ABSTRACT
Autophagy is an important intracellular catabolic mechanism that mediates the degradation of cytoplasmic proteins and organelles. We report a potent small molecule inhibitor of autophagy named "spautin-1" for specific and potent autophagy inhibitor-1. Spautin-1 promotes the degradation of Vps34 PI3 kinase complexes by inhibiting two ubiquitin-specific peptidases, USP10 and USP13, that target the Beclin1 subunit of Vps34 complexes. Beclin1 is a tumor suppressor and frequently monoallelically lost in human cancers. Interestingly, Beclin1 also controls the protein stabilities of USP10 and USP13 by regulating their deubiquitinating activities. Since USP10 mediates the deubiquitination of p53, regulating deubiquitination activity of USP10 and USP13 by Beclin1 provides a mechanism for Beclin1 to control the levels of p53. Our study provides a molecular mechanism involving protein deubiquitination that connects two important tumor suppressors, p53 and Beclin1, and a potent small molecule inhibitor of autophagy as a possible lead compound for developing anticancer drugs.
Subject(s)
Apoptosis Regulatory Proteins/metabolism , Benzylamines/pharmacology , Endopeptidases/metabolism , Quinazolines/pharmacology , Tumor Suppressor Protein p53/metabolism , Ubiquitin Thiolesterase/metabolism , Animals , Autophagy , Beclin-1 , Class III Phosphatidylinositol 3-Kinases/metabolism , Humans , Mice , Ubiquitin-Specific Proteases , UbiquitinationABSTRACT
Recent studies show that accelerated cortical gray matter (GM) volume reduction seen in anatomical MRI can help distinguish between individuals at clinical high risk (CHR) for psychosis who will develop psychosis and those who will not. This reduction is suggested to represent atypical developmental or degenerative changes accompanying an accumulation of microstructural changes, such as decreased spine density and dendritic arborization. Detecting the microstructural sources of these changes before they accumulate into volume loss is crucial. Our study aimed to detect these microstructural GM alterations using diffusion MRI (dMRI). We tested for baseline and longitudinal group differences in anatomical and dMRI data from 160 individuals at CHR and 96 healthy controls (HC) acquired in a single imaging site. Of the CHR individuals, 33 developed psychosis (CHR-P), while 127 did not (CHR-NP). Among all participants, longitudinal data was available for 45 HCs, 17 CHR-P, and 66 CHR-NP. Eight cortical lobes were examined for GM volume and GM microstructure. A novel dMRI measure, interstitial free water (iFW), was used to quantify GM microstructure by eliminating cerebrospinal fluid contribution. Additionally, we assessed whether these measures differentiated the CHR-P from the CHR-NP. In addition, for completeness, we also investigated changes in cortical thickness and in white matter (WM) microstructure. At baseline the CHR group had significantly higher iFW than HC in the prefrontal, temporal, parietal, and occipital lobes, while volume was reduced only in the temporal lobe. Neither iFW nor volume differentiated between the CHR-P and CHR-NP groups at baseline. However, in many brain areas, the CHR-P group demonstrated significantly accelerated changes (iFW increase and volume reduction) with time than the CHR-NP group. Cortical thickness provided similar results as volume, and there were no significant changes in WM microstructure. Our results demonstrate that microstructural GM changes in individuals at CHR have a wider extent than volumetric changes or microstructural WM changes, and they predate the acceleration of brain changes that occur around psychosis onset. Microstructural GM changes, as reflected by the increased iFW, are thus an early pathology at the prodromal stage of psychosis that may be useful for a better mechanistic understanding of psychosis development.
ABSTRACT
BACKGROUND: Stroke etiology could influence the outcomes in patients with basilar-artery occlusion (BAO). This study aimed to evaluate the differences in efficacy and safety of best medical treatment (BMT) plus endovascular treatment (EVT) versus BMT alone in acute BAO across different stroke etiologies. METHODS: The study was a post hoc analysis of the ATTENTION trial (Trial of Endovascular Treatment of Acute Basilar-Artery Occlusion), which was a multicenter, randomized trial at 36 centers in China from February 2021 to September 2022. Patients with acute BAO were classified into 3 groups according to stroke etiology (large-artery atherosclerosis [LAA], cardioembolism, and undetermined cause/other determined cause [UC/ODC]). The primary outcome was a favorable outcome (modified Rankin Scale score of 0-3) at 90 days. Safety outcomes included symptomatic intracranial hemorrhage and 90-day mortality. RESULTS: A total of 340 patients with BAO were included, 150 (44.1%) had LAA, 72 (21.2%) had cardioembolism, and 118 (34.7%) had UC/ODC. For patients treated with BMT plus EVT and BMT alone, respectively, the rate of favorable outcome at 90 days was 49.1% and 23.8% in the LAA group (odds ratio, 3.08 [95% CI, 1.38-6.89]); 52.2% and 30.8% in the cardioembolism group (odds ratio, 2.45 [95% CI, 0.89-6.77]); and 37.5% and 17.4% in the UC/ODC group (odds ratio, 2.85 [95% CI, 1.16-7.01]), with P=0.89 for the stroke etiology×treatment interaction. The rate of symptomatic intracranial hemorrhage in EVT-treated patients with LAA, cardioembolism, and UC/ODC was 8.3%, 2.2%, and 3.2%, respectively, and none of the BMT-treated patients. Lower 90-day mortality was observed in patients with EVT compared with BMT alone across 3 etiology groups. CONCLUSIONS: Among patients with acute BAO, EVT compared with BMT alone might be associated with favorable outcomes and lower 90-day mortality, regardless of cardioembolism, LAA, or UC/ODC etiologies. The influence of stroke etiology on the benefit of EVT should be explored by further trials. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT04751708.
Subject(s)
Endovascular Procedures , Vertebrobasilar Insufficiency , Humans , Endovascular Procedures/methods , Male , Female , Middle Aged , Aged , Vertebrobasilar Insufficiency/surgery , Vertebrobasilar Insufficiency/complications , Treatment Outcome , Stroke/surgery , Stroke/etiology , China/epidemiologyABSTRACT
Response inhibition deficits in schizophrenia (SZ) are accompanied by reduced neural activities using event-related potential (ERP) measurements. However, it remains unclear whether the reduction in inhibition-related ERPs in SZ is contingent upon prepotent motor tendencies. This study aimed to examine the relationship between ERP markers of prepotent motor activity (lateralised readiness potential, LRP) and response inhibition (P3) by collecting behavioural and EEG data from healthy control (HC) subjects and SZ patients during a modified Go/No-Go task. A trial-averaged analysis revealed that SZ patients made more commission errors in No-Go trials compared with HC subjects, although there was no significant difference in the inhibition-related P3 effect (i.e. larger P3 amplitudes in No-Go compared with Go trials) between the two groups. Subsequently, No-Go trials were sorted and median-split into bins of stronger and weaker motor tendencies. Both HC and SZ participants made more commission errors when faced with stronger motor tendencies. The LRP-sorted P3 data indicated that HC subjects exhibited larger P3 effects in response to stronger motor tendencies, whereas this trial-by-trial association between P3 and motor tendencies was absent in SZ patients. Furthermore, SZ patients displayed diminished P3 effects in No-Go trials with stronger motor tendencies but not in trials with weaker motor tendencies, relative to HC subjects. Taken together, these findings suggest that SZ patients are unable to dynamically adjust inhibition-related neural activities in response to changing inhibitory control demands and emphasise the importance of considering prepotent motor activity when investigating the neural mechanisms underlying response inhibition deficits in SZ.
Subject(s)
Schizophrenia , Humans , Evoked Potentials/physiology , Inhibition, Psychological , Motor Activity , Electroencephalography , Reaction Time/physiologyABSTRACT
In recent years, neuromorphic computing is recognized as a promising path to further improve the efficiency of integrated computing system in the post-Moore era, relying on its high parallelism. As a key fundamental element in hardware-implementing neuromorphic system, the synaptic device has made substantial research progress. Among these, SiO2 trapping-based memristive devices generally have systematically integrated merits, such as ease of fabrication and high CMOS process compatibility, but electrochemical activity to oxygen makes them unreliable for operating in air. Here, by using ultrathin Si3N4 as a physical isolation layer, we have obtained a robust memristive device based on SiO2 trapping although operating in air. Further study of Si3N4 thickness dependence has demonstrated that 7â nm is suggested as the most favorable thickness for reliable and flexible programming, and that an inherent isolating mechanism is 'switching-on' for an electron but 'switching-off' for large-sized oxygen molecules. Based on a device with 7â nm Si3N4, we have mimicked various modes of synaptic plasticities. These results could thus not only increase the prospects of using SiO2 trapping in memristive applications but also provide an effective path to improve the robustness of these SiO2-based applications against ambient air.
