Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 102
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 630(8015): 198-205, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38720074

ABSTRACT

Phosphoinositide-3-kinase-γ (PI3Kγ) is implicated as a target to repolarize tumour-associated macrophages and promote antitumour immune responses in solid cancers1-4. However, cancer cell-intrinsic roles of PI3Kγ are unclear. Here, by integrating unbiased genome-wide CRISPR interference screening with functional analyses across acute leukaemias, we define a selective dependency on the PI3Kγ complex in a high-risk subset that includes myeloid, lymphoid and dendritic lineages. This dependency is characterized by innate inflammatory signalling and activation of phosphoinositide 3-kinase regulatory subunit 5 (PIK3R5), which encodes a regulatory subunit of PI3Kγ5 and stabilizes the active enzymatic complex. We identify p21 (RAC1)-activated kinase 1 (PAK1) as a noncanonical substrate of PI3Kγ that mediates this cell-intrinsic dependency and find that dephosphorylation of PAK1 by PI3Kγ inhibition impairs mitochondrial oxidative phosphorylation. Treatment with the selective PI3Kγ inhibitor eganelisib is effective in leukaemias with activated PIK3R5. In addition, the combination of eganelisib and cytarabine prolongs survival over either agent alone, even in patient-derived leukaemia xenografts with low baseline PIK3R5 expression, as residual leukaemia cells after cytarabine treatment have elevated G protein-coupled purinergic receptor activity and PAK1 phosphorylation. Together, our study reveals a targetable dependency on PI3Kγ-PAK1 signalling that is amenable to near-term evaluation in patients with acute leukaemia.


Subject(s)
Class Ib Phosphatidylinositol 3-Kinase , Leukemia , Signal Transduction , p21-Activated Kinases , Animals , Humans , Mice , Cell Line , Class Ib Phosphatidylinositol 3-Kinase/genetics , Class Ib Phosphatidylinositol 3-Kinase/metabolism , Cytarabine/pharmacology , Cytarabine/therapeutic use , Leukemia/drug therapy , Leukemia/enzymology , Leukemia/genetics , Leukemia/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Oxidative Phosphorylation/drug effects , p21-Activated Kinases/antagonists & inhibitors , p21-Activated Kinases/metabolism , Phosphorylation , Xenograft Model Antitumor Assays
2.
BMC Genomics ; 25(1): 88, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38254018

ABSTRACT

BACKGROUND: As a key regulatory enzyme in the glycolysis pathway, pyruvate kinase (PK) plays crucial roles in multiple physiological processes during plant growth and is also involved in the abiotic stress response. However, little information is known about PKs in soybean. RESULTS: In this study, we identified 27 PK family genes against the genome of soybean cultivar Zhonghuang13. They were classified into 2 subfamilies including PKc and PKp. 22 segmental duplicated gene pairs and 1 tandem duplicated gene pair were identified and all of them experienced a strong purifying selective pressure during evolution. Furthermore, the abiotic stresses (especially salt stress) and hormone responsive cis-elements were present in the promoters of GmPK genes, suggesting their potential roles in abiotic stress tolerance. By performing the qRT-PCR, 6 GmPK genes that continuously respond to both NaCl and ABA were identified. Subsequently, GmPK21, which represented the most significant change under NaCl treatment was chosen for further study. Its encoded protein GmPK21 was localized in the cytoplasm and plasma membrane. The transgenic Arabidopsis overexpressing GmPK21 exhibited weakened salinity tolerance. CONCLUSIONS: This study provides genomic information of soybean PK genes and a molecular basis for mining salt tolerance function of PKs in the future.


Subject(s)
Arabidopsis , Pyruvate Kinase , Glycine max/genetics , Sodium Chloride , Genes, Duplicate , Arabidopsis/genetics
3.
BMC Genomics ; 25(1): 538, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822239

