle-income countries (Brazil, China, India, Mexico, Nigeria, Pakistan, Peru, Sri Lanka, and Viet Nam) and one high-income country (Chile). Hospitals were eligible if they had no or inconsistent relevant, disease-specific protocols, and were willing to implement the care bundle to consecutive patients (aged ≥18 years) with imaging-confirmed spontaneous intracerebral haemorrhage presenting within 6 h of the onset of symptoms, had a local champion, and could provide the required study data. Hospitals were centrally randomly allocated using permuted blocks to three sequences of implementation, stratified by country and the projected number of patients to be recruited over the 12 months of the study period. These sequences had four periods that dictated the order in which the hospitals were to switch from the control usual care procedure to the intervention implementation of the care bundle procedure to different clusters of patients in a stepped manner. To avoid contamination, details of the intervention, sequence, and allocation periods were concealed from sites until they had completed the usual care control periods. The care bundle protocol included the early intensive lowering of systolic blood pressure (target <140 mm Hg), strict glucose control (target 6·1-7·8 mmol/L in those without diabetes and 7·8-10·0 mmol/L in those with diabetes), antipyrexia treatment (target body temperature ≤37·5°C), and rapid reversal of warfarin-related anticoagulation (target international normalised ratio <1·5) within 1 h of treatment, in patients where these variables were abnormal. Analyses were performed according to a modified intention-to-treat population with available outcome data (ie, excluding sites that withdrew during the study). The primary outcome was functional recovery, measured with the modified Rankin scale (mRS; range 0 [no symptoms] to 6 [death]) at 6 months by masked research staff, analysed using proportional ordinal logistic regression to assess the distribution in scores on the mRS, with adjustments for cluster (hospital site), group assignment of cluster per period, and time (6-month periods from Dec 12, 2017). This trial is registered at Clinicaltrials.gov (NCT03209258) and the Chinese Clinical Trial Registry (ChiCTR-IOC-17011787) and is completed. FINDINGS: Between May 27, 2017, and July 8, 2021, 206 hospitals were assessed for eligibility, of which 144 hospitals in ten countries agreed to join and were randomly assigned in the trial, but 22 hospitals withdrew before starting to enrol patients and another hospital was withdrawn and their data on enrolled patients was deleted because regulatory approval was not obtained. Between Dec 12, 2017, and Dec 31, 2021, 10 857 patients were screened but 3821 were excluded. Overall, the modified intention-to-treat population included 7036 patients enrolled at 121 hospitals, with 3221 assigned to the care bundle group and 3815 to the usual care group, with primary outcome data available in 2892 patients in the care bundle group and 3363 patients in the usual care group. The likelihood of a poor functional outcome was lower in the care bundle group (common odds ratio 0·86; 95% CI 0·76-0·97; p=0·015). The favourable shift in mRS scores in the care bundle group was generally consistent across a range of sensitivity analyses that included additional adjustments for country and patient variables (0·84; 0·73-0·97; p=0·017), and with different approaches to the use of multiple imputations for missing data. Patients in the care bundle group had fewer serious adverse events than those in the usual care group (16·0% vs 20·1%; p=0·0098). INTERPRETATION: Implementation of a care bundle protocol for intensive blood pressure lowering and other management algorithms for physiological control within several hours of the onset of symptoms resulted in improved functional outcome for patients with acute intracerebral haemorrhage. Hospitals should incorporate this approach into clinical practice as part of active management for this serious condition. FUNDING: Joint Global Health Trials scheme from the Department of Health and Social Care, the Foreign, Commonwealth & Development Office, and the Medical Research Council and Wellcome Trust; West China Hospital; the National Health and Medical Research Council of Australia; Sichuan Credit Pharmaceutic and Takeda China.


Subject(s)
Hypotension , Patient Care Bundles , Humans , Adolescent , Adult , Blood Pressure , Treatment Outcome , Cerebral Hemorrhage/drug therapy , Critical Care , Anticoagulants/therapeutic use
2.
Anal Chem ; 96(10): 4205-4212, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38433457

ABSTRACT

Accurate identification of single-nucleotide mutations in circulating tumor DNA (ctDNA) is critical for cancer surveillance and cell biology research. However, achieving precise and sensitive detection of ctDNAs in complex physiological environments remains challenging due to their low expression and interference from numerous homologous species. This study introduces single-nucleotide-specific lipidic nanoflares designed for the precise and visible detection of ctDNA via toehold-initiated self-priming DNA polymerization (TPP). This system can be assembled from only a single cholesterol-conjugated multifunctional molecular beacon (MMB) via hydrophobicity-mediated aggregation. This results in a compact, high-density, and nick-hidden arrangement of MMBs on the surface of lipidic micelles, thereby enhancing their biostability and localized concentrations. The assay commences with the binding of frequently mutated regions of ctDNA to the MMB toehold domain. This domain is the proximal holding point for initiating the TPP-based strand-displacement reaction, which is the key step in enabling the discrimination of single-base mutations. We successfully detected a single-base mutation in ctDNA (KRAS G12D) in its wild-type gene (KRAS WT), which is one of the most frequently mutated ctDNAs. Notably, coexisting homologous species did not interfere with signal transduction, and small differences in these variations can be visualized by fluorescence imaging. The limit of detection was as low as 10 amol, with the system functioning well in physiological media. In particular, this system allowed us to resolve genetic mutations in the KRAS gene in colorectal cancer, suggesting its high potential in clinical diagnosis and personalized medicine.