ABSTRACT
BACKGROUND: Mild cognitive deficits (MCD) emerge before the first episode of psychosis (FEP) and persist in the clinical high-risk (CHR) stage. This study aims to refine risk prediction by developing MCD models optimized for specific early psychosis stages and target populations. METHODS: A comprehensive neuropsychological battery assessed 1059 individuals with FEP, 794 CHR, and 774 matched healthy controls (HCs). CHR subjects, followed up for 2 years, were categorized into converters (CHR-C) and non-converters (CHR-NC). The MATRICS Consensus Cognitive Battery standardized neurocognitive tests were employed. RESULTS: Both the CHR and FEP groups exhibited significantly poorer performance compared to the HC group across all neurocognitive tests (all p < 0.001). The CHR-C group demonstrated poorer performance compared to the CHR-NC group on three sub-tests: visuospatial memory (p < 0.001), mazes (p = 0.005), and symbol coding (p = 0.023) tests. Upon adjusting for sex and age, the performance of the MCD model was excellent in differentiating FEP from HC, as evidenced by an Area Under the Receiver Operating Characteristic Curve (AUC) of 0.895 (p < 0.001). However, when applied in the CHR group for predicting CHR-C (AUC = 0.581, p = 0.008), the performance was not satisfactory. To optimize the efficiency of psychotic risk assessment, three distinct MCD models were developed to distinguish FEP from HC, predict CHR-C from CHR-NC, and identify CHR from HC, achieving accuracies of 89.3%, 65.6%, and 80.2%, respectively. CONCLUSIONS: The MCD exhibits variations in domains, patterns, and weights across different stages of early psychosis and diverse target populations. Emphasizing precise risk assessment, our findings highlight the importance of tailored MCD models for different stages and risk levels.
Subject(s)
Cognitive Dysfunction , Neuropsychological Tests , Psychotic Disorders , Humans , Cognitive Dysfunction/etiology , Cognitive Dysfunction/diagnosis , Female , Male , Risk Assessment , Adult , Young Adult , Adolescent , Prodromal Symptoms , Case-Control StudiesABSTRACT
INTRODUCTION: Dimenhydrinate and scopolamine are frequently used drugs, but they cause drowsiness and performance decrement. Therefore, it is crucial to find peripheral targets and develop new drugs without central side effects. This study aimed to investigate the anti-motion sickness action and inner ear-related mechanisms of atrial natriuretic peptide (ANP). METHODS: Endolymph volume in the inner ear was measured with magnetic resonance imaging and expression of AQP2 and p-AQP2 was detected with Western blot analysis and immunofluorescence method. RESULTS: Both rotational stimulus and intraperitoneal arginine vasopressin (AVP) injection induced conditioned taste aversion (CTA) to 0.15% sodium saccharin solution and an increase in the endolymph volume of the inner ear. However, intraperitoneal injection of ANP effectively alleviated the CTA behaviour and reduced the increase in the endolymph volume after rotational stimulus. Intratympanic injection of ANP also inhibited rotational stimulus-induced CTA behaviour, but anantin peptide, an inhibitor of ANP receptor A (NPR-A), blocked this inhibitory effect of ANP. Both rotational stimulus and intraperitoneal AVP injection increased the expression of AQP2 and p-AQP2 in the inner ear of rats, but these increases were blunted by ANP injection. In in vitro experiments, ANP addition decreased AVP-induced increases in the expression and phosphorylation of AQP2 in cultured endolymphatic sac epithelial cells. CONCLUSION: Therefore, the present study suggests that ANP could alleviate motion sickness through regulating endolymph volume of the inner ear increased by AVP, and this action of ANP is potentially mediated by activating NPR-A and antagonising the increasing effect of AVP on AQP2 expression and phosphorylation.
Subject(s)
Arginine Vasopressin , Atrial Natriuretic Factor , Endolymph , Motion Sickness , Animals , Atrial Natriuretic Factor/pharmacology , Atrial Natriuretic Factor/metabolism , Atrial Natriuretic Factor/administration & dosage , Arginine Vasopressin/pharmacology , Arginine Vasopressin/administration & dosage , Arginine Vasopressin/metabolism , Motion Sickness/drug therapy , Male , Endolymph/drug effects , Endolymph/metabolism , Ear, Inner/drug effects , Rats, Sprague-Dawley , Aquaporin 2/metabolism , RatsABSTRACT
Capsular polysaccharide is an important virulence factor of Glaesserella parasuis. An acapsular mutant displays multiple phenotype variations, while the underlying mechanism for these variations is unknown. In this study, we created an acapsular mutant by deleting the wza gene in the capsule locus. We then used transcriptome analysis to compare the gene expression profiles of the wza deletion mutant with those of the parental strain to understand the possible reasons for the phenotypic differences. The mutant Δwza, which has a deleted wza gene, secreted less polysaccharide and lost its capsule structure. The Δwza exhibited increased autoagglutination, biofilm formation and adherence to eukaryotic cells, while the complementary strain C-Δwza partially restored the phenotype. Transcriptome analysis revealed several differentially expressed genes (DEGs) in Δwza, including up-regulated outer membrane proteins and proteins involved in peptidoglycan biosynthesis, suggesting that wza deletion affects the cell wall homeostasis of G. parasuis. Transcriptome analysis revealed the contribution of non-coding RNAs in the regulation of DEGs. Moreover, a new virulence-associated trimeric autotransporter, VtaA31 is upregulated in Δwza. It is responsible for enhanced autoagglutination but not for enhanced biofilm formation and adherence to eukaryotic cells in Δwza. In conclusion, these data indicate that wza affects the expression of multiple genes, especially those related to cell wall synthesis. Furthermore, they provide evidence that vtaA31 is involved in the autoagglutination of G. parasuis.
Subject(s)
Gene Expression Profiling , Haemophilus parasuis , Haemophilus parasuis/genetics , Haemophilus parasuis/pathogenicity , Haemophilus parasuis/physiology , Virulence , Gene Expression Profiling/veterinary , Animals , Biofilms , Virulence Factors/genetics , Virulence Factors/metabolism , Transcriptome , Swine Diseases/microbiology , Type V Secretion Systems/genetics , Type V Secretion Systems/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolismABSTRACT
OBJECTIVE: Indicators of heart rate variability (HRV) have been used to assess the autonomic activity. However, the influence of obesity on HRV in these patients remains to be determined. This study aimed to examine how obesity (measured with the body mass index [BMI]) affects HRV and determine whether the effect varies among different psychiatric disorders. We recruited 3159 consecutive patients, including 1744 with schizophrenia, 966 with mood disorders, and 449 with anxiety disorders. Patients were divided into four groups based on BMI: underweight (< 18.5), normal weight (18.5-23.9), overweight (24-27.9), and obese (≥ 28). The cardiovascular status was assessed using several time- and frequency-based HRV indicators, measured via electrocardiogram signals recorded for 5 min. The mean BMI of the participants was 23.6 ± 4.0. The patients in the overweight and obese groups were 29.4% and 13.6% of the total, respectively. The HRV indicators were higher in underweight and normal-weight patients than in the overweight and obese ones. After stratification based on the psychiatric diagnosis, the patients with mood disorders showed lower HRV than those with schizophrenia or anxiety disorder in the normal-weight group. In contrast, in the overweight and obese groups the patients with mood disorders showed higher HRV than those with the other disorders. The HRV variables were significantly associated with BMI, and higher BMI was associated with higher heart rates and lower HRV. These results indicate that weight gain in psychiatric disorders is associated with an imbalance in autonomic nerve activity. However, the relationship between autonomic activity, weight gain, and psychiatric disorders warrants further investigation.
