Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 515
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(1): e2208541120, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36574661

ABSTRACT

Impaired endothelial cell (EC)-mediated angiogenesis contributes to critical limb ischemia in diabetic patients. The sonic hedgehog (SHH) pathway participates in angiogenesis but is repressed in hyperglycemia by obscure mechanisms. We investigated the orphan G protein-coupled receptor GPR39 on SHH pathway activation in ECs and ischemia-induced angiogenesis in animals with chronic hyperglycemia. Human aortic ECs from healthy and type 2 diabetic (T2D) donors were cultured in vitro. GPR39 mRNA expression was significantly elevated in T2D. The EC proliferation, migration, and tube formation were attenuated by adenovirus-mediated GPR39 overexpression (Ad-GPR39) or GPR39 agonist TC-G-1008 in vitro. The production of proangiogenic factors was reduced by Ad-GPR39. Conversely, human ECs transfected with GPR39 siRNA or the mouse aortic ECs isolated from GPR39 global knockout (GPR39KO) mice displayed enhanced migration and proliferation compared with their respective controls. GPR39 suppressed the basal and ligand-dependent activation of the SHH effector GLI1, leading to attenuated EC migration. Coimmunoprecipitation revealed that the GPR39 direct binding of the suppressor of fused (SUFU), the SHH pathway endogenous inhibitor, may achieve this. Furthermore, in ECs with GPR39 knockdown, the robust GLI1 activation and EC migration were abolished by SUFU overexpression. In a chronic diabetic model of diet-induced obesity (DIO) and low-dose streptozotocin (STZ)-induced hyperglycemia, the GPR39KO mice demonstrated a faster pace of revascularization from hind limb ischemia and lower incidence of tissue necrosis than GPR39 wild-type (GPR39WT) counterparts. These findings have provided a conceptual framework for developing therapeutic tools that ablate or inhibit GPR39 for ischemic tissue repair under metabolic stress.


Subject(s)
Diabetes Mellitus, Type 2 , Hyperglycemia , Humans , Mice , Animals , Hedgehog Proteins/metabolism , Zinc Finger Protein GLI1 , Cells, Cultured , Neovascularization, Physiologic/physiology , Endothelial Cells/metabolism , Neovascularization, Pathologic , Ischemia , Receptors, G-Protein-Coupled/genetics , Hyperglycemia/genetics , Diabetes Mellitus, Type 2/genetics
2.
Plant Physiol ; 194(4): 2616-2630, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38206190

ABSTRACT

The plant cuticle is essential in plant defense against biotic and abiotic stresses. To systematically elucidate the genetic architecture of maize (Zea mays L.) cuticular wax metabolism, 2 cuticular wax-related traits, the chlorophyll extraction rate (CER) and water loss rate (WLR) of 389 maize inbred lines, were investigated and a genome-wide association study (GWAS) was performed using 1.25 million single nucleotide polymorphisms (SNPs). In total, 57 nonredundant quantitative trait loci (QTL) explaining 5.57% to 15.07% of the phenotypic variation for each QTL were identified. These QTLs contained 183 genes, among which 21 strong candidates were identified based on functional annotations and previous publications. Remarkably, 3 candidate genes that express differentially during cuticle development encode ß-ketoacyl-CoA synthase (KCS). While ZmKCS19 was known to be involved in cuticle wax metabolism, ZmKCS12 and ZmKCS3 functions were not reported. The association between ZmKCS12 and WLR was confirmed by resequencing 106 inbred lines, and the variation of WLR was significant between different haplotypes of ZmKCS12. In this study, the loss-of-function mutant of ZmKCS12 exhibited wrinkled leaf morphology, altered wax crystal morphology, and decreased C32 wax monomer levels, causing an increased WLR and sensitivity to drought. These results confirm that ZmKCS12 plays a vital role in maize C32 wax monomer synthesis and is critical for drought tolerance. In sum, through GWAS of 2 cuticular wax-associated traits, this study reveals comprehensively the genetic architecture in maize cuticular wax metabolism and provides a valuable reference for the genetic improvement of stress tolerance in maize.