Subject(s)
Circulating Tumor DNA , Proto-Oncogene Proteins p21(ras) , Proto-Oncogene Proteins p21(ras)/genetics , Nucleotides , Polymerization , Mutation , Circulating Tumor DNA/genetics
3.
Cancer Cell Int ; 24(1): 5, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38169376

ABSTRACT

The tumor microenvironment and cancer-associated fibroblasts (CAFs) play crucial roles in tumor development, and their metabolic coupling remains unclear. Clinical data showed a positive correlation between PDGF-BB, CAFs, and glycolysis in the tumor microenvironment of oral tongue squamous cell carcinoma patients. In vitro, CAFs are derived from hOMF cells treated with PDGF-BB, which induces their formation and promotes aerobic glycolysis. Mitophagy increased the PDGF-BB-induced formation of CAF phenotypes and aerobic glycolysis, while autophagy inhibition blocked PDGF-BB-induced effects. Downregulation of miR-26a-5p was observed in CAFs; upregulation of miR-26a-5p inhibited the expression of mitophagy-related proteins ULKI, Parkin, PINK1, and LC3 and aerobic glycolysis in PDGF-BB-induced CAFs. PDGF-BB-induced CAFs promoted tumor cell proliferation, invasion, metastasis, NF-κB signaling pathway activation, and PDGF-BB secretion. Thus, PDGF-BB is associated with lactate-induced CAF formation and glucose metabolism reprogramming. These findings indicate potential therapeutic targets in oral tongue squamous cell carcinoma.

4.
Diabetes Metab Res Rev ; 40(1): e3717, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37649397

ABSTRACT

AIMS: To examine the prospective association between fibroblast growth factor 21 (FGF21) and risk of gestational diabetes mellitus (GDM) and the modifying effect of overweight/obesity for this association. METHODS: Serum FGF21 levels were measured at 6-15 weeks of gestation among 332 GDM cases and 664 matched controls. Conditional logistic regression was used to evaluate its association with GDM risk. Interaction analyses on multiplicative and additive scales were conducted to investigate the modifying effect of overweight/obesity. RESULTS: Elevated FGF21 levels were associated with a higher risk of GDM in multivariable models, but the positive association was attenuated after further adjustment for pre-pregnancy body mass index (BMI). A significant multiplicative interaction was noted between FGF21 (both continuous and dichotomous) and pre-pregnancy BMI (p for interaction = 0.049 and 0.03), and the association was only significant in participants with pre-pregnancy BMI ≥24 kg/m2 . When participants were grouped based on pre-pregnancy BMI (≥24 and <24 kg/m2 ) and FGF21 levels (≥median and

Subject(s)
Diabetes, Gestational , Fibroblast Growth Factors , Female , Humans , Pregnancy , Body Mass Index , Case-Control Studies , Obesity/complications , Overweight/complications
5.
Biomacromolecules ; 25(4): 2607-2620, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38530873

ABSTRACT

Riluzole is commonly used as a neuroprotective agent for treating traumatic spinal cord injury (SCI), which works by blocking the influx of sodium and calcium ions and reducing glutamate activity. However, its clinical application is limited because of its poor solubility, short half-life, potential organ toxicity, and insufficient bioabilities toward upregulated inflammation and oxidative stress levels. To address this issue, epigallocatechin gallate (EGCG), a natural polyphenol, was employed to fabricate nanoparticles (NPs) with riluzole to enhance the neuroprotective effects. The resulting NPs demonstrated good biocompatibility, excellent antioxidative properties, and promising regulation effects from the M1 to M2 macrophages. Furthermore, an in vivo SCI model was successfully established, and NPs could be obviously aggregated at the SCI site. More interestingly, excellent neuroprotective properties of NPs through regulating the levels of oxidative stress, inflammation, and ion channels could be fully demonstrated in vivo by RNA sequencing and sophisticated biochemistry evaluations. Together, the work provided new opportunities toward the design and fabrication of robust and multifunctional NPs for oxidative stress and inflammation-related diseases via biological integration of natural polyphenols and small-molecule drugs.


