Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Language
Publication year range
1.
Geophys Res Lett ; 49(12): e2022GL098007, 2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35865912

ABSTRACT

The Martian magnetotail exhibits a highly twisted configuration, shifting in response to changes in polarity of the interplanetary magnetic field's (IMF) dawn-dusk (B Y) component. Here, we analyze ∼6000 MAVEN orbits to quantify the degree of magnetotail twisting (θ Twist) and assess variations as a function of (a) strong planetary crustal field location, (b) Mars season, and (c) downtail distance. The results demonstrate that θ Twist is larger for a duskward (+B Y) IMF orientation a majority of the time. This preference is likely due to the local orientation of crustal magnetic fields across the surface of Mars, where a +B Y IMF orientation presents ideal conditions for magnetic reconnection to occur. Additionally, we observe an increase in θ Twist with downtail distance, similar to Earth's magnetotail. These findings suggest that coupling between the IMF and moderate-to-weak crustal field regions may play a major role in determining the magnetospheric structure at Mars.

2.
Geophys Res Lett ; 46(3): 1168-1176, 2019 Feb 16.
Article in English | MEDLINE | ID: mdl-33510549

ABSTRACT

We test the hypothesis that their dominant driver of a planetary ambipolar electric field is the ionospheric electron pressure gradient (∇P e). The ionospheres of Venus and Mars are mapped using Langmuir probe measurements from NASA's Pioneer Venus Orbiter (PVO) and Mars Atmosphere and Volatile Evolution (MAVEN) missions. We then determine the component of the ionospheric potential drop that can be explained by the electron pressure gradient drop along a simple draped field line. At Mars, this calculation is consistent with the mean potential drops measured statistically by MAVEN. However, at Venus, contrary to our current understanding, the thermal electron pressure gradient alone cannot explain Venus' strong ambipolar field. These results strongly motivate a return to Venus with a comprehensive plasmas and fields package, similar to that on MAVEN, to investigate the physics of atmospheric escape at Earth's closest analog.

3.
J Geophys Res Space Phys ; 128(2): e2022JA030989, 2023 Feb.
Article in English | MEDLINE | ID: mdl-37035842

ABSTRACT

The Martian crustal magnetic anomalies present a varied, asymmetric obstacle to the imposing draped interplanetary magnetic field (IMF) and solar wind plasma. Magnetic reconnection, a ubiquitous plasma phenomenon responsible for transferring energy and changing magnetic field topology, has been observed throughout the Martian magnetosphere. More specifically, reconnection can occur as a result of the interaction between crustal fields and the IMF, however, the global implications and changes to the overall magnetospheric structure of Mars have yet to be fully understood. Here, we present an analysis to determine these global implications by investigating external conditions that favor reconnection with the underlying crustal anomalies at Mars. To do so, we plot a map of the crustal anomalies' strength and orientation compiled from magnetic field data collected throughout the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission. Then, we create "shear maps" which calculate and plot the angle of shear between the crustal fields and a chosen external field orientation. From there we define a "shear index" to quantify the susceptibility of a region to undergo reconnection based on a given overlaid, external field orientation and the resulting shear map for that region. We demonstrate that the shear analysis technique augments analysis of local reconnection events and suggests southward IMF conditions should favor dayside magnetic reconnection on a more global scale at Mars.

4.
Nat Commun ; 14(1): 6866, 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37891189

ABSTRACT

Mars lacks a global magnetic field, and instead possesses small-scale crustal magnetic fields, making its magnetic environment fundamentally different from intrinsic magnetospheres like those of Earth or Saturn. Here we report the discovery of magnetospheric ion drift patterns, typical of intrinsic magnetospheres, at Mars using measurements from Mars Atmosphere and Volatile EvolutioN mission. Specifically, we observe wedge-like dispersion structures of hydrogen ions exhibiting butterfly-shaped distributions (pitch angle peaks at 22.5°-45° and 135°-157.5°) within the Martian crustal fields, a feature previously observed only in planetary-scale intrinsic magnetospheres. These dispersed structures are the results of drift motions that fundamentally resemble those observed in intrinsic magnetospheres. Our findings indicate that the Martian magnetosphere embodies an intermediate case where both the unmagnetized and magnetized ion behaviors could be observed because of the wide range of strengths and spatial scales of the crustal magnetic fields around Mars.

5.
J Geophys Res Space Phys ; 125(7)2020 Jul.
Article in English | MEDLINE | ID: mdl-33415065

ABSTRACT

The refilling of the lunar wake is facilitated by the wake ambipolar electric potential arising from the electron pressure gradient. Incident solar wind protons can be reflected by the lunar crustal magnetic fields and the lunar surface on the dayside and repicked up, entering the lunar wake due to their large gyroradii. This burst of positive charges can cause the lunar wake potential to be reduced by hundreds of volts. We utilize over 7 years of ARTEMIS (Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun) measurements to systematically investigate how the reflected protons affect the lunar wake potential structure when the Moon is immersed in the solar wind. RPs have a peak occurrence rate of ~20% for downstream distances from the Moon at N × 2πR g and a preference of high occurrence rates and high densities in the direction of the motional electric field of the solar wind. We show that reflected protons in the lunar wake can significantly change the electrostatic ambipolar potentials in the wake, leading in turn to the formation of field-aligned, accelerated electron beams. Our case study also suggests a nonmonotonic field-aligned potential structure in the presence of reflected protons in the wake. Lastly, our results show that when the reflected proton density is larger than ~30% of the local proton density from refilling solar wind protons, the wake potential scales as the logarithmic density of reflected protons, which can be explained by the Boltzmann relation.

6.
J Geophys Res Space Phys ; 124(5): 3360-3377, 2019 May.
Article in English | MEDLINE | ID: mdl-33479577

ABSTRACT

The refilling of the lunar wake is relatively well explained by the theory of 1-D plasma expansion into a vacuum; however, the field-aligned wake potential is not a directly measured quantity, and thus, a statistical analysis of wake potentials at high altitudes has not been previously performed. In this study, we obtain the wake potential by comparing the field-aligned electron distributions inside and outside of the lunar wake measured by the two probes of the Acceleration, Reconnection, Turbulence, and Electrodynamics of Moon's Interaction with the Sun (ARTEMIS) mission. The derived potentials from ARTEMIS data vary with solar wind electron temperature and bulk flow velocity as the theory predicts. We also expand the 1-D plasma theory to 2-D in the plane of the interplanetary magnetic field and the solar wind velocity to examine how a tilted interplanetary magnetic field affects the wake potential structure. As the expansion time for the two sides of the wake differs, a wake potential asymmetry is developed in our model. This asymmetry is confirmed by the data-derived wake potentials. Moreover, ambipolar electric fields are obtained from both the modeled and data-derived wake potentials and show good agreement. Lastly, we examine the effects of the solar wind strahl-electron population on the wake potential structure, which appears to cause a net potential difference across the lunar shadow. This may imply that the disturbance of the wake plasma expansion extends farther outside the wake than previous plasma-expansion theories have predicted.

SELECTION OF CITATIONS
SEARCH DETAIL