ABSTRACT

BACKGROUND: Mitochondrial diseases (MDs) can be caused by single nucleotide variants (SNVs) and structural variants (SVs) in the mitochondrial genome (mtDNA). Presently, identifying deletions in small to medium-sized fragments and accurately detecting low-percentage variants remains challenging due to the limitations of next-generation sequencing (NGS). METHODS: In this study, we integrated targeted long-range polymerase chain reaction (LR-PCR) and PacBio HiFi sequencing to analyze 34 participants, including 28 patients and 6 controls. Of these, 17 samples were subjected to both targeted LR-PCR and to compare the mtDNA variant detection efficacy. RESULTS: Among the 28 patients tested by long-read sequencing (LRS), 2 patients were found positive for the m.3243 A > G hotspot variant, and 20 patients exhibited single or multiple deletion variants with a proportion exceeding 4%. Comparison between the results of LRS and NGS revealed that both methods exhibited similar efficacy in detecting SNVs exceeding 5%. However, LRS outperformed NGS in detecting SNVs with a ratio below 5%. As for SVs, LRS identified single or multiple deletions in 13 out of 17 cases, whereas NGS only detected single deletions in 8 cases. Furthermore, deletions identified by LRS were validated by Sanger sequencing and quantified in single muscle fibers using real-time PCR. Notably, LRS also effectively and accurately identified secondary mtDNA deletions in idiopathic inflammatory myopathies (IIMs). CONCLUSIONS: LRS outperforms NGS in detecting various types of SNVs and SVs in mtDNA, including those with low frequencies. Our research is a significant advancement in medical comprehension and will provide profound insights into genetics.


Subject(s)
DNA, Mitochondrial , High-Throughput Nucleotide Sequencing , Mitochondrial Diseases , Humans , DNA, Mitochondrial/genetics , High-Throughput Nucleotide Sequencing/methods , Mitochondrial Diseases/genetics , Mitochondrial Diseases/diagnosis , Female , Male , Sequence Analysis, DNA/methods , Adult , Middle Aged , Polymorphism, Single Nucleotide , Polymerase Chain Reaction/methods
4.
Mol Med ; 30(1): 41, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38519941

ABSTRACT

BACKGROUND: Benign prostatic hyperplasia (BPH) is a prevalent disease affecting elderly men, with chronic inflammation being a critical factor in its development. Omentin-1, also known as intelectin-1 (ITLN-1), is an anti-inflammatory protein primarily found in the epithelial cells of the small intestine. This study aimed to investigate the potential of ITLN-1 in mitigating BPH by modulating local inflammation in the prostate gland. METHODS: Our investigation involved two in vivo experimental models. Firstly, ITLN-1 knockout mice (Itln-1-/-) were used to study the absence of ITLN-1 in BPH development. Secondly, a testosterone propionate (TP)-induced BPH mouse model was treated with an ITLN-1 overexpressing adenovirus. We assessed BPH severity using prostate weight index and histological analysis, including H&E staining, immunohistochemistry, and enzyme-linked immunosorbent assay. In vitro, the impact of ITLN-1 on BPH-1 cell proliferation and inflammatory response was evaluated using cell proliferation assays and enzyme-linked immunosorbent assay. RESULTS: In vivo, Itln-1-/- mice exhibited elevated prostate weight index, enlarged lumen area, and higher TNF-α levels compared to wild-type littermates. In contrast, ITLN-1 overexpression in TP-induced BPH mice resulted in reduced prostate weight index, lumen area, and TNF-α levels. In vitro studies indicated that ITLN-1 suppressed the proliferation of prostate epithelial cells and reduced TNF-α production in macrophages, suggesting a mechanism involving the inhibition of macrophage-mediated inflammation. CONCLUSION: The study demonstrates that ITLN-1 plays a significant role in inhibiting the development of BPH by reducing local inflammation in the prostate gland. These findings highlight the potential of ITLN-1 as a therapeutic target in the management of BPH.


Subject(s)
GPI-Linked Proteins , Lectins , Prostatic Hyperplasia , Animals , Male , Mice , Cytokines/genetics , Cytokines/metabolism , GPI-Linked Proteins/genetics , GPI-Linked Proteins/metabolism , Inflammation/pathology , Lectins/genetics , Lectins/metabolism , Plant Extracts/pharmacology , Prostate/metabolism , Prostate/pathology , Prostatic Hyperplasia/genetics , Prostatic Hyperplasia/drug therapy , Prostatic Hyperplasia/metabolism , Tumor Necrosis Factor-alpha
5.
Anal Chem ; 96(22): 8922-8931, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38758935

ABSTRACT

While designing anisotropic noble metal nanoparticles (NPs) can enhance the signal intensity of Raman dyes, more sensitive surface-enhanced Raman scattering (SERS) probes can be designed by oriented self-assembly of noble metal nanomaterials into dimers or higher-order nanoclusters. In this study, we engineered a self-assembly strategy in living cells for real-time fluorescence and SERS dual-channel detection of intracellular microRNAs (miRNAs), using Mg2+-dependent 8-17E DNAzyme sequences as the driving motors, gold nanocubes (AuNCs) as the driver components, and three-branched double-stranded DNA as the linking tool. The assembly selects adenine in DNA as a reporter molecule, simplifying the labeling process of Raman reporter molecules and reducing the synthesis process. In addition, adenine is stably distributed between the faces of AuNCs and the wide hotspot region gives good reproducibility of the adenine SERS signal. In this strategy, the SERS channel was consistently stable and more sensitive compared to the fluorescence channel. Among them, the detection limit of the SERS channel was 2.1 pM and the coefficient of variation was 1.26% in the in vitro liquid phase and 1.49% in MCF-7 cells. The strategy successfully achieved accurate tracking and quantification of miRNA-21 in cancer cells, showing good reproducibility in complex samples as well as cells. The reported strategy provides ideas for exploring intracellular specific triggering of nanoparticles for precise control of self-assembly.


Subject(s)
Gold , Metal Nanoparticles , MicroRNAs , Spectrum Analysis, Raman , Gold/chemistry , MicroRNAs/analysis , Humans , Metal Nanoparticles/chemistry , MCF-7 Cells , Fluorescence , Surface Properties
6.
Biochem Biophys Res Commun ; 717: 150041, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38710142

ABSTRACT

Ocular inflammation-associated diseases are leading causes of global visual impairment, with limited treatment options. Adiponectin, a hormone primarily secreted by adipose tissue, binds to its receptors, which are widely distributed throughout the body, exerting powerful physiological regulatory effects. The protective role of adiponectin in various inflammatory diseases has gained increasing attention in recent years. Previous studies have confirmed the presence of adiponectin and its receptors in the eyes. Furthermore, adiponectin and its analogs have shown potential as novel drugs for the treatment of inflammatory eye diseases. This article summarizes the evidence for the interplay between adiponectin and inflammatory eye diseases and provides new perspectives on the diagnostic and therapeutic possibilities of adiponectin.


Subject(s)
Adiponectin , Inflammation , Receptors, Adiponectin , Signal Transduction , Humans , Adiponectin/metabolism , Receptors, Adiponectin/metabolism , Animals , Inflammation/metabolism , Eye Diseases/metabolism , Eye Diseases/drug therapy
7.
New Phytol ; 241(5): 2176-2192, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38135657

ABSTRACT

Salt stress is a major challenge that has a negative impact on soybean growth and productivity. Therefore, it is important to understand the regulatory mechanism of salt response to ensure soybean yield under such conditions. In this study, we identified and characterized a miR160a-GmARF16-GmMYC2 module and its regulation during the salt-stress response in soybean. miR160a promotes salt tolerance by cleaving GmARF16 transcripts, members of the Auxin Response Factor (ARF) family, which negatively regulates salt tolerance. In turn, GmARF16 activates GmMYC2, encoding a bHLH transcription factor that reduces salinity tolerance by down-regulating proline biosynthesis. Genomic analysis among wild and cultivated soybean accessions identified four distinct GmARF16 haplotypes. Among them, the GmARF16H3 haplotype is preferentially enriched in localities with relatively saline soils, suggesting GmARF16H3 was artificially selected to improve salt tolerance. Our findings therefore provide insights into the molecular mechanisms underlying salt response in soybean and provide valuable genetic targets for the molecular breeding of salt tolerance.


Subject(s)
Glycine max , Salt Tolerance , Glycine max/genetics , Salt Tolerance/genetics , Haplotypes/genetics , Base Sequence , Gene Expression Regulation, Plant
8.
Opt Express ; 32(9): 15827-15839, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38859223

ABSTRACT

To advance the development of a compact and highly integrated fiber Bragg grating (FBG) interrogation system, to the best of our knowledge, this paper is the first to present the design and fabrication of a monolithic integration chip based on silicon-on-insulator (SOI), which is specifically intended for application in fiber grating sensing interrogation systems. By considering the impact of coupling structure dimensions on coupling efficiency as well as the effect of the photodetector (PD) parameters on the optical absorption efficiency of the device, we refine the structure of the monolithic integrated chip for arrayed waveguide grating (AWG) and PD. The test results reveal that the coupling loss between AWG and PD is -2.4 dB. The monolithic integrated interrogation chip achieves an interrogation accuracy of approximately 6.79 pm within a dynamic range of 1.56 nm, accompanied by a wavelength resolution of 1 pm. This exceptional performance highlights the potential of the monolithic integrated chip to enhance the integration of AWG-based fiber grating interrogation systems.

9.
Opt Lett ; 49(3): 454-457, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38300029

ABSTRACT

Compact fiber Bragg grating (FBG) interrogator is a widely investigated topic in the field of fiber optic sensing. Here we report a dense spectral arrayed waveguide grating (AWG) chip designed for FBG interrogation. By integrating a multimode interference (MMI) coupler with the AWG, bilateral input phase-differential optical signals were achieved at the input port of the AWG. This chip effectively doubles the output channel count without altering the device footprint, while concurrently reducing the channel spacing without modifying the bandwidth and spectral slope of the output spectrum. We further optimized the method for selecting interrogation channels. The results demonstrate that the dynamic range of the interrogation reaches 13.5 nm with an absolute wavelength resolution of 4 pm and an absolute accuracy better than 20 pm.

10.
Fish Shellfish Immunol ; 146: 109382, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38242263

ABSTRACT

The extensive application of Tetrabromobisphenol A (TBBPA) leads to the pollution of part of the water environment and brings great safety risks to aquatic animals. As a natural extract, tea polyphenols (TPs) have antioxidant and anti-inflammatory effects. Gills are one of the immune organs of fish and constitute the first line of defense of the immune system. However, it was unclear whether TPs could mitigate TBBPA-induced gills injury. Therefore, an animal model was established to investigate the effect of TPs on TBBPA-induced gills. The results indicated that TBBPA changed the coefficient and tissue morphology of carp gills. In addition, TBBPA induced oxidative stress and inflammation, leading to ferroptosis and apoptosis in carp gills. Dietary addition of TPs significantly improved the antioxidant capacity of carp, effectively inhibited the overexpression of TLR4/NF-κB and its mediated inflammatory response. Moreover, TPs restored iron metabolism, reduced the expression of pro-apoptotic factors thereby alleviating ferroptosis and apoptosis in carp gills. This study enriched the protective effect of TPs and provided a new way to improve the innate immunity of carp.


Subject(s)
Carps , Ferroptosis , Polybrominated Biphenyls , Animals , NF-kappa B/genetics , NF-kappa B/metabolism , Antioxidants/metabolism , Toll-Like Receptor 4/genetics , Carps/metabolism , Gills , Polyphenols/pharmacology , Polyphenols/metabolism , Signal Transduction , Fish Proteins , Inflammation/chemically induced , Inflammation/veterinary , Inflammation/metabolism , Apoptosis , Tea/metabolism
11.
Cochrane Database Syst Rev ; 7: CD015499, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967132

ABSTRACT

OBJECTIVES: This is a protocol for a Cochrane Review (intervention). The objectives are as follows: To compare the safety and efficacy of carotid revascularisation plus best medical treatment with best medical treatment alone in people with asymptomatic carotid artery stenosis.


Subject(s)
Carotid Stenosis , Randomized Controlled Trials as Topic , Humans , Asymptomatic Diseases/therapy , Carotid Stenosis/surgery , Endarterectomy, Carotid , Stents , Stroke/etiology , Systematic Reviews as Topic
12.
Arch Toxicol ; 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39096369

ABSTRACT

Nano-plastics (NPs) have emerged as a significant environmental pollutant, widely existing in water environment, and pose a serious threat to health and safety with the intake of animals. Skeletal muscle, a vital organ for complex life activities and functional demands, has received limited attention regarding the effects of NPs. In this study, the effects of polystyrene NPs (PS-NPs) on skeletal muscle development were studied by oral administration of different sizes (1 mg/kg) of PS-NPs in mice. The findings revealed that PS-NPs resulted in skeletal muscle damage and significantly hindered muscle differentiation, exhibiting an inverse correlation with PS-NPs particle size. Morphological analysis demonstrated PS-NPs caused partial disruption of muscle fibers, increased spacing between fibers, and lipid accumulation. RT-qPCR and western blots analyses indicated that PS-NPs exposure downregulated the expression of myogenic differentiation-related factors (Myod, Myog and Myh2), activated PPARγ/LXRß pathway, and upregulated the expressions of lipid differentiation-related factors (SREBP1C, SCD-1, FAS, ACC1, CD36/FAT, ADIPOQ, C/EBPα and UCP-1). In vitro experiments, C2C12 cells were used to confirm cellular penetration of PS-NPs (0, 100, 200, 400 µg/mL) through cell membranes along with activation of PPARγ expression. Furthermore, to verify LXRß as a key signaling molecule, silencing RNA transfection experiments were conducted, resulting in no increase in the expressions of PPARγ, LXRß, SREBP1C, FAS, CD36/FAT, ADIPOQ, C/EBPα and UCP-1 even after exposure to PS-NPs. However, the expressions of SCD-1and ACC1 remained unaffected. The present study evidenced that exposure to PS-NPs induced lipid accumulation via the PPARγ/LXRß pathway thereby influencing skeletal muscle development.

13.
J Ultrasound Med ; 43(5): 841-849, 2024 May.
Article in English | MEDLINE | ID: mdl-38240409

ABSTRACT

OBJECTIVES: The aims of this study were to assess the vortex characteristics of left ventricle (LV) in fetuses with coarctation of the aorta (CoA) using high-frame rate ultrasound with blood speckle-tracking (BST) and explore its relationships with cardiac function and morphology parameters. METHODS: Thirty fetuses with CoA and 30 gestational-age matched normal fetuses were included in this cross-sectional study. The area, length, width, and position of the vortex in the LV were recorded and quantitatively analyzed by BST echocardiography. The associations of vortex properties with ventricular function and morphology were also determined. RESULTS: Based on BST imaging, the LV vortex can be observed in 93% of the fetuses. The fetuses with CoA exhibited significantly larger and wider vortex than the controls (P < .05). Linear regression analysis indicated that vortex area was positively related to sphericity index of LV as well as isovolumic relaxation time (r = .52, P = .003 and r = .42, P = .021). There was a negative correlation between vortex area and mitral valve size (r = -.443, P = .014). No significant association was found between vortex area and myocardial performance index and aortic isthmus size. CONCLUSIONS: It is feasible to quantitatively evaluate the left ventricular vortex in fetuses by BST. The fetuses with CoA exhibited greater vortex area and width, and the altered vortex property is associated with geometry of LV. This will facilitate our comprehension of the unique flow patterns and early cardiac remodeling in fetuses with CoA.


Subject(s)
Aortic Coarctation , Humans , Pregnancy , Female , Aortic Coarctation/diagnostic imaging , Heart Ventricles/diagnostic imaging , Cross-Sectional Studies , Echocardiography/methods , Fetal Heart/diagnostic imaging
14.
J Ultrasound Med ; 43(8): 1501-1507, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38700249

ABSTRACT

OBJECTIVE: To evaluate the vascular impedance of the pulmonary arteries in fetuses with tetralogy of Fallot (TOF) by Doppler echocardiography. METHODS: A total of 42 fetuses with TOF (TOF group) and 84 gestational age-matched normal fetuses (control group) were prospectively collected from the Second Xiangya Hospital of Central South University from August 2022 to January 2023. The severity of TOF was classified into mild TOF (z score ≥-2), moderate TOF (-4 < z score < -2), or severe TOF (z score ≤-4) according to the z score value of the pulmonary annulus diameter. The pulsatility index (PI) of the main pulmonary artery (MPA), distal left pulmonary artery (DLPA), and distal right pulmonary artery (DRPA) were measured by pulsed-wave Doppler. The differences in clinical data and echocardiographic parameters between TOF group, control group, and TOF subgroups were compared. RESULTS: Compared with the control group, MPA-PI increased significantly, whereas DLPA-PI and DRPA-PI decreased in TOF group (all P < .001). There were no significant differences in MPA-PI and DRPA-PI among mild TOF, moderate TOF, and severe TOF (all P > .05). However, DLPA-PI decreased significantly in severe TOF compared with mild TOF (P < .05). CONCLUSION: Fetuses with TOF presented increased vascular impedance in the pulmonary trunk and decreased impedance in distal pulmonary artery branches. Further large and follow-up studies are needed to demonstrate the associations between those changed vascular impedances and the development of PA in patients with TOF.


Subject(s)
Pulmonary Artery , Tetralogy of Fallot , Ultrasonography, Prenatal , Humans , Tetralogy of Fallot/diagnostic imaging , Tetralogy of Fallot/physiopathology , Tetralogy of Fallot/embryology , Pulmonary Artery/diagnostic imaging , Pulmonary Artery/embryology , Pulmonary Artery/physiopathology , Female , Ultrasonography, Prenatal/methods , Pregnancy , Prospective Studies , Vascular Resistance/physiology , Adult , Echocardiography, Doppler/methods
15.
Int J Mol Sci ; 25(5)2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38474246

ABSTRACT

The DA1-like gene family plays a crucial role in regulating seed and organ size in plants. The DA1 gene family has been identified in several species but has not yet been reported in sweet potatoes. In this study, nine, eleven, and seven DA1s were identified in cultivated sweet potato (Ipomoea batatas, 2n = 6x = 90) and its two diploid wild relatives, I. trifida (2n = 2x = 30) and I. triloba (2n = 2x = 30), respectively. The DA1 genes were classified into three subgroups based on their phylogenetic relationships with Arabidopsis thaliana and Oryza sativa (rice). Their protein physiological properties, chromosomal localization, phylogenetic relationships, gene structure, promoter cis-elements, and expression patterns were systematically analyzed. The qRT-PCR results showed that the expression levels of four genes, IbDA1-1, IbDA1-3, IbDA1-6, and IbDA1-7, were higher in the sweet potato leaves than in the roots, fiber roots, and stems. In our study, we provide a comprehensive comparison and further the knowledge of DA1-like genes in sweet potatoes, and provide a theoretical basis for functional studies.


Subject(s)
Ipomoea batatas , Ipomoea batatas/genetics , Phylogeny , Diploidy , Genome, Plant , Genes, Plant , Gene Expression Regulation, Plant
16.
Genet Sel Evol ; 55(1): 92, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38097971

ABSTRACT

BACKGROUND: Effective conservation and utilization of farm animals are fundamental for realizing sustainable increases in food production. In situ and ex situ conservation are the two main strategies that are currently used to protect the genetic integrity of Chinese domestic chicken breeds. However, genomic diversity and population structure have not been compared in these conserved populations. RESULTS: Three hundred and sixty-one individuals from three Chinese domestic chicken breeds were collected from populations conserved in situ and ex situ and genotyped using genotyping-by-sequencing (GBS). First, we used different parameters based on heterozygosity, genomic inbreeding, and linkage disequilibrium to estimate the genomic diversity of these populations, and applied principal component analysis (PCA), neighbor-joining tree, and ADMIXTURE to analyze population structure. We found that the small ex situ conserved populations, which have been maintained in controlled environments, retained less genetic diversity than the in situ conserved populations. In addition, genetic differentiation was detected between the in situ and ex situ conserved populations of the same breed. Next, we analyzed signatures of selection using three statistical methods (fixation index (FST), nucleotide diversity (Pi), and cross-population extended haplotype homozygosity (XP-EHH) to study the genetic footprints that underlie the differentiation between in situ and ex situ conserved populations. We concluded that, in these small populations, differentiation might be caused by genetic drift or by mutations from the original populations. The differentiation observed in the population of Beijing You chicken probably reflects adaptation to environmental changes in temperature and humidity that the animals faced when they were moved from their place of origin to the new site for ex situ conservation. CONCLUSIONS: Conservation programs of three Chinese domestic chicken breeds have maintained their genomic diversity to a sustainable degree. The small ex situ conserved populations, which are maintained in controlled environments, retain less genetic diversity than populations conserved in situ. In addition, the transfer of populations from their place of origin to another site for conservation purposes results in genetic differentiation, which may be caused by genetic drift or adaptation. This study provides a basis for further optimization of in situ and ex situ conservation programs for domestic chicken breeds in China.


Subject(s)
Chickens , Genetic Variation , Humans , Animals , Chickens/genetics , Population Density , Genomics , China , Polymorphism, Single Nucleotide
17.
Int J Mol Sci ; 24(24)2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38139253

ABSTRACT

Ammonium, as a major inorganic source of nitrogen (N) for sweet potato N utilization and growth, is specifically transported by ammonium transporters (AMTs). However, the activities of AMT family members in sweet potatoes have not been analyzed. In the present study, the sweet potato cultivar 'Pushu 32', which is planted in a large area in China, was used in field experiments at the Agricultural Base of Hainan University (20°06' N, 110°33' E) in 2021, and Sanya Nanfan Research Institute of Hainan University (18°30' N, 109°60' E) in 2022. Four N levels were tested: 0, 60, 120, and 180 kg ha-1. The results are as follows. Twelve IbAMT genes were identified in the sweet potato genome, which were classified into three distinct subgroups based on phylogeny; the same subgroup genes had similar properties and structures. IbAMT1.3 and IbAMT1.5 were mostly expressed in the storage roots under N deficiency. Compared with the NN and HN groups, IbAMT1.3 and IbAMT1.5 expressions, N content in storage roots, N uptake efficiency at the canopy closure, N fertilization contribution rates, number of storage roots per plant, storage root weight, and yield were all increased in the MN group. Furthermore, there was a significant positive correlation between the expressions of IbAMT1.3 and IbAMT1.5 with N content in the storage roots of sweet potato. In a word, IbAMT1.3 and IbAMT1.5 may regulate N utilization, affect the development of the storage root. and determine the yield of sweet potato. The results provide valuable insights into the AMT gene family's role in the use of N and effects on storage root development and yield in sweet potatoes.


Subject(s)
Ipomoea batatas , Humans , Ipomoea batatas/metabolism , Agriculture , Nitrogen/metabolism , China , Plant Roots/metabolism
19.
Oncol Lett ; 28(2): 367, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38933810

ABSTRACT

The present study aimed to assess the effectiveness of gastric transcatheter chemoembolization (GTC) combined with systemic chemotherapy (SYS) compared with SYS alone in managing dysphagia, and improving the quality of life (QoL) and nutritional status of patients with advanced gastric cardiac cancer (AGCC). A retrospective review was performed using data from consecutive patients with AGCC who experienced dysphagia and underwent either SYS alone or SYS combined with GTC from January 2018 to December 2022. Propensity score matching (PSM) analysis was performed to address potential confounding factors. Ogilvie dysphagia scores were used to assess dysphagia, the Functional Assessment of Cancer Therapy-General 7 (FACT-G7) was used to assess QoL, and the Patient-Generated Subjective Global Assessment (PG-SGA) was used to evaluate nutritional status. After PSM, a total of 228 patients were included in the analysis, with 114 in each group. At 4 and 8 weeks after the initial treatment, the GTC + SYS group demonstrated significantly lower median Ogilvie scores compared with the SYS alone group (P<0.001). Similarly, the median PG-SGA score at 4 weeks after the initial treatment was 2.0 in the GTC + SYS group and 6.0 in the SYS alone group. The median FACT-G7 scores in the GTC + SYS group was 13.0, compared with 10.5 in the SYS alone group. These differences remained significant at 8 weeks (P<0.001). In conclusion, the addition of GTC to SYS may more effectively and promptly relieve dysphagia, improve nutritional status and enhance QoL compared with SYS alone in patients with AGCC presenting with dysphagia.

20.
Colloids Surf B Biointerfaces ; 242: 114083, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39029246

ABSTRACT

Polysaccharides have garnered significant attention as potential nanoparticle carriers for targeted tumor therapy due to their excellent biodegradability and biocompatibility. Polyguluronic acid (PG) is a homogeneous acidic polysaccharide fragment derived from alginate, which is found in brown algae, possesses excellent bioactivities, unique properties. This study explored the immunomodulatory activity of PG and developed PG-based nanogels through modified disulfide bonds and Ca2+ dual crosslinking. We characterized their structure, assessed their drug-loading and release properties, and ultimately validated both the safety of the nanocarrier and the in vitro anti-tumor efficacy of the encapsulated drug. Results indicated that PG significantly enhanced the proliferative activity and phagocytosis of RAW264.7 cells while promoting reactive oxygen species (ROS) production and cytokine secretion. The study identified TLR4 as the primary receptor for PG recognition in RAW264.7 cells. Furthermore, PG-based drug-carrying nanogels were prepared, exhibiting uniform sizes of about 184 nm and demonstrating exceptional encapsulation efficiency (82.15 ± 0.82 %) and drug loading capacity (8.12 ± 0.08 %). In vitro release experiments showed that these nanogels could responsively release drugs under conditions of high glutathione (GSH) reduction, facilitating drug accumulation at tumor sites and enhancing therapeutic efficacy. This research not only expands the application of PG in drug delivery systems but also provides valuable insights into leveraging natural immunomodulatory polysaccharides as carriers for targeted drug delivery.

SELECTION OF CITATIONS
SEARCH DETAIL