Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Int J Nanomedicine ; 19: 1749-1766, 2024.
Article in English | MEDLINE | ID: mdl-38414527

ABSTRACT

Purpose: Triple-negative breast cancer (TNBC) is the most lethal subtype of breast cancer. However, the effect of current treatment strategies by inducing tumor cell apoptosis alone is not satisfactory. The growth, metastasis and treatment sensitivity of tumors can be strongly influenced by cancer-associated fibroblasts (CAFs) in the microenvironment. Effective cancer therapies may need to target not only the tumor cells directly but also the CAFs that protect them. Methods: Celastrol and small-sized micelles containing betulinic acid were co-encapsulated into liposomes using the thin-film hydration method (CL@BM). Folic acid was further introduced to modify liposomes as the targeting moiety (F/CL@BM). We established a novel NIH3T3+4T1 co-culture model to mimic the tumor microenvironment and assessed the nanocarrier's inhibitory effects on CAFs-induced drug resistance and migration in the co-culture model. The in vivo biological distribution, fluorescence imaging, biological safety evaluation, and combined therapeutic effect evaluation of the nanocarrier were carried out based on a triple-negative breast cancer model. Results: In the present study, a novel multifunctional nano-formulation was designed by combining the advantages of sequential release, co-loading of tretinoin and betulinic acid, and folic acid-mediated active targeting. As expected, the nano-formulation exhibited enhanced cytotoxicity in different cellular models and effectively increased drug accumulation at the tumor site by disrupting the cellular barrier composed of CAFs by tretinoin. Notably, the co-loaded nano-formulations proved to be more potent in inhibiting tumor growth in mice and also showed better anti-metastatic effects in lung metastasis models compared to the formulations with either drug alone. This novel drug delivery system has the potential to be used to develop more effective cancer therapies. Conclusion: Targeting CAFs with celastrol sensitizes tumor cells to chemotherapy, increasing the efficacy of betulinic acid. The combination of drugs targeting tumor cells and CAFs may lead to more effective therapies against various cancers.


Subject(s)
Cancer-Associated Fibroblasts , Pentacyclic Triterpenes , Triple Negative Breast Neoplasms , Humans , Animals , Mice , Liposomes/pharmacology , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , NIH 3T3 Cells , Betulinic Acid , Tretinoin/pharmacology , Folic Acid/pharmacology , Cell Line, Tumor , Tumor Microenvironment
2.
Drug Deliv ; 31(1): 2380538, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39044468

ABSTRACT

Rheumatoid arthritis (RA) is a chronic inflammatory joint disease accompanied by energy depletion and accumulation of reactive oxygen species (ROS). Inorganic nanoparticles (NPs) offer great promise for the treatment of RA because they mostly have functions beyond being drug carriers. However, conventional nanomaterials become coated with a protein corona (PC) or lose their cargo prematurely in vivo, reducing their therapeutic efficacy. To avoid these problems, we loaded methotrexate (MTX) into hollow structured manganese dioxide nanoparticles (H-MnO2 NPs), then coated them with a 'pseudo-corona' of human serum albumin (HSA) at physiological concentrations to obtain HSA-MnO2@MTX NPs. Efficacy of MTX, MnO2@MTX, and HSA-MnO2@MTX NPs was compared in vitro and in vivo. Compared to MnO2@MTX, HSA-coated NPs were taken up better by lipopolysaccharide-activated RAW264.7 and were more effective at lowering levels of pro-inflammatory cytokines and preventing ROS accumulation. HSA-MnO2@MTX NPs were also more efficient at blocking the proliferation and migration of fibroblast-like synoviocytes from rats with collagen-induced arthritis. In this rat model, HSA-MnO2@MTX NPs showed better biodistribution than other treatments, specifically targeting the ankle joint. Furthermore, HSA-MnO2@MTX NPs reduced swelling in the paw, regulated pro-inflammatory cytokine production, and limited cartilage degradation and signs of inflammation. These results establish the therapeutic potential of HSA-MnO2@MTX NPs against RA.


Subject(s)
Arthritis, Rheumatoid , Drug Carriers , Manganese Compounds , Methotrexate , Nanoparticles , Oxides , Reactive Oxygen Species , Serum Albumin, Human , Animals , Manganese Compounds/chemistry , Oxides/chemistry , Arthritis, Rheumatoid/drug therapy , Mice , Rats , Nanoparticles/chemistry , Serum Albumin, Human/chemistry , Humans , Methotrexate/pharmacology , Methotrexate/administration & dosage , Methotrexate/pharmacokinetics , Methotrexate/chemistry , Reactive Oxygen Species/metabolism , RAW 264.7 Cells , Drug Carriers/chemistry , Male , Arthritis, Experimental/drug therapy , Tissue Distribution , Antirheumatic Agents/pharmacology , Antirheumatic Agents/administration & dosage , Antirheumatic Agents/pharmacokinetics , Rats, Sprague-Dawley , Cytokines/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL