Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Article in English | MEDLINE | ID: mdl-38619980

ABSTRACT

Two Gram-stain-negative bacterial strains, R39T and R73T, were isolated from the rhizosphere soil of the selenium hyperaccumulator Cardamine hupingshanesis in China. Strain R39T transformed selenite into elemental and volatile selenium, whereas strain R73T transformed both selenate and selenite into elemental selenium. Phylogenetic and phylogenomic analyses indicated that strain R39T belonged to the genus Achromobacter, while strain R73T belonged to the genus Buttiauxella. Strain R39T (genome size, 6.68 Mb; G+C content, 61.6 mol%) showed the closest relationship to Achromobacter marplatensis LMG 26219T and Achromobacter kerstersii LMG 3441T, with average nucleotide identity (ANI) values of 83.6 and 83.4 %, respectively. Strain R73T (genome size, 5.22 Mb; G+C content, 50.3 mol%) was most closely related to Buttiauxella ferragutiae ATCC 51602T with an ANI value of 86.4 %. Furthermore, strain A111 from the GenBank database was found to cluster with strain R73T within the genus Buttiauxella through phylogenomic analyses. The ANI and digital DNA-DNA hybridization values between strains R73T and A111 were 97.5 and 80.0% respectively, indicating that they belong to the same species. Phenotypic characteristics also differentiated strain R39T and strain R73T from their closely related species. Based on the polyphasic analyses, strain R39T and strain R73T represent novel species of the genera Achromobacter and Buttiauxella, respectively, for which the names Achromobacter seleniivolatilans sp. nov. (type strain R39T=GDMCC 1.3843T=JCM 36009T) and Buttiauxella selenatireducens sp. nov. (type strain R73T=GDMCC 1.3636T=JCM 35850T) are proposed.


Subject(s)
Achromobacter , Cardamine , Selenium , Fatty Acids/chemistry , Sequence Analysis, DNA , Cardamine/genetics , Phylogeny , Rhizosphere , Base Composition , DNA, Bacterial/genetics , Bacterial Typing Techniques , RNA, Ribosomal, 16S/genetics , Selenious Acid
2.
Environ Sci Technol ; 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39231302

ABSTRACT

Pesticides have been frequently detected in global freshwater ecosystems, but attempts to document changes in population dynamics of organisms upon exposure to pesticides, establish a causal relationship between exposure and population effects, and identify the key toxic events within individuals under natural field conditions remain rare. Here, we used a field survey, a reciprocal cross-transplant experiment, and a laboratory toxicity experiment to build a compelling case that exposure to the insecticide chlorpyrifos was responsible for differences in snail (Bellamya aeruginosa) densities in eastern (ELL) and western basins of Liangzi Lake in China. Our field survey and reciprocal cross-transplant experiment revealed significant differences in snail densities, juvenile percentage, survival, and relative telomere length (RTL) in the two basins. The insecticide chlorpyrifos detected in snail tissues was negatively correlated with snail densities, the percentage of juvenile snails, and RTL and had an extremely high risk quotient in ELL. In the laboratory experiment, tissue concentrations of chlorpyrifos detected in ELL were associated with reduced RTL and increased juvenile mortality in B. aeruginosa. These results support the hypothesis that chlorpyrifos exposure in ELL reduced the density of snails by reducing juvenile survival and, consequently, recruitment to the adult population.

3.
J Appl Microbiol ; 135(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38871681

ABSTRACT

AIMS: Some studies have indicated that the alterations in cellular morphology induced by selenite [Se(Ⅳ)] may be attributed to its inhibitory effects on cell division. However, whether the genes associated with cell division are implicated in Se(Ⅳ) metabolism remains unclear. METHODS AND RESULTS: The ftsK gene in Rahnella aquatilis HX2 was mutated with an in-frame deletion strategy. The ftsK mutation strongly reduced the tolerance to selenite [Se(Ⅳ)] and the production of red elemental selenium [Se(0)] in R. aquatilis HX2, and this effect could not be attributed solely to the inhibition of cell growth. Deleting the ftsK gene also resulted in a significant decrease in bacterial growth of R. aquatilis HX2 during both exponential and stationary phases. The deletion of ftsK inhibited cell division, resulting in the development of elongated filamentous cells. Furthermore, the loss-of-function of FtsK significantly impacted the expression of seven genes linked to cell division and Se(Ⅳ) metabolism by at least 2-fold, as unveiled by real-time quantitative PCR (RT-qPCR) under Se(Ⅳ) treatment. CONCLUSIONS: These findings suggest that FtsK is associated with Se(Ⅳ) tolerance and Se(0) generation and is a key player in coordinating bacterial growth and cell morphology in R. aquatilis HX2.