Subject(s)
Nanoparticles , Neuroprotective Agents , Spinal Cord Injuries , Humans , Riluzole/pharmacology , Riluzole/therapeutic use , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Spinal Cord Injuries/drug therapy , Glutamic Acid , Inflammation/drug therapy , Spinal Cord
6.
Crit Rev Food Sci Nutr ; : 1-16, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38659323

ABSTRACT

Global food safety stands out as a prominent public concern, affecting populations worldwide. The recurrent challenge of food safety incidents reveals the need for a robust inspection framework. In recent years, the integration of isothermal nucleic acid amplification with CRISPR-Cas12a techniques has emerged as a promising tool for molecular detection of food hazards, presenting next generation of biosensing for food safety detection. This paper provides a comprehensive review of the current state of research on the synergistic application of isothermal nucleic acid amplification and CRISPR-Cas12a technology in the field of food safety. This innovative combination not only enriches the analytical tools, but also improving assay performance such as sensitivity and specificity, addressing the limitations of traditional methods. The review summarized various detection methodologies by the integration of isothermal nucleic acid amplification and CRISPR-Cas12a technology for diverse food safety concerns, including pathogenic bacterium, viruses, mycotoxins, food adulteration, and genetically modified foods. Each section elucidates the specific strategies employed and highlights the advantages conferred. Furthermore, the paper discussed the challenges faced by this technology in the context of food safety, offering insightful discussions on potential solutions and future prospects.

7.
Article in English | MEDLINE | ID: mdl-38953888

ABSTRACT

Two novel strain pairs (HM61T/HM23 and S-34T/S-58) were isolated from soil and the faeces of Tibetan antelope (Pantholops hodgsonii) collected at the Qinghai-Tibet Plateau of PR China. All four new isolates were aerobic, non-motile, Gram-stain-positive, catalase-positive, oxidase-negative, and short rod-shaped bacteria. The results of phylogenetic analysis based on the full-length 16S rRNA genes and 283 core genomic genes indicated that the four strains were separated into two independent branches belonging to the genus Nocardioides. Strains HM61T and HM23 were most closely related to Nocardioides pelophilus THG T63T (98.58 and 98.65 % 16S rRNA gene sequence similarity). Strains S-34T and S-58 were most closely related to Nocardioides okcheonensis MMS20-HV4-12T (98.89 and 98.89 % 16S rRNA gene sequence similarity). The G+C contents of the genomic DNA of strains HM61T and S-34T were 70.6 and 72.5 mol%, respectively. Strains HM61T, S-34T and the type strains of closely related species in the analysis had average nucleotide identity values of 75.4-90.5 % as well as digital DNA-DNA hybridization values between 20.1 and 40.8 %, which clearly indicated that the four isolates represent two novel species within the genus Nocardioides. The chemotaxonomic characteristics of strains HM61T and S-34T were consistent with the genus Nocardioides. The major fatty acids of all four strains were iso-C16 : 0, C17 : 1 ω8c or C18 : 1 ω9c. For strains HM61T and S-34T, MK-8(H4) was the predominant respiratory quinone, ll-2,6-diaminopimelic acid was the diagnostic diamino acid in the cell-wall peptidoglycan, and the polar lipids profiles were composed of diphosphatidylglycerol and phosphatidylglycerol. Based on phylogenetic, phenotypic, and chemotaxonomic data, we propose that strains HM61T and S-34T represent two novel species of the genus Nocardioides, respectively, with the names Nocardioides bizhenqiangii sp. nov. and Nocardioides renjunii sp. nov. The type strains are HM61T (=GDMCC 4.343T=JCM 36399T) and S-34T (=CGMCC 4.7664T=JCM 33792T).


Subject(s)
Antelopes , Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Feces , Nucleic Acid Hybridization , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Soil Microbiology , RNA, Ribosomal, 16S/genetics , Tibet , Fatty Acids/analysis , Fatty Acids/chemistry , DNA, Bacterial/genetics , Feces/microbiology , Antelopes/microbiology , Animals , China , Actinomycetales/genetics , Actinomycetales/isolation & purification , Actinomycetales/classification , Peptidoglycan , Phospholipids/analysis
8.
Eur Radiol ; 34(2): 1190-1199, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37615767

ABSTRACT

OBJECTIVES: Existing brain extraction models should be further optimized to provide more information for oncological analysis. We aimed to develop an nnU-Net-based deep learning model for automated brain extraction on contrast-enhanced T1-weighted (T1CE) images in presence of brain tumors. METHODS: This is a multi-center, retrospective study involving 920 patients. A total of 720 cases with four types of intracranial tumors from private institutions were collected and set as the training group and the internal test group. Mann-Whitney U test (U test) was used to investigate if the model performance was associated with pathological types and tumor characteristics. Then, the generalization of model was independently tested on public datasets consisting of 100 glioma and 100 vestibular schwannoma cases. RESULTS: In the internal test, the model achieved promising performance with median Dice similarity coefficient (DSC) of 0.989 (interquartile range (IQR), 0.988-0.991), and Hausdorff distance (HD) of 6.403 mm (IQR, 5.099-8.426 mm). U test suggested a slightly descending performance in meningioma and vestibular schwannoma group. The results of U test also suggested that there was a significant difference in peritumoral edema group, with median DSC of 0.990 (IQR, 0.989-0.991, p = 0.002), and median HD of 5.916 mm (IQR, 5.000-8.000 mm, p = 0.049). In the external test, our model also showed to be robust performance, with median DSC of 0.991 (IQR, 0.983-0.998) and HD of 8.972 mm (IQR, 6.164-13.710 mm). CONCLUSIONS: For automated processing of MRI neuroimaging data presence of brain tumors, the proposed model can perform brain extraction including important superficial structures for oncological analysis. CLINICAL RELEVANCE STATEMENT: The proposed model serves as a radiological tool for image preprocessing in tumor cases, focusing on superficial brain structures, which could streamline the workflow and enhance the efficiency of subsequent radiological assessments. KEY POINTS: • The nnU-Net-based model is capable of segmenting significant superficial structures in brain extraction. • The proposed model showed feasible performance, regardless of pathological types or tumor characteristics. • The model showed generalization in the public datasets.


Subject(s)
Brain Neoplasms , Meningeal Neoplasms , Neuroma, Acoustic , Humans , Retrospective Studies , Neuroma, Acoustic/diagnostic imaging , Image Processing, Computer-Assisted/methods , Brain , Magnetic Resonance Imaging/methods , Brain Neoplasms/diagnostic imaging
9.
Mikrochim Acta ; 191(6): 321, 2024 05 10.
Article in English | MEDLINE | ID: mdl-38727732

ABSTRACT

The rapid and precise monitoring of peripheral blood miRNA levels holds paramount importance for disease diagnosis and treatment monitoring. In this study, we propose an innovative research strategy that combines the catalytic hairpin assembly reaction with SERS signal congregation and enhancement. This combination can significantly enhance the stability of SERS detection, enabling stable and efficient detection of miRNA. Specifically, our paper-based SERS detection platform incorporates a streptavidin-modified substrate, biotin-labeled catalytic hairpin assembly reaction probes, 4-ATP, and primer-co-modified gold nanoparticles. In the presence of miRNA, the 4-ATP and primer-co-modified gold nanoparticles can specifically recognize the miRNA and interact with the biotin-labeled CHA probes to initiate an interfacial catalytic hairpin assembly reaction. This enzyme-free high-efficiency catalytic process can accumulate a large amount of biotin on the gold nanoparticles, which then bind to the streptavidin on the substrate with the assistance of the driving liquid, forming red gold nanoparticle stripes. These provide a multitude of hotspots for SERS, enabling enhanced signal detection. This innovative design achieves a low detection limit of 3.47 fM while maintaining excellent stability and repeatability. This conceptually innovative detection platform offers new technological possibilities and solutions for clinical miRNA detection.


Subject(s)
Biotin , Gold , Limit of Detection , Metal Nanoparticles , MicroRNAs , Spectrum Analysis, Raman , MicroRNAs/blood , MicroRNAs/analysis , Metal Nanoparticles/chemistry , Gold/chemistry , Spectrum Analysis, Raman/methods , Biotin/chemistry , Humans , Catalysis , Streptavidin/chemistry
10.
Molecules ; 29(2)2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38257389

ABSTRACT

Jujube residue is an abundant and low-cost dietary fiber resource, but its relatively lower hydration and functional properties limit its utilization as an ingredient of functional food. Thus, cellulase and hemicellulase hydrolysis, enzymatic hydrolysis assisted by phosphate grafting (EPG), and enzymatic hydrolysis assisted by acrylate grafting (EAG) were used to improve the functional properties of jujube residue dietary fiber (JRDF) in this study. The results evidenced that these modifications all increased the porosity of the microstructure of JRDF and increased the soluble fiber content, surface area, and hydration properties, but reduced its brightness (p < 0.05). Moreover, JRDF modified by enzymolysis combined with acrylate grafting offered the highest extractable polyphenol content, oil, sodium cholate, and nitrite ion sorption abilities. Meanwhile, JRDF modified via enzymolysis assisted by phosphate grafting showed the highest soluble fiber content (23.53 g∙100 g-1), water-retention ability (12.84 g∙g-1), viscosity (9.37 cP), water-swelling volume (10.80 mL∙g-1), and sorption ability of copper (II) and lead (II) ions. Alternatively, JRDF modified with cellulase hydrolysis alone exhibited the highest glucose adsorption capacity (21.9 g∙100 g-1) at pH 7.0. These results indicate that EPG is an effective way to improve the hypolipidemic effects of JRDF, while EAG is a good choice to enhance its hydration and hypoglycemic properties.


Subject(s)
Cellulase , Ziziphus , Phosphates , Dietary Fiber , Acrylates , Water
11.
Am J Respir Cell Mol Biol ; 69(5): 508-520, 2023 11.
Article in English | MEDLINE | ID: mdl-37478333

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid protein (N-protein) increases early in body fluids during infection and has recently been identified as a direct inducer for lung injury. However, the signal mechanism of N-protein in the lung inflammatory response remains poorly understood. The goal of this study was to determine whether RAGE (receptor for advanced glycation endproducts) participated in N-protein-induced acute lung injury. The binding between N-protein and RAGE was examined via assays for protein-protein interaction. To determine the signaling mechanism in vitro, cells were treated with recombinant N-protein and assayed for the activation of the RAGE/MAPK (mitogen-activated protein kinase)/NF-ĸB pathway. RAGE deficiency mice and antagonist were used to study N-protein-induced acute lung injury in vivo. Binding between N-protein and RAGE was confirmed via flow cytometry-based binding assay, surface plasmon resonance, and ELISA. Pull-down and coimmunoprecipitation assays revealed that N-protein bound RAGE via both N-terminal and C-terminal domains. In vitro, N-protein activated the RAGE-ERK1/2-NF-ĸB signaling pathway and induced a proinflammatory response. RAGE deficiency subdued N-protein-induced proinflammatory signaling and response. In vivo, RAGE was upregulated in the BAL and lung tissue after recombinant N-protein insult. RAGE deficiency and small molecule antagonist partially protected mice from N-protein-induced acute lung injury. Our study demonstrated that RAGE is a receptor for N-protein. RAGE is partially responsible for N-protein-induced acute lung injury and has the potential to become a therapeutic target for treating coronavirus disease.


Subject(s)
Acute Lung Injury , COVID-19 , Animals , Mice , Acute Lung Injury/metabolism , NF-kappa B/metabolism , Receptor for Advanced Glycation End Products/metabolism , SARS-CoV-2/metabolism
12.
Emerg Infect Dis ; 29(1): 202-206, 2023 01.
Article in English | MEDLINE | ID: mdl-36573633

ABSTRACT

We report a case-series study of 5 patients with Japanese spotted fever from the Three Gorges Area in China, including 1 fatal case. Seroprevalence of Rickettsia japonica was ≈21% among the local population. Our report highlights the emerging potential threat to human health of Japanese spotted fever in the area.


Subject(s)
Rickettsia Infections , Rickettsia , Spotted Fever Group Rickettsiosis , Humans , Rickettsia Infections/diagnosis , Rickettsia Infections/epidemiology , Rickettsia Infections/microbiology , Seroepidemiologic Studies , East Asian People , Spotted Fever Group Rickettsiosis/diagnosis , Spotted Fever Group Rickettsiosis/epidemiology , Spotted Fever Group Rickettsiosis/microbiology , Rickettsia/genetics , China/epidemiology
13.
Anal Chem ; 95(36): 13708-13715, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37625083

ABSTRACT

Physiological function analysis of terminal deoxynucleotidyl transferase (TdT) in clinical medicine and hematopathology highlights its significance to be extensively utilized as a diagnostic biomarker for leukemia diagnosis. Herein, taking advantage of the spatial-confinement effect on a three-dimensional (3D) DNA nanoarchitecture, we reported a target-triggered intramolecular accelerated molecular beacon (MB) assembly for rapid and real-time analysis of TdT activity. In this strategy, the 3D DNA nanoarchitecture is first engineered via a cross-linking network hybridization chain reaction (HCR). A number of MBs, which were designed with a polythymine (poly-T) loop, were then conjugated on the scaffold DNA nanoarchitecture, allowing the obtained MB-DNA nanoarchitecture to contain lots of free 3'-hydroxyl (OH) termini inside or outside the super DNA nanostructure. Moreover, the distance between different MBs is closed, and the local concentration of MB is significantly improved owing to the confinement of MBs on this DNA nanoarchitecture. Once encountered with target TdT, the free -OH groups can be recognized by TdT immediately to catalyze the template-independent incorporation of adenine nucleotides, which results in the generation of multiple poly-A chains that rapidly react with many MBs via an intramolecular accelerated assembly process. The time-dependent substantial enhancement of the fluorescence from MBs can thus be applied for robustly analyzing TdT. Our observations suggest that the DNA nanostructure-based spatial confinement effect enables a high molecular collision frequency to accelerate the reaction kinetics, and the super DNA nanoarchitecture exhibits a better nuclease resistance to maintain signal stability. With these advantages, TdT can be rapidly detected with high sensitivity, specificity, and biostability.


Subject(s)
DNA Nucleotidylexotransferase , DNA-Directed DNA Polymerase , Adenine Nucleotides , Catalysis , Coloring Agents
14.
Anal Chem ; 95(4): 2570-2578, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36653941

ABSTRACT

Pathogenic bacteria are pathogens widely spread that are capable of causing mild to life-threatening diseases in human beings or other organisms. Rationally organizing the simple helical motif of double-stranded DNA (dsDNA) tiles into designed ensemble structures with architecturally defined collective properties could lead to promising biosensing applications for pathogen detection. In this work, we facilely engineered multivalent hairpin aptamer probe-tethered DNA monolayers (MHAP-DNA monolayers) and applied them to build a fluorescence polarization-responsive circular isothermal strand displacement amplification (FP-CSDA) for Salmonella assay. In this system, the MHAP-DNA monolayers were constructed based on a dsDNA tile-directed self-assembly. A FAM-labeled reporting probe (RPFAM) with an inherent low FP signal serves as the signaling unit. The presence of target Salmonella leads to the trapping of F RPFAM into the super DNA monolayers via a target-triggered CSDA to peel off the tethered hairpin-structured aptamer probes (HAPs) responsible for the binding of RPFAM. As a result, the FP signal of the FAM fluorophore can be remarkably amplified due to the recycling of target Salmonella and the capacity of structural DNA materials to strongly restrict the free rotation of the FAM fluorophore but without a fluorescence quenching effect. Experimental results demonstrate that the FP assay is able to detect Salmonella with a low limit of detection (LOD) of 7.2 × 100 CFU/mL and high specificity. As a proof-of-concept study, we envision our study using DNA nanoarchitecture as the foundation to modulate CSDA-based FP assays, promising to open up a new avenue for disease diagnosis, food safety detection, and biochemical studies.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Humans , Aptamers, Nucleotide/chemistry , DNA , Fluorescence Polarization/methods , Salmonella/genetics , Limit of Detection , Fluorescent Dyes/chemistry , DNA Probes , Biosensing Techniques/methods
15.
Anal Chem ; 95(44): 16398-16406, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37878604

ABSTRACT

We proposed a visual strategy for rapid and ultrasensitive detection of ochratoxin A (OTA) by integration of primer-mediated exponential rolling circle amplification (P-ERCA) with a designed nucleic acid lateral flow strip (LFS). The recognition component was preimmobilized in the tube by hybridization between the immobilized functionalized aptamer and complementary ssDNA. Recognition of OTA induces the release of complementary ssDNA from the tube, which will also act as the primer of the designed P-ERCA. Three nicking sites on the template P-ERCA could contribute to the production of enormous signal probes based on the simultaneous amplification-nicking model, which can be visually measured directly with the constructed nucleic acid LFS. Importantly, the nicked signal probe can also act as the trigger of the new-round RCA, achieving exponential growth of signal probes for measurement and signal enhancement. Taking advantage of the extraordinary amplification efficiency of P-ERCA and the simplicity of LFS, this P-ERCA-LFS method demonstrates ultrasensitive detection of OTA with a visual limit of detection as low as 100 fg/mL for qualitative screening and a limit of detection of 35 fg/mL for semiquantitative analysis. This designed strategy could also be utilized as a universal method for detection of other chemical analytes with the replacement of the aptamer for recognition, and the nucleic acid LFS unit could also be a useful protocol for direct ssDNA analysis.


Subject(s)
Biosensing Techniques , Nucleic Acids , Ochratoxins , Nucleic Acid Hybridization , Ochratoxins/analysis , DNA, Single-Stranded , Nucleic Acid Amplification Techniques/methods , Limit of Detection , Biosensing Techniques/methods
16.
Anal Chem ; 95(2): 1210-1218, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36583970

ABSTRACT

Enzyme-free DNA strand displacement process is often practical when detecting miRNAs expressed at low levels in living cells. However, the poor kinetics, tedious reaction period, and multicomponent system hamper its in vivo applications to a great extent. Herein, we design a branch-shaped trapping device (BTD)-based spatial confinement reactor and applied it for accelerated miRNA in situ imaging. The reactor consists of a pair of trapped probe-based catalyzed hairpin assembly (T-CHA) reactions attached around the BTD. The trapping device naturally offered CHA reactions a good spatial-confinement effect by integrating the metastable probes (MHPa and MHPb) of the traditional CHA with the four-branched arm of BTD, which greatly improved the localized concentration of probes and shortened their physical distance. The autonomous and progressive walk of miRNA on the four-arm nanoprobes via T-CHA can rapidly tie numerous four-arm nanoprobes into figure-of-eight nanoknots (FENs), yielding strong fluorescence that is proportional to the miRNA expression level. The unique nanoarchitecture of the FEN also benefits the restricted freedom of movement (FOM) in a confined cellular environment, which makes the system ideally suitable for in situ imaging of intracellular miRNAs. In vitro and in situ analyses also demonstrated that the T-CHA overall outperformed the dissociative probe-based CHA (D-CHA) in stability, reaction speed, and amplification sensitivity. The final application of the T-CHA-based four-arm nanoprobe for imagings of both cancer cells and normal cells shows the potential of the platform for accurately and timely revealing miRNA in biological systems.


Subject(s)
Biosensing Techniques , MicroRNAs , MicroRNAs/genetics , MicroRNAs/analysis , DNA , Diagnostic Imaging , Cell Line, Tumor , Catalysis , Biosensing Techniques/methods , Limit of Detection
17.
BMC Med ; 21(1): 150, 2023 04 17.
Article in English | MEDLINE | ID: mdl-37069659

ABSTRACT

BACKGROUND: Liver plays an important role in maintaining glucose homeostasis. We aimed to examine the associations of liver enzymes and hepatic steatosis index (HSI, a reliable biomarker for non-alcoholic fatty liver disease) in early pregnancy with subsequent GDM risk, as well as the potential mediation effects of lipid metabolites on the association between HSI and GDM. METHODS: In a birth cohort, liver enzymes were measured in early pregnancy (6-15 gestational weeks, mean 10) among 6,860 Chinese women. Multivariable logistic regression was performed to examine the association between liver biomarkers and risk of GDM. Pearson partial correlation and least absolute shrinkage and selection operator (LASSO) regression were conducted to identify lipid metabolites that were significantly associated with HSI in a subset of 948 women. Mediation analyses were performed to estimate the mediating roles of lipid metabolites on the association of HSI with GDM. RESULTS: Liver enzymes and HSI were associated with higher risks of GDM after adjustment for potential confounders, with ORs ranging from 1.42 to 2.24 for extreme-quartile comparisons (false discovery rate-adjusted P-trend ≤0.005). On the natural log scale, each SD increment of alanine aminotransferase, aspartate aminotransferase, gamma-glutamyl transferase, alkaline phosphatase, and HSI was associated with a 1.15-fold (95% CI: 1.05, 1.26), 1.10-fold (1.01, 1.20), 1.21-fold (1.10, 1.32), 1.15-fold (1.04, 1.27), and 1.33-fold (1.18, 1.51) increased risk of GDM, respectively. Pearson partial correlation and LASSO regression identified 15 specific lipid metabolites in relation to HSI. Up to 52.6% of the association between HSI and GDM risk was attributed to the indirect effect of the HSI-related lipid score composed of lipid metabolites predominantly from phospholipids (e.g., lysophosphatidylcholine and ceramides) and triacylglycerol. CONCLUSIONS: Elevated liver enzymes and HSI in early pregnancy, even within a normal range, were associated with higher risks of GDM among Chinese pregnant women. The association of HSI with GDM was largely mediated by altered lipid metabolism.


Subject(s)
Diabetes, Gestational , Pregnancy , Female , Humans , Diabetes, Gestational/epidemiology , Diabetes, Gestational/etiology , Prospective Studies , Pregnant Women , Risk Factors , East Asian People , Liver , Biomarkers , Lipids
18.
BMC Cancer ; 23(1): 591, 2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37365497

ABSTRACT

BACKGROUND: Cancer-associated fibroblasts (CAFs) have significant tumor regulatory functions, and CAFs-derived exosomes (CAFs-Exo) released from CAFs play an important role in the progression of oral squamous cell carcinoma (OSCC). However, a lack of comprehensive molecular biological analysis leaves the regulatory mechanisms of CAFs-Exo in OSCC unclear. METHODS: We used platelet derived growth factor-BB (PDGF-BB) to induce the transformation of human oral mucosa fibroblast (hOMF) into CAFs, and extracted exosomes from the supernatant of CAFs and hOMF. We validated the effect of CAFs-Exo on tumor progression by exosomes co-culture with Cal-27 and tumor-forming in nude mice. The cellular and exosomal transcriptomes were sequenced, and immune regulatory genes were screened and validated using mRNA-miRNA interaction network analysis in combination with publicly available databases. RESULTS: The results showed that CAFs-Exo had a stronger ability to promote OSCC proliferation and was associated with immunosuppression. We discovered that the presence of immune-related genes in CAFs-Exo may regulate the expression of PIGR, CD81, UACA, and PTTG1IP in Cal-27 by analyzing CAFs-Exo sequencing data and publicly available TCGA data. This may account for the ability of CAFs-Exo to exert immunomodulation and promote OSCC proliferation. CONCLUSIONS: CAFs-Exo was found to be involved in tumor immune regulation through hsa-miR-139-5p, ACTR2 and EIF6, while PIGR, CD81, UACA and PTTG1IP may be potentially effective targets for the treatment of OSCC in the future.


Subject(s)
Cancer-Associated Fibroblasts , Carcinoma, Squamous Cell , Exosomes , Head and Neck Neoplasms , MicroRNAs , Mouth Neoplasms , Animals , Mice , Humans , Carcinoma, Squamous Cell/pathology , Squamous Cell Carcinoma of Head and Neck/pathology , Cancer-Associated Fibroblasts/metabolism , Exosomes/genetics , Exosomes/metabolism , Mice, Nude , Cell Proliferation/genetics , Cell Line, Tumor , Mouth Neoplasms/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Head and Neck Neoplasms/pathology , Gene Expression Regulation, Neoplastic
19.
Crit Rev Food Sci Nutr ; : 1-19, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36794398

ABSTRACT

INTRODUCTION: Micronutrients are clinically important in managing COVID-19, and numerous studies have been conducted, but inconsistent findings exist. OBJECTIVE: To explore the association between micronutrients and COVID-19. METHODS: PubMed, Web of Science, Embase, Cochrane Library and Scopus for study search on July 30, 2022 and October 15, 2022. Literature selection, data extraction and quality assessment were performed in a double-blinded, group discussion format. Meta-analysis with overlapping associations were reconsolidated using random effects models, and narrative evidence was performed in tabular presentations. RESULTS: 57 reviews and 57 latest original studies were included. 21 reviews and 53 original studies were of moderate to high quality. Vitamin D, vitamin B, zinc, selenium, and ferritin levels differed between patients and healthy people. Vitamin D and zinc deficiencies increased COVID-19 infection by 0.97-fold/0.39-fold and 1.53-fold. Vitamin D deficiency increased severity 0.86-fold, while low vitamin B and selenium levels reduced severity. Vitamin D and calcium deficiencies increased ICU admission by 1.09 and 4.09-fold. Vitamin D deficiency increased mechanical ventilation by 0.4-fold. Vitamin D, zinc, and calcium deficiencies increased COVID-19 mortality by 0.53-fold, 0.46-fold, and 5.99-fold, respectively. CONCLUSION: The associations between vitamin D, zinc, and calcium deficiencies and adverse evolution of COVID-19 were positive, while the association between vitamin C and COVID-19 was insignificant.REGISTRATION: PROSPERO CRD42022353953.

20.
Int J Syst Evol Microbiol ; 73(11)2023 Nov.
Article in English | MEDLINE | ID: mdl-38018813

ABSTRACT

Four yellow-coloured strains (zg-Y815T/zg-Y108 and zg-Y859T/zg-Y826) were isolated from the intestinal contents of Marmota himalayana and assigned to the 'Arthrobacter citreus group'. The four strains grew optimally on brain heart infusion agar with 5 % defibrinated sheep blood plate at 30 °C, pH 7.0 and with 0.5 % NaCl (w/v). Comparative analysis of their 16S rRNA genes indicated that the two strain pairs belong to the genus Arthrobacter, showing the highest similarity to Arthrobacter yangruifuii 785T (99.52 %), which was further confirmed by the 16S rRNA gene and genome-based phylogenetic analysis. The comparative genomic analysis [digital DNA-DNA hybridization, (dDDH) and average nucleotide identity (ANI)] proved that the four strains are two different species (zg-Y815T/zg-Y108, 71.7 %/96.8 %; zg-Y859T/zg-Y826, 87.3 %/98.5 %) and differ from other known species within the genus Arthrobacter (zg-Y815T, 19.6-32.3 %/77.2-88.0 %; zg-Y859T, 19.5-29.3 %/77.4-86.3 %). Strain pairs zg-Y815T/zg-Y108 and zg-Y859T/zg-Y826 had the same major cellular fatty acids (iso-C16 : 0 and anteiso-C15 : 0), with MK-8(H2) as their dominant respiratory quinone (70.6 and 61.7 %, respectively). The leading polar lipids were diphosphatidylglycerol, phosphatidylglycerol, and phosphatidylinositol. The detected amino acids and cell-wall sugars of the two new species were identical (amino acids: alanine, glutamic acid, and lysine; sugars: rhamnose, galactose, mannose, glucose, and ribose). According to the phylogenetic, phenotypic, and chemotaxonomic analyses, we concluded that the four new strains represented two different novel species in the genus Arthrobacter, for which the names Arthrobacter zhaoxinii sp. nov. (zg-Y815T= GDMCC 1.3494T = JCM 35821T) and Arthrobacter jinronghuae sp. nov. (zg-Y859T = GDMCC 1.3493T = JCM 35822T) are proposed.


Subject(s)
Arthrobacter , Animals , Sheep , Fatty Acids/chemistry , Phospholipids/chemistry , Marmota , Phylogeny , RNA, Ribosomal, 16S/genetics , Vitamin K 2/chemistry , Base Composition , DNA, Bacterial/genetics , Sequence Analysis, DNA , Bacterial Typing Techniques , Amino Acids , Comparative Genomic Hybridization , Sugars
SELECTION OF CITATIONS
SEARCH DETAIL