Subject(s)
Genome-Wide Association Study , Zea mays , Zea mays/genetics , Zea mays/metabolism , Quantitative Trait Loci/genetics , Phenotype , Water/metabolism , Plant Leaves/genetics
3.
Nano Lett ; 24(2): 566-575, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-37962055

ABSTRACT

Optical biosensors based on micro/nanofibers are highly valuable for probing and monitoring liquid environments and bioactivity. Most current optical biosensors, however, are still based on glass, semiconductors, or metallic materials, which might not be fully suitable for biologically relevant environments. Here, we introduce biocompatible and flexible microfibers from lotus silk as microenvironmental monitors that exhibit waveguiding of intrinsic fluorescence as well as of coupled light. These features make single-filament monitors excellent building blocks for a variety of sensing functions, including pH probing and detection of bacterial activity. These results pave the way for the development of new and entirely eco-friendly, potentially multiplexed biosensing platforms.


Subject(s)
Biosensing Techniques , Nanofibers , Biosensing Techniques/methods , Silk , Semiconductors , Bacteria
4.
Breast Cancer Res ; 26(1): 105, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937788

ABSTRACT

Circular RNAs (circRNAs) are a new group of endogenous RNAs recently found to be involved in the development of various diseases, including their confirmed involvement in the progression of several types of cancers. Unluckily, the abnormal expression and functions of circRNAs in breast cancer shall be further investigated. This work aims to elucidate the action and molecular mechanism of circHSDL2 in the malignant progression of breast cancer. Differential expression profiles of circRNAs in breast cancer tissues relative to normal breast tissues and in the exosomes of breast cancer patients compared to healthy women were analyzed from databases to identify potentially functional circRNAs. CircHSDL2 was selected for further investigation. Cell proliferation, migration and invasion assays were done to assess the effect of circHSDL2 overexpression on breast cancer cells. Bioinformatics test and dual-luciferase reporter experiments were done to explore the interaction between circHSDL2 and miRNA. Downstream target genes were further investigated through proteomics analysis and Western blotting. The influence of circHSDL2 on breast cancer in vivo was evaluated through xenograft experiments in nude mice. Functional analysis demonstrated circHSDL2 overexpression promoted the division, movement, and invasion of breast cancer cells both in vivo and in vitro. Mechanistically, circHSDL2 acted as a sponge for miR-7978 to affect ZNF704 expression and thereby regulate the Hippo pathway in breast cancer cells. In conclusion, circHSDL2 regulates the Hippo pathway through the miR-7978/ZNF704 axis to facilitate the malignancy of breast cancer. This may be a potential biomarker and treatment target.


Subject(s)
Breast Neoplasms , Cell Proliferation , Disease Progression , Gene Expression Regulation, Neoplastic , Hippo Signaling Pathway , MicroRNAs , Protein Serine-Threonine Kinases , RNA, Circular , Signal Transduction , Humans , Female , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , RNA, Circular/genetics , MicroRNAs/genetics , Animals , Mice , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Signal Transduction/genetics , Cell Proliferation/genetics , Cell Line, Tumor , Cell Movement/genetics , Mice, Nude
5.
Clin Immunol ; 263: 110228, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38663494

ABSTRACT

Asthma is a heterogeneous disease characterized by chronic airway inflammation, reversible airflow limitation, and airway remodeling. Eosinophil peroxidase (EPX) is the most abundant secondary granule protein unique to activated eosinophils. In this study, we aimed to illustrate the effect of EPX on the epithelial-mesenchymal transition (EMT) in BEAS-2B cells. Our research found that both EPX and ADAM33 were negatively correlated with FEV1/FVC and FEV1%pred, and positively correlated with IL-5 levels. Asthma patients had relatively higher levels of ADAM33 and EPX compared to the healthy control group. The expression of TSLP, TGF-ß1 and ADAM33 in the EPX intervention group was significantly higher. Moreover, EPX could promote the proliferation, migration and EMT of BEAS-2B cells, and the effect of EPX on various factors was significantly improved by the PI3K inhibitor LY294002. The findings from this study could potentially offer a novel therapeutic target for addressing airway remodeling in bronchial asthma, particularly focusing on EMT.