Subject(s)
Bacterial Proteins , Cell Division , Rahnella , Selenious Acid , Selenium , Selenious Acid/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Rahnella/genetics , Rahnella/metabolism , Selenium/metabolism
4.
Environ Sci Technol ; 57(6): 2371-2379, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36734488

ABSTRACT

Microbial transformation of selenite [Se(IV)] to elemental selenium nanoparticles (SeNPs) is known to be an important process for removing toxic soluble selenium (Se) oxyanions and recovery of Se from the environment as valuable nanoparticles. However, the mechanism of selenite uptake by microorganisms, the first step through which Se exerts its cellular function, remains not well studied. In this study, the effects of selenite concentration, time, pH, metabolic inhibitors, and anionic analogues on selenite uptake in Rahnella aquatilis HX2 were investigated. Selenite uptake by R. aquatilis HX2 was concentration- and time-dependent, and its transport activity was significantly dependent on pH. In addition, selenite uptake in R. aquatilis HX2 was significantly inhibited by the aquaporin inhibitor AgNO3 and sulfite (SO32-), and partially inhibited by carbonyl cyanide m-chlorophenyl hydrazone (CCCP) and 2,4-dinitrophenol (2,4-DNP) treatments. Three mutants with in-frame deletions of aqpZ, glpF, and nhaA genes were constructed. The transport assay showed that the water channel protein AqpZ, and not GlpF, was a key channel of selenite uptake by R. aquatilis HX2, and sulfite and selenite had a common uptake pathway. In addition, the Na+/H+ antiporter NhaA is also involved in selenite uptake in R. aquatilis HX2.


Subject(s)
Rahnella , Selenium , Selenium/chemistry , Selenium/metabolism , Rahnella/genetics , Rahnella/metabolism , Selenious Acid/pharmacology , Selenious Acid/metabolism , Ions/metabolism , Sulfites/metabolism
5.
J Appl Microbiol ; 134(2)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36724265

ABSTRACT

AIM: Fusobacterium nucleatum (F. nucleatum) is associated with the initiation, development, and metastasis of colorectal cancer. However, it is difficult to isolate F. nucleatum from clinical specimens. In this study, we aimed to develop an effective and rapid method for isolating F. nucleatum from human feces using polyclonal antibody (PAB)-coated immunomagnetic beads (IMBs) with selective media. METHODS AND RESULTS: IMBs conjugated with PAB were prepared and used to isolate F. nucleatum from human feces, and the bacteria were cultured with selective culture media (fastidious anaerobe agar + nalidixic acid + vancomycin). Under optimized experimental conditions, IMBs could selectively recover F. nucleatum from fecal microbiota samples spiked with Peptostreptococcus or Bacteroides fragilis. In artificial fecal samples, the detection sensitivity of IMBs for F. nucleatum was 103 CFU mL-1. In addition, IMBs combined with selective media could rapidly isolate F. nucleatum from human feces. CONCLUSIONS: This study successfully established an effective method for the rapid isolation of F. nucleatum from human feces by IMBs. The whole procedure requires 2-3 days, and has a sensitivity of 103 CFU mL-1 feces.


Subject(s)
Fusobacterium nucleatum , Immunomagnetic Separation , Humans , Agar , Immunomagnetic Separation/methods , Culture Media , Bacteria, Anaerobic , Feces/microbiology
6.
Molecules ; 28(5)2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36903365

ABSTRACT

Four new germacrane sesquiterpene dilactones, 2ß-hydroxyl-11ß,13-dihydrodeoxymikanolide (1), 3ß-hydroxyl-11ß,13-dihydrodeoxymikanolide (2), 1α,3ß-dihydroxy-4,9-germacradiene-12,8:15,6-diolide (3), and (11ß,13-dihydrodeoxymikanolide-13-yl)-adenine (4), together with five known ones (5-9) were isolated from the aerial parts of Mikania micrantha. Their structures were elucidated on the basis of extensive spectroscopic analysis. Compound 4 is featured with an adenine moiety in the molecule, which is the first nitrogen-containing sesquiterpenoid so far isolated from this plant species. These compounds were evaluated for their in vitro antibacterial activity against four Gram-(+) bacteria of Staphyloccocus aureus (SA), methicillin-resistant Staphylococcus aureus (MRSA), Bacillus cereus (BC) and Curtobacterium. flaccumfaciens (CF), and three Gram-(-) bacteria of Escherichia coli (EC), Salmonella. typhimurium (SA), and Pseudomonas Solanacearum (PS). Compounds 4 and 7-9 were found to show strong in vitro antibacterial activity toward all the tested bacteria with the MIC values ranging from 1.56 to 12.5 µg/mL. Notably, compounds 4 and 9 showed significant antibacterial activity against the drug-resistant bacterium of MRSA with MIC value 6.25 µg/mL, which was close to reference compound vancomycin (MIC 3.125 µg/mL). Compounds 4 and 7-9 were further revealed to show in vitro cytotoxic activity toward human tumor A549, HepG2, MCF-7, and HeLa cell lines, with IC50 values ranging from 8.97 to 27.39 µM. No antibacterial and cytotoxic activity were displayed for the other compounds. The present research provided new data to support that M. micrantha is rich in structurally diverse bioactive compounds worthy of further development for pharmaceutical applications and for crop protection in agricultural fields.


Subject(s)
Antineoplastic Agents , Methicillin-Resistant Staphylococcus aureus , Mikania , Humans , Mikania/chemistry , Sesquiterpenes, Germacrane , HeLa Cells , Anti-Bacterial Agents/chemistry , Bacteria , Microbial Sensitivity Tests
7.
Cancer Sci ; 113(11): 3787-3800, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35984699

ABSTRACT

Fusobacterium nucleatum infection plays vital roles in colorectal cancer (CRC) progression. Overexpression of microRNA-4717-3p (miR-4717) was reported to be upregulated in F. nucleatum positive CRC tissues, however, the underlying mechanism is unknown. In this study, we found that miR-4717 promoted CRC cell proliferation in vitro and growth of CRC in vivo following F. nucleatum infection. MicroRNA-4717 suppressed the expression of mitogen-activated protein kinase kinase 4 (MAP2K4), a tumor suppressor, by directly targeting its 3'-UTR. Furthermore, we confirmed that methyltransferase-like 3 (METTL3)-dependent m6 A methylation could methylate primary (pri)-miR-4717, which further promoted the maturation of pri-miR-4717, and METTL3 positively regulated CRC cell proliferation through miR-4717/MAP2K4 pathways. In conclusion, F. nucleatum-induced miR-4717 excessive maturation through METTL3-dependent m6 A modification promotes CRC cell proliferation, which provides a potential therapeutic target and diagnostic biomarker for CRC.


Subject(s)
Colorectal Neoplasms , MicroRNAs , Humans , Fusobacterium nucleatum/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Colorectal Neoplasms/pathology , Cell Proliferation/genetics , 3' Untranslated Regions , Methyltransferases/genetics
8.
Molecules ; 27(10)2022 May 22.
Article in English | MEDLINE | ID: mdl-35630810

ABSTRACT

Three new polycyclic phenol derivatives, 2-acetyl-4-hydroxy-6H-furo [2,3-g]chromen-6-one (1), 2-(1',2'-dihydroxypropan-2'-yl)-4-hydroxy-6H-furo [2,3-g][1]benzopyran-6-one (2) and 3,8,10-trihydroxy-4,9-dimethoxy-6H-benzo[c]chromen-6-one (8), along with seven known ones (3-7, 9 and 10) were isolated for the first time from the leaves of Spermacoce latifolia. Their structures were determined by spectroscopic analysis and comparison with literature-reported data. These compounds were tested for their in vitro antibacterial activity against four Gram-(+) bacteria: Staphyloccocus aureus (SA), methicillin-resistant Staphylococcus aureus (MRSA), Bacillus cereus (BC), Bacillus subtilis (BS), and the Gram-(-) bacterium Escherichia coli. Compounds 1, 2, 5 and 8 showed antibacterial activity toward SA, BC and BS with MIC values ranging from 7.8 to 62.5 µg/mL, but they were inactive to MRSA. Compound 4 not only showed the best antibacterial activity against SA, BC and BS, but it further displayed significant antibacterial activity against MRSA (MIC 1.95 µg/mL) even stronger than vancomycin (MIC 3.9 µg/mL). No compounds showed inhibitory activity toward E. coli. Further bioassay indicated that compounds 1, 4, 5, 6, 8 and 9 showed in vitro α-glucosidase inhibitory activity, among which compound 9 displayed the best α-glucosidase inhibitory activity with IC50 value (0.026 mM) about 15-fold stronger than the reference compound acarbose (IC50 0.408 mM). These results suggested that compounds 4, 8 and 9 were potentially highly valuable compounds worthy of consideration to be further developed as an effective anti-MRSA agent or effective α-glucosidase inhibitors, respectively. In addition, the obtained data also supported that S. latifolia was rich in structurally diverse bioactive compounds worthy of further investigation, at least in searching for potential antibiotics and α-glucosidase inhibitors.


Subject(s)
Anti-Bacterial Agents , Glycoside Hydrolase Inhibitors , Phenols , Rubiaceae , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacillus cereus , Bacillus subtilis , Escherichia coli , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Methicillin-Resistant Staphylococcus aureus , Microbial Sensitivity Tests , Phenols/chemistry , Phenols/pharmacology , Plant Leaves/chemistry , Rubiaceae/chemistry , alpha-Glucosidases/pharmacology
9.
Appl Microbiol Biotechnol ; 104(4): 1721-1735, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31915899

ABSTRACT

The RNA chaperone, Hfq, is a global post-transcriptional regulator that plays an important role in regulating pleiotropic functions, such as cell growth and motility, stress tolerance, and virulence to host, in many Gram-negative bacteria. This study examined the functional roles of Hfq in Rahnella aquatilis HX2, a plant beneficial, selenium nanoparticles (SeNPs)-producing soil bacterium. A mutant HX2∆hfq with an in-frame deletion within the hfq gene in R. aquatilis HX2 was constructed and tested for various phenotypic features. Bacterial growth, motility, selenite reduction, and SeNPs production were compared between the mutant, the wild-type, and the complementation strain. The hfq gene deletion delayed the growth of strain HX2, with a lower bacterial population during the stationary phase, and significantly impaired the swimming motility of the bacterium, showing a smaller motility ring on the plate. The hfq mutation also dramatically declined microbial-induced reduction of selenite and SeNPs production in HX2, which was independent of cell growth. The introduction of a trans-expressed hfq gene into HX2∆hfq for complementation completely restored impacted phenotypes. In addition, reverse transcription real-time quantitative PCR (RT-qPCR) analysis revealed that the expression of ten genes involved in bacterial growth and survival, motility and chemotaxis, and selenite or seleno-compound metabolism were influenced by Hfq loss-of-function by at least two-fold. Six genes including two involved in SeNPs production were positively regulated by hfq, while other four genes were negatively regulated. Homolog search suggested that the rprA gene might encode a small RNA regulated by Hfq in R. aquatilis HX2. Overall, the present study provides novel information about the function of Hfq and the regulation of bacterial biosynthesis of SeNPs.


Subject(s)
Host Factor 1 Protein/genetics , Nanoparticles/chemistry , Rahnella/genetics , Rahnella/physiology , Selenium/chemistry , Gene Deletion , Host Factor 1 Protein/metabolism , Molecular Chaperones/genetics , Movement
10.
Mar Drugs ; 16(11)2018 Nov 08.
Article in English | MEDLINE | ID: mdl-30413080

ABSTRACT

The striking rise of methicillin-resistant Staphylococcus aureus (MRSA) infections has become a serious threat to public health worldwide. In an effort to search for new anti-MRSA agents from natural products, a bioassay-guided phytochemical study was conducted on the semi-mangrove plant Myoporum bontioides A. Gray, which led to the isolation of two new sesquiterpene alkaloids (1 and 2) and six known furanosesquiterpenes (3⁻8). Their structures were elucidated on the basis of extensive analysis of their 1D, 2D NMR and mass spectroscopic data. These two new alkaloids (1 and 2) displayed potent anti-MRSA activity with MIC value of 6.25 µg/mL. This is the first report of sesquiterpene alkaloids from the plants of Myoporum genus and their anti-MRSA activity.


Subject(s)
Alkaloids/pharmacology , Anti-Bacterial Agents/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Myoporum/chemistry , Sesquiterpenes/pharmacology , Alkaloids/chemistry , Alkaloids/isolation & purification , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Drug Evaluation, Preclinical , Microbial Sensitivity Tests , Molecular Structure , Plant Leaves/chemistry , Sesquiterpenes/chemistry , Sesquiterpenes/isolation & purification , Wetlands
11.
Molecules ; 22(4)2017 Apr 08.
Article in English | MEDLINE | ID: mdl-28397757

ABSTRACT

Two new thymol derivatives, 7,9-diisobutyryloxy-8-ethoxythymol (1) and 7-acetoxy-8-methoxy-9-isobutyryloxythymol (2), were isolated from fresh roots of Ageratina adenophora, together with four known compounds, 7,9-di-isobutyryloxy-8-methoxythymol (3), 9-oxoageraphorone (4), (-)-isochaminic acid (5) and (1α,6α)-10-hydroxycar-3-ene-2-one (6). Their structures were established on the basis of detailed spectroscopic analysis, and they were all isolated from the roots of A. adenophora for the first time. All the compounds were tested for their in vitro antibacterial activity toward three Gram-positive and two Gram-negative bacterial strains. Thymol derivatives 1-3 only selectively showed slight in vitro bacteriostatic activity toward three Gram-positive bacteria. The two known carene-type monoterpenes 5 and 6 were found to show moderate in vitro antibacterial activity against all five tested bacterial strains, with MIC values from 15.6 to 62.5 µg/mL. In addition, compounds 5 and 6 were further revealed to show in vitro cytotoxicity against human tumor A549, HeLa and HepG2 cell lines, with IC50 values ranging from 18.36 to 41.87 µM. However, their cytotoxic activities were inferior to those of reference compound adriamycin.


Subject(s)
Ageratina/chemistry , Plant Extracts/chemistry , Plant Roots/chemistry , Thymol/analogs & derivatives , Thymol/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Bacteria/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Humans , Inhibitory Concentration 50 , Magnetic Resonance Spectroscopy , Microbial Sensitivity Tests , Molecular Structure
12.
Molecules ; 22(7)2017 Jul 08.
Article in English | MEDLINE | ID: mdl-28698451

ABSTRACT

A phytochemical study on the aerial parts of Mikania micrantha led to the isolation of two new phenolic compounds, benzyl 5-O-ß-d-glucopyranosyl-2,5-dihydroxybenzoate (1) and (7S,8R)-threo-dihydroxydehydrodiconiferyl alcohol 9-acetate (2), together with twelve known compounds, benzyl 2-O-ß-d-glucopyranosyl-2,6-dihydroxybenzoate (3), 4-allyl-2,6-dimethoxyphenol glucoside (4), (+)-isolariciresinol (5), icariol A2 (6), 9,10-dihydroxythymol (7), 8,9,10-trihydroxythymol (8), caffeic acid (9), p-coumaric acid (10), ethyl protocatechuate (11), procatechuic aldehyde (12), 4-hydroxybenzoic acid (13), and hydroquinone (14). Their structures were elucidated on the basis of extensive spectroscopic analysis. Except 8 and 9, all the other compounds were isolated from this plant species for the first time. The antioxidant activity of those isolated compounds were evaluated using three different assays. Compounds 1, 2, 3, 9, 10, 13, and 14 demonstrated significant 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) free radical cation scavenging activity ranging from SC50 0.31 to 4.86 µM, which were more potent than l-ascorbic acid (SC50 = 10.48 µM). Compounds 5, 9, 11, and 12 exhibited more potent 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity (SC50 = 16.24-21.67 µM) than l-ascorbic acid (39.48 µM). Moreover, the ferric reducing antioxidant power (FRAP) of compounds 2, 5, 9, and 11 were discovered to be also comparable to or even more potent than l-ascorbic acid.