ABSTRACT
BACKGROUND: Left ventricular hypertrophy (LVH) is a critical factor in heart failure and cardiovascular event-related mortality. While the prevalence of LVH in diabetic patients is well-documented, its occurrence and risk factors in non-diabetic populations remain largely unexplored. This study addresses this issue by investigating the independent risk factors of LVH in non-diabetic individuals. METHODS: This cross-sectional study, conducted meticulously, utilized data from a robust and comprehensive source, DATADRYAD, in the Sierra Leone database, collected between October 2019 and October 2021, including LVH and various variables. All variables were described and screened using univariate analysis, Spearman correlation, and principal component analysis (PCA). The lipid profile, including total cholesterols (TC), triglycerides (TG), high-density lipoprotein (HDL-C), non-high-density lipoprotein (Non-HDL-C), and low-density lipoprotein cholesterol (LDL-C), TC/HDL-C ratio, TG/HDL-C ratio, Non-HDL-C /HDL-C ratio and LDL-C/HDL-C ratio, which quartiles were treated as categorical variables, with the lowest quartile serving as the reference category. Three adjusted models were constructed to mitigate the influence of other variables. To ensure the robustness of the model, receiver operating characteristic (ROC) curves were used to calculate the cutoff values by analyzing the ROC curves. A sensitivity analysis was performed to validate the findings further. RESULTS: The dataset encompasses information from 2092 individuals. After adjusting for potential factors that could influence the results, we found that TC (OR = 2.773, 95%CI: 1.805-4.26), Non-HDL-C (OR = 2.74, 95%CI: 1.7723-4.236), TC/HDL-C ratio (OR = 2.237, 95%CI: 1.445-3.463), Non-HDL-C/HDL-C ratio (OR = 2.357, 95%CI: 1.548-3.588), TG/HDL-C ratio (OR = 1.513, 95%CI: 1.02-2.245) acts as independent risk factors of LVH. ROC curve analysis revealed the predictive ability of blood lipids for LVH, with Non-HDL-C exhibiting area under the curve (AUC = 0.6109), followed by TC (AUC = 0.6084). CONCLUSIONS: TC, non-HDL-C, TC/HDL-C ratio, Non-HDL-C/HDL-C ratio, and TG/HDL-C ratio were independent risk factors of LVH in non-diabetic people. Non-HDL-C and TC were found to be essential indicators for predicting the prevalence of LVH.
Subject(s)
Cholesterol, HDL , Hypertrophy, Left Ventricular , Triglycerides , Humans , Cross-Sectional Studies , Hypertrophy, Left Ventricular/blood , Hypertrophy, Left Ventricular/epidemiology , Male , Female , Risk Factors , Middle Aged , Sierra Leone/epidemiology , Triglycerides/blood , Adult , Cholesterol, HDL/blood , Cholesterol, LDL/blood , Aged , ROC CurveABSTRACT
AIM: Although many studies have explored the link between inflammatory markers and psychosis, there is a paucity of research investigating the temporal progression in individuals at clinical high-risk (CHR) who eventually develop full psychosis. To address this gap, we investigated the correlation between serum cytokine levels and Timeframe for Conversion to Psychosis (TCP) in individuals with CHR. METHODS: We enrolled 53 individuals with CHR who completed a 5-year follow-up with a confirmed conversion to psychosis. Granulocyte macrophage-colony stimulating factor (GM-CSF), interleukin (IL)-1ß, 2, 6, 8, 10, tumor necrosis factor-α (TNF-α), and vascular endothelial growth factor (VEGF) levels were measured at baseline and 1-year. Correlation and quantile regression analyses were performed. RESULTS: The median TCP duration was 14 months. A significantly shorter TCP was associated with higher levels of TNF-α (P = 0.022) and VEGF (P = 0.016). A negative correlation was observed between TCP and TNF-α level (P = 0.006) and VEGF level (P = 0.04). Quantile regression indicated negative associations between TCP and GM-CSF levels below the 0.5 quantile, IL-10 levels below the 0.3 quantile, IL-2 levels below the 0.25 quantile, IL-6 levels between the 0.65 and 0.75 quantiles, TNF-α levels below the 0.8 quantile, and VEGF levels below the 0.7 quantile. A mixed linear effects model identified significant time effects for IL-10 and IL-2, and significant group effects for changes in IL-2 and TNF-α. CONCLUSIONS: Our findings underscore that a more pronounced baseline inflammatory state is associated with faster progression of psychosis in individuals with CHR. This highlights the importance of considering individual inflammatory profiles during early intervention and of tailoring preventive measures for risk profiles.
Subject(s)
Cytokines , Disease Progression , Psychotic Disorders , Humans , Psychotic Disorders/blood , Male , Female , Cytokines/blood , Adult , Young Adult , Vascular Endothelial Growth Factor A/blood , Adolescent , Granulocyte-Macrophage Colony-Stimulating Factor/blood , Follow-Up Studies , Tumor Necrosis Factor-alpha/blood , Risk , Time Factors , Prodromal SymptomsABSTRACT
Ensuring the safety of mechanical equipment, gearbox fault diagnosis is crucial for the stable operation of the whole system. However, existing diagnostic methods still have limitations, such as the analysis of single-scale features and insufficient recognition of global temporal dependencies. To address these issues, this article proposes a new method for gearbox fault diagnosis based on MSCNN-LSTM-CBAM-SE. The output of the CBAM-SE module is deeply integrated with the multi-scale features from MSCNN and the temporal features from LSTM, constructing a comprehensive feature representation that provides richer and more precise information for fault diagnosis. The effectiveness of this method has been validated with two sets of gearbox datasets and through ablation studies on this model. Experimental results show that the proposed model achieves excellent performance in terms of accuracy and F1 score, among other metrics. Finally, a comparison with other relevant fault diagnosis methods further verifies the advantages of the proposed model. This research offers a new solution for accurate fault diagnosis of gearboxes.
ABSTRACT
The recent advancements of ionic liquids (ILs) and deep eutectic solvents (DESs) in the synthesis of cobalt-based catalysts for water splitting is reviewed. ILs and DESs possess unique physical and chemical properties, serving as solvents, templates, and reagents. Combined with calcination techniques, their advantages can be fully leveraged, enhancing the stability and activity of resulted catalysts. In these solvents, not only are they suitable for simple one-step calcination, but also applicable to more complex multi-step calcination, suitable for more complex reaction conditions. The designability of ILs and DESs allows them to participate in the reaction as reactants, providing metal and heteroatoms, simplifying the preparation system of cobalt phosphide, sulfide, and nitride. This work offers insights into design principles for electrocatalysts and practical guidance for the development of efficient and high-performance materials for hydrogen production and energy storage systems.
ABSTRACT
19F NMR has been extensively used in simultaneous analysis of multicomponent due to its 100% natural isotope abundance, high NMR-sensitivity, and wide-range chemical shifts. The solvent effects are usually observed in NMR spectroscopy and cause large changes in 19F chemical shifts. Herein, we propose that the simultaneous analysis of a complex mixture can be achieved using solvent effects via 19F NMR spectroscopy, such as a mixture solution of amino acids (AAs). AAs are not only cell-signaling molecules, but are also considered as biomarkers of some diseases. Hence, the analysis of AAs is important for human health and the diagnosis of diseases. In this work, the key to the success of sensing 19 biogenic AAs is the use of 2-fluorobenzaldehyde (2FBA) as a highly sensitive derivatizing agent and solvent effects to produce distinguishable 19F NMR signals. As a result, the resolution of 19F NMR spectroscopy of multiple 2FBA-labeled AAs is obviously higher than other methods based on 19F NMR. Moreover, 14 and 18 AAs can be satisfactorily differentiated and unambiguously identified in different complicated media supporting the growth of mammalian cells. Furthermore, quantification of the concentration of AAs can be made, and the limit of detection reaches 10 µM. Our work provides new insights into the simultaneous analysis of a multicomponent mixture based on solvent effects by 19F NMR spectroscopy.
Subject(s)
Amino Acids , Mammals , Animals , Humans , Amino Acids/analysis , Solvents , Magnetic Resonance Spectroscopy/methodsABSTRACT
Virus-encoded small RNAs (vsRNAs) have been reported to play an important role in viral infections. Unfortunately, there is still a lack of a systematic characterization and resource of vsRNAs. Herein, we identified a total of 19 734 high-confidence vsRNAs including 2746 microRNAs (miRNAs) in 64 viral species from more than 800 samples of public small RNA-Seq data. The number of vsRNAs identified in viruses varied from 1 to 2489 with a median of 170. The length distribution of vsRNAs peaked at 21 and 22 nt. Plant viruses were found to express larger number and higher levels of vsRNAs than those of animal viruses. Besides, the number of vsRNAs identified increased as the viral infection persisted. Interestingly, the vsRNA showed strong expression specificity as little overlap was observed among vsRNAs identified in different strains of a virus, or in different hosts, cells, or tissues infected by the same virus. Little conservation was observed among vsRNAs of different viruses. The viral miRNAs were found to interact with host genes involved in multiple biological processes related to organization, development, action potential, polarity establishment, methylation, immune response, gene regulation, localization, and so on. To facilitate the usage of vsRNAs, a database named vsRNAdb was built for organizing and storing vsRNAs which is available at http://www.computationalbiology.cn/vsRNAdb/#/vsRNAdb/#/. Overall, the study deepens our understanding about the diversity and complexity of vsRNAs and provides a rich resource for further studies of vsRNAs.
Subject(s)
MicroRNAs , RNA, Viral , Animals , RNA, Viral/metabolism , RNA-Seq , MicroRNAs/genetics , MicroRNAs/metabolism , MethylationABSTRACT
BACKGROUND: Schizophrenia is a severely debilitating psychiatric disorder with high heritability and polygenic architecture. A higher polygenic risk score for schizophrenia (SzPRS) has been associated with smaller gray matter volume, lower activation, and decreased functional connectivity (FC). However, the effect of polygenic inheritance on the brain white matter microstructure has only been sparsely reported. METHODS: Eighty-four patients with first-episode schizophrenia (FES) patients and ninety-three healthy controls (HC) with genetics, diffusion tensor imaging (DTI), and resting-state functional magnetic resonance imaging (rs-fMRI) data were included in our study. We investigated impaired white matter integrity as measured by fractional anisotropy (FA) in the FES group, further examined the effect of SzPRS on white matter FA and FC in the regions connected by SzPRS-related white matter tracts. RESULTS: Decreased FA was observed in FES in many commonly identified regions. Among these regions, we observed that in the FES group, but not the HC group, SzPRS was negatively associated with the mean FA in the genu and body of corpus callosum, right anterior corona radiata, and right superior corona radiata. Higher SzPRS was also associated with lower FCs between the left inferior frontal gyrus (IFG)-left inferior temporal gyrus (ITG), right IFG-left ITG, right IFG-left middle frontal gyrus (MFG), and right IFG-right MFG in the FES group. CONCLUSION: Higher polygenic risks are linked with disrupted white matter integrity and FC in patients with schizophrenia. These correlations are strongly driven by the interhemispheric callosal fibers and the connections between frontotemporal regions.
Subject(s)
Schizophrenia , White Matter , Humans , White Matter/pathology , Corpus Callosum/pathology , Diffusion Tensor Imaging , Schizophrenia/diagnostic imaging , Schizophrenia/genetics , Schizophrenia/pathology , Multifactorial Inheritance , Anisotropy , BrainABSTRACT
OBJECTIVES: The efficacy of electroconvulsive therapy (ECT) in treating mood disorders (MDs) is hypothesized to be mediated by the induction of neurotrophic factors (denoted "angioneurins") that trigger neuronal plasticity. This study aimed to assess the effects of ECT on serum angioneurin levels in patients with MD. METHODS: A total of 110 patients with MDs including 30 with unipolar depression, 25 with bipolar depression (BD), 55 with bipolar mania (BM), and 50 healthy controls were included in the study. Patients were subdivided into two groups: those who received ECT + medication (12 ECT sessions) and those who received only medication (no-ECT). Depressive and manic symptom assessments and measurements of vascular endothelial growth factor (VEGF), fibroblast growth factor-2, nerve growth factor (NGF), and insulin-like growth factor-1 levels in blood samples were performed at baseline and week 8. RESULTS: Patients in the ECT group, specifically those with BD and BM, had significantly increased levels of VEGF compared to their baseline VEGF levels (p = 0.002). No significant changes in angioneurin levels were observed in the no-ECT group. Serum NGF levels were significantly associated with a reduction in depressive symptoms. Angioneurin levels were not associated with manic symptom reduction. CONCLUSIONS: This study hints that ECT may increase VEGF levels with angiogenic mechanisms that amplify NGF signaling to promote neurogenesis. It may also contribute to changes in brain function and emotional regulation. However, further animal experiments and clinical validation are needed.
Subject(s)
Bipolar Disorder , Electroconvulsive Therapy , Humans , Mood Disorders/etiology , Mood Disorders/therapy , Bipolar Disorder/therapy , Vascular Endothelial Growth Factor A , Nerve Growth Factor , Mania , Treatment OutcomeABSTRACT
Chiral amino-group compounds are of significance for human health, such as biogenic amino acids (AAs), dipeptides, and even various drugs. Enantiospecific discrimination of these chiral compounds is vital in diagnosing diseases, identifying pathological biomarkers and enhancing pharmaceutical chemistry research. Here, we report a simple and rapid 19F NMR-based strategy to differentiate chiral AAs, dipeptides, and amines, that were derivatized with (R)-2-(2-fluorophenyl)-2-hydroxyacetic acid ((R)-2FHA). As a result, 19 proteinogenic AAs (37 isomers) as well as Gly could be concurrently resolved. Moreover, various mirror-image dipeptides, such as Ser-His, Leu-Leu, and Ala-Ala, were commendably recognized. Intriguingly, we found that the absolute configuration of AAs in the N-terminus of dipeptides decided the relative 19F chemical shifts between two enantiomers. Besides, the ability of this method for enantiodiscrimination was further demonstrated by non-AA amines, including aromatic and aliphatic amines, and even amines having chiral centers several carbons away from the amino-group. The structurally similar antibiotics, amoxicillin and ampicillin, were well discriminated. Furthermore, this method accurately determines the de or dr values of non-racemic mixtures. Therefore, our strategy provides an effective approach for 19F NMR-based enantiodiscrimination and diastereomeric purity determination of amino-group compounds.
Subject(s)
Amines , Antifibrinolytic Agents , Humans , Amino Acids , Magnetic Resonance Imaging , Amoxicillin , DipeptidesABSTRACT
INTRODUCTION: Immune alterations are associated with the progression of psychosis. However, there are few studies designed to longitudinally measure inflammatory biomarkers during psychotic episodes. We aimed to assess changes in biomarkers from the prodromal phase to psychotic episodes in individuals with clinical high risk (CHR) of psychosis and compare converters and non-converters to psychosis as well as healthy controls (HCs). METHODS: We enrolled 394 individuals with CHR and 100 HCs. A total of 263 individuals with CHR completed the 1-year follow-up, and 47 had converted to psychosis. Interleukin (IL)-1ß, 2, 6, 8, 10, tumor necrosis factor-α (TNF-α), and vascular endothelial growth factor levels were measured at baseline and 1 year after completion of the clinical assessment. RESULTS: The baseline serum levels of IL-10, IL-2, and IL-6 were significantly lower in the conversion group than in the non-conversion group (IL-10, p = 0.010; IL-2, p = 0.023; IL-6, p = 0.012) and HC (IL-6: p = 0.034). Self-controlled comparisons showed that IL-2 changed significantly (p = 0.028), and IL-6 levels tended toward significance (p = 0.088) in the conversion group. In the non-conversion group, serum levels of TNF-α (p = 0.017) and VEGF (p = 0.037) changed significantly. Repeated measures analysis of variance revealed a significant time effect related to TNF-α (F = 4.502, p = 0.037, effect size (η2) = 0.051), a group effect related to IL-1ß (F = 4.590, p = 0.036, η2 = 0.062), and IL-2 (F = 7.521, p = 0.011, η2 = 0.212), but no time × group effect. DISCUSSION: Alterations in the serum levels of inflammatory cytokines were found to precede the first episode of psychosis in the CHR population, particularly for those who later converted to psychosis. Longitudinal analysis supports the varied roles of cytokines in individuals with CHR with later psychotic conversion or non-conversion outcomes.
Subject(s)
Interleukin-10 , Psychotic Disorders , Humans , Interleukin-6 , Tumor Necrosis Factor-alpha , Interleukin-2 , Vascular Endothelial Growth Factor A , Longitudinal Studies , Psychotic Disorders/epidemiology , Cytokines , BiomarkersABSTRACT
Although the phenomenon of attenuated niacin response (ANR) has been widely replicated in some patients with first-episode psychosis (FEP), its relevance to the negative symptoms (NS) of psychosis remains unclear. Total of 240 patients with drug-naïve FEP and 101 healthy controls (HCs) were recruited, and 209 were followed up for 1 year. Psychotic symptoms were assessed using the Positive and Negative Syndrome Scale (PANSS), and niacin-induced responses were measured using laser Doppler flowmetry. We calculated the log-transform EC50 [concentration of methyl nicotinate required to elicit a half-maximal blood flow (MBF) response] and MBF values. Core-NS was generated by factor analysis of the PANSS-NS subscale and cluster analysis to produce subtypes. Significant differences were found in the log10 (EC50) values between the FEP and HC groups (p < 0.001), supporting the ANR in patients with FEP. A higher NS severity was found in the ANR subgroup than that in other patients. Factor analysis determined that a two-dimensional model included core NS and rigidity of thinking. The log10 (EC50) value was significantly associated with only the core NS. Cluster analysis revealed three subtypes-36.7% (cluster-1, n = 88), 16.7% (cluster-2, n = 40), and 46.7% (cluster-3, n = 112). Cluster-2 characterized by extensive NS appeared to have a more remarkable ANR and less symptomatic improvement than those with other clusters during follow-up. No significant changes were found in the niacin response trajectories between the baseline and follow-up. Our findings indicate a significant correlation between ANR and core NS in patients with FEP. ANR may be a potential biomarker for certain subtypes with NS-dominated characteristics and poor symptomatic remission.