Subject(s)
Airway Remodeling , Asthma , Bronchi , Eosinophil Peroxidase , Epithelial Cells , Epithelial-Mesenchymal Transition , Transforming Growth Factor beta1 , Humans , Asthma/metabolism , Asthma/pathology , Asthma/physiopathology , Asthma/immunology , Male , Female , Epithelial Cells/metabolism , Eosinophil Peroxidase/metabolism , Transforming Growth Factor beta1/metabolism , Middle Aged , Adult , Bronchi/pathology , Interleukin-5/metabolism , Chromones/pharmacology , Cytokines/metabolism , Cell Line , Thymic Stromal Lymphopoietin , Cell Proliferation , Cell Movement , Morpholines/pharmacology , ADAM Proteins
6.
Anal Chem ; 96(5): 2217-2226, 2024 02 06.
Article in English | MEDLINE | ID: mdl-38262909

ABSTRACT

Circulating tumor cells (CTCs) have emerged as powerful biomarkers for diagnosis of prostate cancer. However, the effective identification and concurrently accurate imaging of CTCs for early screening of prostate cancer have been rarely explored. Herein, we reported a multifunctional gold nanoprobe-based thermophoretic assay for simultaneous specific distinguishing of prostate cancer CTCs and sensitive imaging of intracellular microRNA (miR-21), achieving the rapid and precise detection of prostate cancer. The multifunctional gold nanoprobe (GNP-DNA/Ab) was modified by two types of prostate-specific antibodies, anti-PSMA and anti-EpCAM, which could effectively recognize the targeting CTCs, and meanwhile linked double-stranded DNA for further visually imaging intracellular miR-21. Upon the specific internalization of GNP-DNA/Ab by PC-3 cells, target aberrant miR-21 could displace the signal strand to recover the fluorescence signal for sensitive detection at the single-cell level, achieving single PC-3 cell imaging benefiting from the thermophoresis-mediated signal amplification procedure. Taking advantage of the sensitive miR-21 imaging performance, GNP-DNA/Ab could be employed to discriminate the PC-3 and Jurkat cells because of the different expression levels of miR-21. Notably, PC-3 cells were efficiently recognized from white blood cells, exhibiting promising potential for the early diagnosis of prostate cancer. Furthermore, GNP-DNA/Ab possessed good biocompatibility and stability. Therefore, this work provides a great tool for aberrant miRNA-related detection and specific discrimination of CTCs, achieving the early and accurate diagnosis of prostate cancer.


Subject(s)
MicroRNAs , Neoplastic Cells, Circulating , Prostatic Neoplasms , Male , Humans , Neoplastic Cells, Circulating/pathology , Gold , Prostatic Neoplasms/pathology , DNA
7.
Mol Psychiatry ; 28(8): 3444-3458, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37500828

ABSTRACT

Adverse experiences in early life can shape neuronal structures and synaptic function in multiple brain regions, leading to deficits of distinct cognitive functions later in life. Focusing on the pyramidal cells of the prelimbic cortex (PrL), a main subregion of the medial prefrontal cortex, the impact of early-life adversity (ELA) was investigated in a well-established animal model generated by changing the rearing environment during postnatal days 2 to 9 (P2-P9), a sensitive developmental period. ELA has enduring detrimental impacts on the dendritic spines of PrL pyramidal cells, which is most apparent in a spatially circumscribed region. Specifically, ELA affects both thin and mushroom-type spines, and ELA-provoked loss of spines is observed on selective dendritic segments of PrL pyramidal cells in layers II-III and V-VI. Reduced postsynaptic puncta represented by postsynaptic density protein-95 (PSD-95), but not synaptophysin-labelled presynaptic puncta, in ELA mice supports the selective loss of spines in the PrL. Correlation analysis indicates that loss of spines and postsynaptic puncta in the PrL contributes to the poor spatial working memory of ELA mice, and thin spines may play a major role in working memory performance. To further understand whether loss of spines affects glutamatergic transmission, AMPA- and NMDA-receptor-mediated synaptic currents (EPSCs) were recorded in a group of Thy1-expressing PrL pyramidal cells. ELA mice exhibited a depressed glutamatergic transmission, which is accompanied with a decreased expression of GluR1 and NR1 subunits in the PrL. Finally, upregulating the activation of Thy1-expressing PrL pyramidal cells via excitatory DREADDs can efficiently improve the working memory performance of ELA mice in a T-maze-based task, indicating the potential of a chemogenetic approach in restoring ELA-provoked memory deficits.


Subject(s)
Memory, Short-Term , Animals , Mice , Dendritic Spines/physiology , Memory Disorders/metabolism , Memory, Short-Term/physiology , Neurons , Prefrontal Cortex/metabolism , Pyramidal Cells/metabolism , Stress, Psychological
8.
J Org Chem ; 89(8): 5675-5682, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38569117

ABSTRACT

As important π-skeletons, benzosiloles often possess unique electronic and optical properties and have been widely used in semiconductor materials. Therefore, great attention has been drawn to the area of developing novel synthetic methods for various benzosiloles. However, the synthesis of enantioenriched silicon-stereogenic benzosiloles is still at an early stage and remains to be explored. Herein, we performed systematic density functional theory studies on the recently reported nickel-catalyzed asymmetric synthesis of silicon-stereogenic benosiloles, which was enabled by an enantioselective desymmetrization of (2-alkenyl)aryl-substituted silacyclobutanes. Our computational study shows that the reaction mechanism involves ligand exchange, oxidative addition, alkene insertion, and hydrogen-transfer coupled reductive-demetalation steps. The proposed transmetalation and ß-hydride elimination mechanism was not found, which might be due to the unfavorable ring strain of the multicyclic intermediates. The novel hydrogen-transfer coupled reductive-demetalation mechanism was shown to be reasonable for the generation of the silicon-stereogenic benzosilole. Noncovalent interactions (including C-H···π and hydrogen bonding) in the rate-determining alkene insertion transition state account for the origins of the enantioselectivity. Our computational study sheds light on the detailed reaction mechanism and also provides insights for the development of novel approaches for synthesis of high-value silicon-stereogenic compounds.

9.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Article in English | MEDLINE | ID: mdl-33452133

ABSTRACT

The harsh microenvironment of ductal carcinoma in situ (DCIS) exerts strong evolutionary selection pressures on cancer cells. We hypothesize that the poor metabolic conditions near the ductal center foment the emergence of a Warburg Effect (WE) phenotype, wherein cells rapidly ferment glucose to lactic acid, even in normoxia. To test this hypothesis, we subjected low-glycolytic breast cancer cells to different microenvironmental selection pressures using combinations of hypoxia, acidosis, low glucose, and starvation for many months and isolated single clones for metabolic and transcriptomic profiling. The two harshest conditions selected for constitutively expressed WE phenotypes. RNA sequencing analysis of WE clones identified the transcription factor KLF4 as potential inducer of the WE phenotype. In stained DCIS samples, KLF4 expression was enriched in the area with the harshest microenvironmental conditions. We simulated in vivo DCIS phenotypic evolution using a mathematical model calibrated from the in vitro results. The WE phenotype emerged in the poor metabolic conditions near the necrotic core. We propose that harsh microenvironments within DCIS select for a WE phenotype through constitutive transcriptional reprogramming, thus conferring a survival advantage and facilitating further growth and invasion.


Subject(s)
Breast Neoplasms/genetics , Carcinoma, Intraductal, Noninfiltrating/genetics , Kruppel-Like Transcription Factors/genetics , Warburg Effect, Oncologic , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Carcinoma, Intraductal, Noninfiltrating/metabolism , Carcinoma, Intraductal, Noninfiltrating/pathology , Female , Gene Expression Regulation, Neoplastic/genetics , Glycolysis/genetics , Humans , Kruppel-Like Factor 4 , MCF-7 Cells , Neoplasm Staging , Tumor Hypoxia/genetics , Tumor Microenvironment/genetics
10.
Ren Fail ; 46(1): 2355354, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38785302

ABSTRACT

Serum magnesium levels exceeding 0.9 mmol/L are associated with increased survival rates in patients with CKD. This retrospective study aimed to identify risk factors for cardio-cerebrovascular events among patients receiving continuous ambulatory peritoneal dialysis (CAPD) and to examine their correlations with serum magnesium levels. Sociodemographic data, clinical physiological and biochemical indexes, and cardio-cerebrovascular event data were collected from 189 patients undergoing CAPD. Risk factors associated with cardio-cerebrovascular events were identified by univariate binary logistic regression analysis. Correlations between the risk factors and serum magnesium levels were determined by correlation analysis. Univariate regression analysis identified age, C-reactive protein (CRP), red cell volume distribution width standard deviation, red cell volume distribution width corpuscular volume, serum albumin, serum potassium, serum sodium, serum chlorine, serum magnesium, and serum uric acid as risk factors for cardio-cerebrovascular events. Among them, serum magnesium ≤0.8 mmol/L had the highest odds ratio (3.996). Multivariate regression analysis revealed that serum magnesium was an independent risk factor, while serum UA (<440 µmol/L) was an independent protective factor for cardio-cerebrovascular events. The incidence of cardio-cerebrovascular events differed significantly among patients with different grades of serum magnesium (χ2 = 12.023, p = 0.002), with the highest incidence observed in patients with a serum magnesium concentration <0.8 mmol/L. High serum magnesium levels were correlated with high levels of serum albumin (r = 0.399, p < 0.001), serum potassium (r = 0.423, p < 0.001), and serum uric acid (r = 0.411, p < 0.001), and low levels of CRP (r = -0.279, p < 0.001). In conclusion, low serum magnesium may predict cardio-cerebrovascular events in patients receiving CAPD.


Subject(s)
Magnesium , Peritoneal Dialysis, Continuous Ambulatory , Humans , Male , Female , Peritoneal Dialysis, Continuous Ambulatory/adverse effects , Middle Aged , Magnesium/blood , Retrospective Studies , Risk Factors , Adult , Aged , Cardiovascular Diseases/etiology , Cardiovascular Diseases/blood , Cardiovascular Diseases/epidemiology , Incidence , Cerebrovascular Disorders/etiology , Cerebrovascular Disorders/blood , Cerebrovascular Disorders/epidemiology , Logistic Models , C-Reactive Protein/analysis , Uric Acid/blood , Kidney Failure, Chronic/therapy , Kidney Failure, Chronic/blood
11.
Ren Fail ; 46(1): 2324071, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38494197

ABSTRACT

INTRODUCTION: The study presented here aimed to establish a predictive model for heart failure (HF) and all-cause mortality in peritoneal dialysis (PD) patients with machine learning (ML) algorithm. METHODS: We retrospectively included 1006 patients who initiated PD from 2010 to 2016. XGBoost, random forest (RF), and AdaBoost were used to train models for assessing risk for 1-year and 5-year HF hospitalization and mortality. The performance was validated using fivefold cross-validation. The optimal ML algorithm was used to construct the models to predictive the risk of the HF and all-cause mortality. The prediction performance of ML methods and Cox regression was compared. RESULTS: Over a median follow-up of 49 months. Two hundred and ninety-eight patients developed HF required hospitalization; 199 patients died during the follow-up. The RF model (AUC = 0.853) was the best performing model for predicting HF, and the XGBoost model (AUC = 0.871) was the best model for predicting mortality. Baseline moderate or severe renal disease, systolic blood pressure (SBP), body mass index (BMI), age, Charlson Comorbidity Index (CCI) score were strongly associated with HF hospitalization, whereas age, CCI score, creatinine, age, high-density lipoprotein cholesterol (HDL-C), total cholesterol, baseline estimated glomerular filtration rate (eGFR) were the most significant predictors of mortality. For all the above endpoints, the ML models demonstrated better discrimination than Cox regression. CONCLUSIONS: We developed and validated a novel method to predict the risk factors of HF and all-cause mortality that integrates readily available clinical, laboratory, and electrocardiographic variables to predict the risk of HF among PD patients.


Subject(s)
Heart Failure , Peritoneal Dialysis , Humans , Nomograms , Retrospective Studies , Risk Assessment/methods , Hospitalization , Heart Failure/epidemiology , Heart Failure/etiology , Peritoneal Dialysis/adverse effects , Machine Learning , Cholesterol
12.
Int J Mol Sci ; 25(2)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38279212

ABSTRACT

Animal models of metabolic disorders are essential to studying pathogenic mechanisms and developing therapies for diabetes, but the induction protocols vary, and sexual dimorphism often exists. In a chronic diabetic model of diet-induced obesity (DIO) and low-dose streptozotocin (STZ)-induced hyperglycemia, blood glucose and lipid profiles were measured. The high-fat (HF) diet damaged insulin sensitivity and increased triglycerides, total cholesterol, LDL-cholesterol, HDL-cholesterol, and liver lipid deposition. STZ increased blood glucose and liver fibrosis with less effects on blood lipids or liver lipid deposition. The combination of DIO and STZ treatments led to significant liver lipid deposition and fibrosis. Female mice showed delayed body weight gain on HF diet and resisted STZ-induced hyperglycemia. However, once they developed DIO, which occurs around 26 weeks of HF diet, the female mice were prone to STZ-induced hyperglycemia. In hindlimb ischemia, male mice in the DIO-STZ group showed significantly worse neovascularization compared with DIO or STZ groups. The DIO-STZ females showed significantly worse recovery than the DIO-STZ males. Our observations suggest that DIO-STZ is a plausible model for studying metabolic and cardiovascular disorders in obesity and diabetes. Moreover, the findings in female animals stress the need to assess sexual dimorphism and investigate the underlying mechanisms that contribute to the worse vasculopathy manifestations in females in metabolic models.


Subject(s)
Diabetes Mellitus, Experimental , Hyperglycemia , Male , Female , Mice , Animals , Blood Glucose/metabolism , Insulin/metabolism , Diabetes Mellitus, Experimental/drug therapy , Obesity/complications , Disease Models, Animal , Lipids , Hyperglycemia/drug therapy , Diet, High-Fat/adverse effects , Stress, Physiological
13.
Angew Chem Int Ed Engl ; : e202405905, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771269

ABSTRACT

The replacement of a CC unit with an isoelectronic BN unit in aromatic systems can give rise to molecules and materials with fascinating properties. We report here the synthesis, characterization, and reactivity of a 1,4,2,3-diazadiborole species, 2, featuring an unprecedented 6π-aromatic BN-heterocyclic moiety that is isoelectronic to cyclopentadienide (Cp-). Bearing an unsymmetrical B=B entity, 2 exhibits reactivity toward oxidants, protic reagents, electrophiles, and unsaturated substrates. This reactivity facilitates the synthesis of a variety of novel mono- and bicyclic organoboron derivatives through mechanisms including ring retention, cleavage/recombination, annulation, and expansion. These findings reveal innovative synthetic routes to BN-embedded aromatic compounds via desymmetrization, affording unique building blocks for synthetic chemistry.

14.
Angew Chem Int Ed Engl ; 63(26): e202400441, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38587149

ABSTRACT

Nickel-catalyzed transannulation reactions triggered by the extrusion of small gaseous molecules have emerged as a powerful strategy for the efficient construction of heterocyclic compounds. However, their use in asymmetric synthesis remains challenging because of the difficulty in controlling stereo- and regioselectivity. Herein, we report the first nickel-catalyzed asymmetric synthesis of N-N atropisomers by the denitrogenative transannulation of benzotriazones with alkynes. A broad range of N-N atropisomers was obtained with excellent regio- and enantioselectivity under mild conditions. Moreover, density functional theory (DFT) calculations provided insights into the nickel-catalyzed reaction mechanism and enantioselectivity control.

15.
J Am Chem Soc ; 145(32): 17570-17576, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37535929

ABSTRACT

In this study, we describe the direct insertion of an intramolecular nitrogen atom into an aromatic C-C bond. In this transformation, carbamoyl azides are activated by a Rh catalyst and subsequently directly inserted into the C-C bond of an arene ring to access fused azepine products. This transformation is challenging, owing to the existence of a competitive C-H amination pathway. The use of a paddlewheel dirhodium complex Rh2(esp)2 effectively inhibited the undesired C-H insertion. Density functional theory calculations were performed to reveal the reaction mechanism and origin of the chemoselectivity of the Rh-catalyzed reactions. The novel fused azepine products are highly robust and allow for downstream diversification.

16.
J Am Chem Soc ; 145(16): 9285-9291, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37040147

ABSTRACT

Organic hierarchical branch micro/nanostructures constituted by single crystals with inherent multichannel characteristics exhibit superior potential in regulating photon transmission for photonic circuits. However, organic branch micro/nanostructures with precise branch positions are extremely difficult to achieve due to the randomness of the nucleation process. Herein, by taking advantage of the dislocation stress field-impurity interaction that solute molecules deposit preferentially along the dislocation line, twinning deformation was introduced into microcrystals to induce oriented nucleation sites, and ultimately organic branch microstructures with controllable branch sites were fabricated. The growth mechanism of these controllable single crystals with an angle of 140° between trunk and branch is attributed to the low lattice mismatching ratio (η) of 4.8%. These as-prepared hierarchical branch single crystals with asymmetrical optical waveguide characteristics have been demonstrated as an optical logic gate with multiple input/out channels, which provides a route to command the nucleation sites and offers potential applications in the organic optoelectronics at the micro/nanoscale.

17.
BMC Plant Biol ; 23(1): 637, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38072942

ABSTRACT

BACKGROUND: Capparis spinosa L. is a typical desert plant that is resistant to high temperatures and drought, and at the same time is rich in medicinal and food values. The objective of this study is to explore the variations in nutrient composition, morphological characteristics, and SDS-PAGE patterns of caper seeds from different provenances, aiming to provide insights for the selection of superior seed provenances. RESULTS: In this experiment, there were significant differences in the morphological characteristics and major nutritional components of caper seeds from different provenances. Seeds from the YKL (Karayagaqi Township, Yining County) and YKG (G218, KashiTown, Yining County) regions were larger in size compared to seeds from other regions. Among the four measured nutritional components, crude fat had the highest content, especially in the YKL and YKG region. The results of correlation analysis showed that crude fat was negatively correlated with soluble sugar and soluble protein but significantly positively correlated with starch content. As longitude increased from east to west, the morphological characteristics gradually increased. Based on the principal component analysis of all the parameters of the seeds, the eight provenances could be classified into three groups. HM (Hami), TGS (S202, Gaochang District, Turpan), HYW (Wubao Town, Yizhou District, Hami), TQQ (Qiquanhu Town, Turpan), and TLF (Turpan) were a group with higher soluble protein, soluble sugar, and water content. YKL and YKG were in one group, which had larger seed grains with high crude fat and starch content. AKS (Aksu) was in a separate group. The protein fractions from seeds of eight regions were extracted using Osborne fractionation method, it was found that glutelin content was the highest, while albumin content was the lowest. After these proteins were analyzed by SDS-PAGE, the electrophoretic patterns showed that the protein molecular weights were relatively small, and there were differences in protein bands among different provenances. CONCLUSION: According to the PCA results, the eight seed provenances could be divided into three groups. There were both geographically distant ones clustered into one group, and those close to each other were also divided into one group. There were differences in seed morphology, nutrient content and SDS-PAGE profiles among the different seed sources. This difference might be caused by a combination of geographic and climatic factors. In addition, YKL and YKG were roughly selected as good seed provenances, which provided a theoretical basis for the development of C. spinosa L. germplasm resources.


Subject(s)
Capparis , Capparis/anatomy & histology , Seeds/anatomy & histology , Electrophoresis, Polyacrylamide Gel , Sugars , Starch
18.
Opt Express ; 31(25): 41622-41634, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38087556

ABSTRACT

A versatile system combining surface plasmon resonance (SPR) and weak value amplification (WVA) is presented, which can measure the optical activity and refractive index of chiral/achiral molecules, ionic compounds, and their mixture in solution individually or simultaneously. The variations in output light intensity directly exhibit high sensitivity to changes in optical activity and refractive index of the aforementioned substances. Furthermore, by examining the correlation between the intensity variation trend and the optical activity of the chiral molecule, the molecule's absolute configuration can be ascertained. Utilizing this instrument, optical rotation with a resolution of 3.04 × 10-6 rad and refractive index with a resolution of 5.57 × 10-9 RIU were obtained. As an attempt at practical application, this sensor was used to detect the adulteration of glucose and fructose in pure honey. Not only can such compromised honey be distinguished from pure honey using the refractive index or optical rotation, but the difference in optical activity can also be employed to effectively differentiate between adulterated honey samples containing glucose and fructose separately.

19.
Physiol Plant ; 175(2): e13894, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36942459

ABSTRACT

Tobacco (Nicotiana tabacum L.) is an economically important crop worldwide. Root-knot nematodes (RKNs) are responsible for yield losses in tobacco and other crops, such as tomato, potato, peanut, and soybean. Therefore, screening for resistance genes that can prevent RKN infestation and the associated damage is crucial. However, there is no report of cloning tobacco RKN resistance genes to date. Here, we cloned the tobacco RKN resistance gene NtRk1 from the resistant variety TI706, using rapid amplification of cDNA ends. NtRk1 has high homology with other RKN resistance genes (CaMi in pepper, Mi-1.1 and Mi-1.2 in tomato). Under normal conditions, NtRk1 was barely expressed in the roots; however, following RKN infection, its expression level rapidly increased. Overexpression of NtRk1 in the susceptible cultivar "Changbohuang" enhanced its resistance to Meloidogyne incognita, while RNA interference of NtRk1 in the resistant cultivar K326 resulted in its susceptibility to M. incognita. Moreover, compared with resistant variety K326, we found the salicylic acid and jasmonic acid contents of RNAi plants decreased after inoculation with M. incognita, and confirmed that the function of NtRk1 is related to these phytohormones. These findings indicate that NtRk1 is an RKN resistance gene, which is abundantly expressed in response to RKN infection and may enhance host defense responses by elevating salicylic acid and jasmonic acid levels.


Subject(s)
Nicotiana , Plant Roots , Nicotiana/genetics , Plant Roots/metabolism , Cloning, Molecular , Salicylic Acid/metabolism , Plant Diseases/genetics
20.
Inorg Chem ; 62(10): 4330-4340, 2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36863004

ABSTRACT

The field of supramolecular metal-organic cage catalysis has grown rapidly in recent years. However, theoretical studies regarding the reaction mechanism and reactivity and selectivity controlling factors for supramolecular catalysis are still underdeveloped. Herein, we demonstrate a detailed density functional theory study on the mechanism, catalytic efficiency, and regioselectivity of the Diels-Alder reaction in bulk solution and within two [Pd6L4]12+ supramolecular cages. Our calculations are consistent with experiments. The origins of the catalytic efficiency of the bowl-shaped cage 1 have been elucidated to be the host-guest stabilization of the transition states and the favorable entropy effect. The reasons for the switch of the regioselectivity from 9,10-addition to 1,4-addition within the octahedral cage 2 were attributed to the confinement effect and the noncovalent interactions. This work would shed light on the understanding of [Pd6L4]12+ metallocage-catalyzed reactions and provide a detailed mechanistic profile otherwise difficult to obtain from experiments. The findings of this study could also aid to the improvement and development of more efficient and selective supramolecular catalysis.

SELECTION OF CITATIONS
SEARCH DETAIL