Subject(s)
Antioxidants/pharmacology , Phenols/pharmacology , Plant Extracts/pharmacology , Antioxidants/chemistry , Ascorbic Acid/chemistry , Caffeic Acids/chemistry , Free Radical Scavengers/chemistry , Mikania/chemistry , Parabens/chemistry , Phenols/chemistry , Plant Extracts/chemistry
13.
Molecules ; 21(7)2016 Jul 22.
Article in English | MEDLINE | ID: mdl-27455226

ABSTRACT

Two new pentacyclic triterpene saponins, named akebiaoside K (1) and akebiaoside N (2), were isolated from the leaves of Akebia trifoliata, together with five known triterpenoids 3-7. They were all isolated from the leaves of A. trifoliata for the first time. Their structures were established by spectral and chemical means. Triterpenes 5 and 7 were found to show moderate in vitro cytotoxicity against human tumor A549, HeLa and HepG2 cell lines, with IC50 values ranging from 0.023 to 0.038 mM. Triterpenes 5-7 were further revealed to show significant in vitro α-glucosidase inhibitory activity with IC50 values from 0.040 to 0.220 mM, making them more potent than the reference compound acarbose (IC50 0.409 mM). Meanwhile, no obvious inhibitory effects were observed for the isolated triterpene saponins 1-4 in both bioactivity assays.


Subject(s)
Magnoliopsida/chemistry , Plant Leaves/chemistry , Saponins/chemistry , Triterpenes/chemistry , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Humans , Inhibitory Concentration 50 , Magnetic Resonance Spectroscopy , Molecular Structure , Saponins/pharmacology , Spectrometry, Mass, Electrospray Ionization
14.
Zhong Yao Cai ; 38(7): 1426-9, 2015 Jul.
Article in Zh | MEDLINE | ID: mdl-26946839

ABSTRACT

OBJECTIVE: To study the chemical constituents of the whole plant of Sphagneticola trilobata. METHODS: The compounds were isolated and purified by column chromatography and their structures were determined by spectroscopic techniques. RESULTS: Three lignans, two indolics and two phenolic glycosides were isolated from the whole plant of Sphagneticola trilobata and identified as syringaresinol-4-O-ß-D-glucopyranoside(1), pinoresinol-4-sulfate(2), pinoresinol-4-O-ß-D-glucopyranoside(3), 1H-indole-3-carboxylic acid (4), 1H-indole-3-carbaldehyde(5), 2,6-dimethoxy-4-hydroxyphenol-1-O-ß-D-glucopyranoside (6), and 3,5-dimethoxy-4-hydroxyphenol-1-O-ß-D-glucopyranoside (7). CONCLUSION: Compounds 1 - 7 are isolated from the genus Wedelia for the first time. Compound 4 demonstrates significant inhibitory activity against α-glucosidase.


Subject(s)
Asteraceae/chemistry , Glycosides/chemistry , Indoles/chemistry , Lignans/chemistry , Plants, Medicinal/chemistry , Glucosides , Phenols/chemistry
15.
Molecules ; 19(4): 4301-12, 2014 Apr 04.
Article in English | MEDLINE | ID: mdl-24714192

ABSTRACT

Two new 30-noroleanane triterpenes, 2α,3ß,20α-trihydroxy-30-norolean-12-en-28-oic acid (1), 2α,3ß-dihydroxy-23-oxo-30-norolean-12,20(29)-dien-28-oic acid (2), were isolated from the pericarps of Akebia trifoliata, together with four known ones, 3ß-akebonoic acid (3), 2α,3ß-dihydroxy-30-noroleana-12,20(29)-dien-28-oic acid (4), 3α-akebonoic acid (5) and quinatic acid (6). Their structures were established on the basis of detailed spectroscopic analysis, and they were all isolated from the pericarps of A. trifoliata for the first time. Compounds 3-6 showed in vitro bacteriostatic activity against four assayed Gram-positive bacterial strains. In particular 3 showed antibacterial activity toward MRSA with a MIC value 25 µg/mL, which was more potent than kanamycin (MIC 125 µg/mL). No compounds showed antibacterial activity toward the three Gram-negative bacteria tested. Compounds 4 and 5 showed interesting in vitro growth inhibitory activity against human tumor A549 and HeLa cell lines, with IC50 values ranging from 8.8 and 5.6 µM, respectively. Compounds 1, 2, 5 and 6 were further revealed to show significant in vitro α-glucosidase inhibitory activity with IC50 values from 0.035 to 0.367 mM, which were more potent than the reference compound acarbose (IC50 0.409 mM).


Subject(s)
Anti-Bacterial Agents/chemistry , Antineoplastic Agents, Phytogenic/chemistry , Fruit/chemistry , Magnoliaceae/chemistry , Triterpenes/chemistry , Acarbose/pharmacology , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Antineoplastic Agents, Phytogenic/isolation & purification , Antineoplastic Agents, Phytogenic/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Glycoside Hydrolase Inhibitors , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/growth & development , Gram-Positive Bacteria/drug effects , Gram-Positive Bacteria/growth & development , Humans , Microbial Sensitivity Tests , Molecular Structure , Triterpenes/isolation & purification , Triterpenes/pharmacology , alpha-Glucosidases/chemistry
16.
Zhong Yao Cai ; 37(7): 1190-3, 2014 Jul.
Article in Zh | MEDLINE | ID: mdl-25566654

ABSTRACT

OBJECTIVE: To study the chemical constituents from Akebia trifoliata stems. METHODS: The compounds were isolated and purified by column chromatography, and their structures were determined through spectroscopic techniques and physicochemical properties. RESULTS: Six compounds were isolated from the stems of Akebia trifolita and identified as cryptochlorogenic acid methyl ester (1), neochlorogenic acid methyl ester (2), chlorogenic acid methyl ester (3), methyl 3,5-di-O-caffeoyl quinate (4), methyl 3,4-di-O-caffeoyl quinate (5) and methyl 4,5-di-O-caffeoyl quinate (6). CONCLUSION: All compounds are isolated from Akebia genus for the first time. Compounds 1,5 and 6 demonstrate obvious inhibitory activities against α-glucosidase.


Subject(s)
Magnoliopsida/chemistry , Quinic Acid/analogs & derivatives , Chlorogenic Acid/analogs & derivatives , Quinic Acid/chemistry , Quinic Acid/isolation & purification
17.
J Agric Food Chem ; 72(22): 12673-12684, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38772747

ABSTRACT

Biogenic selenium nanoparticles (SeNPs) are the most favorable Se form for nutritional supplementation due to their high stability, low toxicity, and high activity. However, the interaction between the surface-binding proteins and their stable biogenic SeNPs, as well as their impact on the stability and bioavailability of SeNPs, remains to be understood. In vitro stabilization experiments revealed an amino acid segment (F(235-386)) in Rahnella aquatilis' flagellin FliC, with surfactant-like properties, stabilizing SeNPs under harsh conditions. FliC and F(235-386) were employed as stabilizers to synthesize SeNPs (FliC@SeNPs and F(235-386)@SeNPs), and surface chemistry analysis revealed coordination reactions between the proteins and Se atoms on the surface of SeNPs. Both FliC and F(235-386) enhanced SeNPs uptake in wheat seedlings but reduced it in bacteria and yeast. This study highlights FliC's core function in stabilizing SeNPs and enhancing their bioavailability, paving the way for agricultural and nutritional applications.


Subject(s)
Biological Availability , Flagellin , Nanoparticles , Selenium , Surface-Active Agents , Selenium/chemistry , Selenium/metabolism , Flagellin/chemistry , Flagellin/metabolism , Surface-Active Agents/chemistry , Surface-Active Agents/metabolism , Nanoparticles/chemistry , Triticum/chemistry , Triticum/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/genetics
18.
J Trace Elem Med Biol ; 83: 127387, 2024 May.
Article in English | MEDLINE | ID: mdl-38237425

ABSTRACT

BACKGROUND: Biogenic selenium nanoparticles (SeNPs) show numerous advantages including their high stability, low toxicity, and high bioactivity. While metabolism of SeNPs remains not well studied and need more investigation to reveal the process. PURPOSE: The objective of the study was to investigate the relationship between nitrate reductase and selenite reduction in Rahnella aquatilis HX2, characterize the properties of HX2 produced SeNPs, and explore their potential applications, particularly their anticancer activity. PROCEDURES: Selenium species were measured by high-performance liquid chromatography coupled to inductively coupled plasma - Mass spectrometry (HPLC-ICP-MS). Transcription level of nitrate reductase was determined by Real-time quantitative PCR. Morphology, particle size, crystal structure and surface chemistry of SeNPs were determined by electron microscopy, dynamic light scattering method, Raman scattering, X-ray photoelectron spectroscopy, respectively. Anti cancer cell activity was measured by CCK-8 assay. MAIN FINDINGS: SeNP production in R. aquatilis HX2 was correlated with the cell growth. The products of selenite reduction in HX2 detected by HPLC-ICP-MS included SeNPs, selenocysteine (SeCys), Se-Methylselenocysteine (MeSeCys), and 7 unknown compounds. Nitrate addition experiments suggested the involvement of nitrate reductase in selenite reduction in HX2. Both the cellular membrane and cytoplasm of HX2 exhibited selenite-reducing ability, indicating that membrane-associated nitrate reductase was not the sole selenite reductase in HX2. Characterization of the biogenic SeNPs revealed a spherical morphology and amorphous structure of them. Surface chemistry analysis implicated the binding of extracellular polymeric substances to the biogenic SeNPs, and the presence of Se0, Se2-, and electron-rich Se atoms on the surface of SeNPs. Finally, the IC50 values of the biogenic SeNPs were 36.49 µM for HepG2 and 3.70 µM for HeLa cells. CONCLUSIONS: The study first revealed that the nitrate reductase is involving in selenite reduction in R. aquatilis HX2. The biogenic SeNPs coordinated with organic substances in the surface. And SeNPs produced by R. aquatilis HX2 showed excellent anticancer activities on HepG2 and HeLa cells.


Subject(s)
Nanoparticles , Rahnella , Selenium , Humans , Selenium/metabolism , Selenious Acid/pharmacology , Rahnella/metabolism , Nitrate Reductase , HeLa Cells , Nanoparticles/chemistry
19.
J Hazard Mater ; 465: 133287, 2024 03 05.
Article in English | MEDLINE | ID: mdl-38141318

ABSTRACT

Microorganisms play a critical role in the biogeochemical cycling of selenium, often reducing selenite/selenate to elemental selenium nanoparticles (SeNPs). These SeNPs typically exist in an amorphous structure but can transform into a trigonal allotrope. However, the crystal structural transition process and its impact on selenium bioavailability have not been well studied. To shed light on this, we prepared chemosynthetic and biogenic SeNPs and investigated the stability of their crystal structure. We found that biogenic SeNPs exhibited a highly stable amorphous structure in various conditions, such as lyophilization, washing, and laser irradiation, whereas chemosynthetic SeNPs transformed into a trigonal structure in the same conditions. Additionally, a core-shell structure was observed in biogenic SeNPs after electron beam irradiation. Further analysis revealed that biogenic SeNPs showed a coordination reaction between Se atoms and surface binding biomacromolecules, indicating that the outer layer of Se-biomacromolecules complex prevented the SeNPs from crystallizing. We also investigated the effects of SeNPs crystal structures on the bioavailability in bacteria, yeast, and plants, finding that the amorphous structure of SeNPs determined Se bioavailability.


Subject(s)
Nanoparticles , Selenium , Selenium/metabolism , Biological Availability , Nanoparticles/chemistry , Antioxidants/metabolism , Oxidation-Reduction
20.
Molecules ; 18(11): 14096-104, 2013 Nov 14.
Article in English | MEDLINE | ID: mdl-24241153

ABSTRACT

A novel quinic acid derivative, 5-O-trans-o-coumaroylquinic acid methyl ester (1), together with three known ones, chlorogenic acid methyl ester (2), macranthoin F (3) and macranthoin G (4), were isolated from the aerial parts of the invasive plant Ageratina adenophora (Spreng.). The structure of new compound 1 was elucidated on the basis of extensive spectroscopic analysis, including 1D- and 2D-NMR techniques. Compounds 2-4 were isolated from plant A. adenophora for the first time. All the compounds showed in vitro antibacterial activity toward five assayed bacterial strains, especially 3 and 4, which showed in vitro antibacterial activity against Salmonella enterica with MIC values of 7.4 and 14.7 µM, respectively. Compound 1 was further found to display in vitro anti-fungal activity against spore germination of Magnaporthe grisea with an IC50 value 542.3 µM. These four compounds were also tested for their antioxidant activity against DPPH (1,1-diphenyl-2-picrylhydrazyl) radical.


Subject(s)
Ageratina/chemistry , Anti-Infective Agents/chemistry , Quinic Acid/chemistry , Anti-Infective Agents/pharmacology , Biphenyl Compounds/chemistry , Free Radical Scavengers/chemistry , Magnaporthe/drug effects , Magnetic Resonance Spectroscopy , Microbial Sensitivity Tests , Molecular Structure , Picrates/chemistry , Quinic Acid/pharmacology , Salmonella enterica/drug effects , Saponins/chemistry , Saponins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL