Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Exp Cell Res ; 403(2): 112615, 2021 06 15.
Article in English | MEDLINE | ID: mdl-33894221

ABSTRACT

IRS4 is a member of the insulin receptor substrate (IRS) protein family. It acts as a cytoplasmic adaptor protein, integrating and transmitting signals from receptor protein tyrosine kinases to the intracellular environment. IRS4 can induce mammary tumorigenesis and is usually overexpressed in non-small cell lung cancer (NSCLC). However, little is known about the role of IRS4 in the development and progression of lung cancer. In this study, we show that IRS4 knockout suppresses the proliferation, colony formation, migration, and invasion of A549 lung cancer cells, as well as tumor growth in a nude mouse xenograft model. In contrast, stable expression of IRS4 showed the opposite effects. As expected, IRS4 was found to activate the PI3K/Akt and Ras-MAPK pathways, and we also showed that IRS4 depletion significantly enhanced the sensitivity of EGFR tyrosine kinase inhibitor (EGFR-TKI)-resistant cells to gefitinib. Taken together, these results show that IRS4 promotes NSCLC progression and may represent a potential therapeutic target for EGFR-TKI-resistant NSCLC.


Subject(s)
Antineoplastic Agents/therapeutic use , Carcinoma, Non-Small-Cell Lung/genetics , Gefitinib/therapeutic use , Insulin Receptor Substrate Proteins/genetics , Lung Neoplasms/genetics , Phosphatidylinositol 3-Kinases/genetics , Animals , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Drug Resistance, Neoplasm/genetics , ErbB Receptors/genetics , ErbB Receptors/metabolism , Extracellular Signal-Regulated MAP Kinases/genetics , Extracellular Signal-Regulated MAP Kinases/metabolism , Gene Expression Regulation, Neoplastic , Humans , Insulin Receptor Substrate Proteins/antagonists & inhibitors , Insulin Receptor Substrate Proteins/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Male , Mice , Mice, Nude , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Signal Transduction , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
2.
Am J Physiol Cell Physiol ; 321(3): C429-C442, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34161152

ABSTRACT

The phosphatidylinositol 3-kinase-Akt signaling pathway plays an essential role in regulating cell proliferation and apoptosis. Akt kinase is at the center of this signaling pathway and interacts with a variety of proteins. Akt is overexpressed in almost 80% of tumors. However, inhibiting Akt has serious clinical side effects so is not a suitable treatment for cancer. During recent years, Akt scaffold proteins have received increasing attention for their ability to regulate Akt signaling and have emerged as potential targets for cancer therapy. In this paper, we categorize Akt kinase scaffold proteins into four groups based on their cellular location: membrane-bound activator and inhibitor, cytoplasm, and endosome. We describe how these scaffolds interact with Akt kinase, how they affect Akt activity, and how they regulate the specificity of Akt signaling. We also discuss the clinical application of Akt scaffold proteins as targets for cancer therapy.


Subject(s)
Gene Expression Regulation, Neoplastic/drug effects , Neoplasms/drug therapy , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics , Signal Transduction/drug effects , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Cell Proliferation/drug effects , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Molecular Targeted Therapy , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Phosphatidylinositol 3-Kinases/metabolism , Phosphoproteins/genetics , Phosphoproteins/metabolism , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/genetics , Sodium-Hydrogen Exchangers/genetics , Sodium-Hydrogen Exchangers/metabolism , ras GTPase-Activating Proteins/genetics , ras GTPase-Activating Proteins/metabolism
3.
Carcinogenesis ; 42(4): 587-600, 2021 04 30.
Article in English | MEDLINE | ID: mdl-33151304

ABSTRACT

c-Met hyperactivity has been observed in numerous neoplasms. Several researchers have shown that the abnormal activation of c-Met is mainly caused by transcriptional activation. However, the molecular mechanism behind this transcriptional regulation is poorly understood. Here, we suggest that Smad3 negatively regulates the expression and activation of c-Met via a transcriptional mechanism. We explore the molecular mechanisms that underlie Smad3-induced c-Met transcription inhibition. We found in contrast to the high expression of c-Met, Smad3 showed low protein and mRNA levels. Smad3 and c-Met expressions were inconsistent between lung cancer tissues and cell lines. We also found that Smad3 overexpression suppresses whereas Smad3 knockdown significantly promotes Epithelial-Mesenchymal Transition and production of the angiogenic factors VEGF, CTGF and COX-2 through the ERK1/2 pathway. In addition, Smad3 overexpression decreases whereas Smad3 knockdown significantly increases protein and mRNA levels of invasion-related ß-catenin and FAK through the PI3K/Akt pathway. Furthermore, using the chromatin immunoprecipitation analysis method, we demonstrate that a transcriptional regulatory complex consisting of HDAC1, Smad3 and mSin3A binds to the promoter of the c-Met gene. By either silencing endogenous mSin3A expression with siRNA or by pretreating cells with a specific HDAC1 inhibitor (MS-275), Smad3-induced transcriptional suppression of c-Met could be effectively attenuated. These results demonstrate that Smad3-induced inhibition of c-Met transcription depends on of a functional transcriptional regulatory complex that includes Smad3, mSin3A and HDAC1 at the c-Met promoter. Collectively, our findings reveal a new regulatory mechanism of c-Met signaling, and suggest a potential molecular target for the development of anticancer drugs.


Subject(s)
Histone Deacetylase 1/genetics , Lung Neoplasms/genetics , Sin3 Histone Deacetylase and Corepressor Complex/genetics , Smad3 Protein/genetics , Cell Line, Tumor , Connective Tissue Growth Factor/genetics , Cyclooxygenase 2/genetics , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic/genetics , Humans , Lung Neoplasms/pathology , Phosphatidylinositol 3-Kinases/genetics , Promoter Regions, Genetic/genetics , Proto-Oncogene Proteins c-met/genetics , Transcriptional Activation/genetics , Vascular Endothelial Growth Factor A/genetics , beta Catenin/genetics
4.
Biosci Biotechnol Biochem ; 85(5): 1128-1139, 2021 Apr 24.
Article in English | MEDLINE | ID: mdl-33693487

ABSTRACT

The C-terminal of G protein-coupled receptors is now recognized as being important for G protein activation and signaling function. To detect the role of C-terminal tail in receptor activation, we used the α1b-AR, which has a long C-terminal of 164 amino acids. We constructed the intramolecular FRET sensors, in which the C-terminal was truncated to 10 (∆C-10), 20 (∆C-20), 30 (∆C-30), 50 (∆C-50), 70 (∆C-70), or 90 (∆C-90). The truncated mutants of ∆C-10, ∆C-20, or ∆C-30 cannot induce FRET signal changes and downstream ERK1/2 phosphorylation. However, the truncated mutants of ∆C-50, ∆C-70, or ∆C-90 induce significant FRET signal changes and downstream ERK1/2 phosphorylation, especially ∆C-90. This is particularly true in the case of the ∆C-90, ∆C-70, or ∆C-50 which retained the potential phosphorylation sites (Ser401, Ser404, Ser408, or Ser410). The ∆C-90 showed an increase in agonist-induced FRET signal changes and ERK1/2 phosphorylation in PKC- or endocytosis-dependent and EGFR-, src-, or ß-arrestin2-independent.


Subject(s)
Biosensing Techniques , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Protein Processing, Post-Translational , Receptors, Adrenergic, alpha-1/chemistry , beta-Arrestin 2/genetics , Animals , Fluorescence Resonance Energy Transfer , Gene Expression , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , Humans , Mesocricetus , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 3/genetics , Phenylephrine/pharmacology , Phosphorylation/drug effects , Plasmids/chemistry , Plasmids/metabolism , Protein Domains , Protein Engineering/methods , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Receptors, Adrenergic, alpha-1/genetics , Receptors, Adrenergic, alpha-1/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Serine/metabolism , beta-Arrestin 2/antagonists & inhibitors , beta-Arrestin 2/metabolism
5.
Biochem Biophys Res Commun ; 514(4): 1217-1223, 2019 07 05.
Article in English | MEDLINE | ID: mdl-31109650

ABSTRACT

The three mammalian Raf proteins (A-Raf, B-Raf, and C-Raf) are key components of the MAPK pathway. Although diverse functions have been proposed for Raf kinases, it is still not clear how interacting proteins contribute to differences in the signaling functions of the three Raf kinases. Here, we report the comparative interactomes of the three Raf kinases under serum-starved and EGF-stimulated conditions. We identified nearly 400 novel interacting proteins; some interacted with all three isoforms while others interacted exclusively with one or two. Comparing the interactomes of the three Raf kinases under different conditions revealed Raf proteins perform distinct functions through specific interactions. Our interactome data help define the differences between the three Raf kinases and may uncover new functions or regulatory mechanisms. Knowledge of Raf kinase protein-protein interactions will help us to investigate the function of specific pathways in the future.


Subject(s)
Proto-Oncogene Proteins B-raf/analysis , Proto-Oncogene Proteins c-raf/analysis , HEK293 Cells , Humans , Proto-Oncogene Proteins B-raf/metabolism , Proto-Oncogene Proteins c-raf/metabolism
6.
Biochem Biophys Res Commun ; 498(4): 932-939, 2018 04 15.
Article in English | MEDLINE | ID: mdl-29545175

ABSTRACT

Lung cancer remains the leading cause of cancer-related deaths in the world. The RAF/MEK/ERK pathway controls many fundamental cellular functions and plays key roles in lung carcinogenesis. However, the proteins that regulate this pathway remain largely unknown. Here, we identified a novel C-RAF-binding protein, RUVBL1, which activates the RAF/MEK/ERK pathway by inhibiting phosphorylation of the C-RAF protein at serine 259. RUVBL1 expression was elevated in lung adenocarcinoma tissues. In addition, knocking out RUVBL1 effectively inhibited the proliferation and invasion of A549 cells. In vivo experiments, RUVBL1 deficiency significantly decreased the tumorigensis of lung cancer. In conclusion, we have shown that RUVBL1 could activate the RAF/MEK/ERK pathway by inhibiting phosphorylation of the C-RAF protein at serine 259, to promote lung cancer progression. Therefore, RUVBL1 could represent a novel therapeutic target for lung cancer treatment.


Subject(s)
ATPases Associated with Diverse Cellular Activities/physiology , Carcinogenesis/metabolism , Carrier Proteins/physiology , DNA Helicases/physiology , Lung Neoplasms/etiology , MAP Kinase Signaling System , Proto-Oncogene Proteins c-raf/metabolism , Signal Transduction/drug effects , A549 Cells , ATPases Associated with Diverse Cellular Activities/pharmacology , Carcinogenesis/drug effects , Carrier Proteins/pharmacology , Cell Movement/drug effects , Cell Proliferation/drug effects , DNA Helicases/pharmacology , Humans , Phosphorylation/drug effects , Tumor Cells, Cultured
7.
Mol Carcinog ; 57(10): 1396-1407, 2018 10.
Article in English | MEDLINE | ID: mdl-29917268

ABSTRACT

Aberrant activation of the Raf-MEK-ERK pathway has frequently been associated with various cancers, especially lung cancer. However, the key regulators of this pathway are largely unknown. Using functional proteomics screening, we found that KAP1 interacts with c-Raf. Knocking out KAP1 decreased c-Raf phosphorylation at serine 259 and increased its phosphorylation at serine 338, which activated MEK and ERK. We detected higher KAP1 expression in lung cancer tissues than in normal peri-tumoral tissues. KAP1 knockdown arrested A549 lung cancer cells in the G0/G1 phase of the cell cycle and attenuated cell growth, metastasis, the epithelial-mesenchymal transition, angiogenesis, stemness, and colony formation. Furthermore, knocking out KAP1 remarkably increased the susceptibility of A549 cells to the anti-cancer drug 5-Fluorouracil, which correlated with increasing ERK phosphorylation. In vivo xenograft experiments suggested that KAP1 deficiency significantly decreases the tumorigenicity of A549 cells. Taken together, our findings indicate that KAP1 acts as a key module in the c-Raf-interactome complex and regulates lung cancer development through the Raf-MEK-ERK pathway. Therefore, KAP1 may represent a potential diagnosis biomarker and new treatment target for lung cancer.


Subject(s)
Carcinogenesis/metabolism , Lung Neoplasms/metabolism , Protein Kinases/metabolism , Signal Transduction , Tripartite Motif-Containing Protein 28/metabolism , A549 Cells , Antimetabolites, Antineoplastic/pharmacology , Carcinogenesis/genetics , Extracellular Signal-Regulated MAP Kinases/metabolism , Fluorouracil/pharmacology , Gene Knockdown Techniques , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mitogen-Activated Protein Kinase Kinases/metabolism , Phosphorylation/drug effects , Transplantation, Heterologous , Tripartite Motif-Containing Protein 28/genetics , raf Kinases/metabolism
8.
Biochim Biophys Acta Proteins Proteom ; 1866(8): 849-856, 2018 08.
Article in English | MEDLINE | ID: mdl-29777862

ABSTRACT

A-Raf is a member of the Raf kinase family. Unlike B-Raf and C-Raf, the functions of A-Raf remain obscure. To gain more insight into the biological functions of A-Raf, we investigated the A-Raf interactome using proteomics. We found 132 proteins that interact with A-Raf and confirmed the interaction of 12 of these proteins with A-Raf by western blotting. Our data suggested that A-Raf regulates apoptosis, RNA catabolism, GTPase activity, and cell adhesion by interacting with proteins located in different cellular compartments. We identified all ten hallmarks of cancer in these interacting proteins, suggesting that A-Raf is involved in carcinogenesis. Our results also indicated that A-Raf may play a role in different diseases and signaling pathways. These findings have identified potential regulators of A-Raf and provide a systemic insight into its biological functions.


Subject(s)
Proteomics , Proto-Oncogene Proteins A-raf/metabolism , Apoptosis , Blotting, Western , Carcinogenesis/genetics , Cell Adhesion , GTP Phosphohydrolases/metabolism , HEK293 Cells , Humans , Immunoprecipitation , Protein Interaction Domains and Motifs , Proto-Oncogene Proteins A-raf/genetics , RNA/metabolism , Signal Transduction
9.
Cell Biol Int ; 42(7): 756-768, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29418027

ABSTRACT

The c-Jun N-terminal kinases (JNKs) are located downstream of Ras-mitogen activated protein kinase signaling cascades. More than 20 years of study has shown that JNKs control cell fate and many cellular functions. JNKs and their interacting proteins form a complicated network with diverse biological functions and physiological effects. Members of the JNK interactome include Jun, amyloid precursor protein, and insulin receptor substrate. Recent studies have shown that the JNK interactome is involved in tumorigenesis, neuron development, and insulin resistance. In this review, we summarize the features of the JNK interactome and classify its members into three groups: upstream regulators, downstream effectors, and scaffold partners. We also highlight the unique cellular signaling mechanisms of JNKs and provide more insights into the roles of the JNK interactome in human diseases.


Subject(s)
JNK Mitogen-Activated Protein Kinases/metabolism , MAP Kinase Signaling System/physiology , Signal Transduction/physiology , ras Proteins/metabolism , Animals , Health , Humans , p38 Mitogen-Activated Protein Kinases/metabolism
10.
Sheng Li Xue Bao ; 70(5): 565-570, 2018 Oct 25.
Article in Zh | MEDLINE | ID: mdl-30377696

ABSTRACT

Son of sevenless homolog 1 (SOS1) protein is a ubiquitously expressed adapter. As a key protein in intracellular signaling, SOS1 plays an important role in many signal transduction pathways, such as Ras and Rac signaling pathways. The abnormal expression or mutation of SOS1 is closely related to clinical diseases. In this article, we review research progress on SOS1 functions and its roles in physiology and pathophysiology.


Subject(s)
SOS1 Protein/physiology , Signal Transduction , Animals , Humans , Mutation
11.
Crit Rev Biochem Mol Biol ; 50(6): 520-31, 2015.
Article in English | MEDLINE | ID: mdl-26508523

ABSTRACT

The Ras-Raf-MEK-MAPK (mitogen-activated protein kinase)-signaling pathway plays a key role in the regulation of many cellular functions, including cell proliferation, differentiation and transformation, by transmitting signals from membrane receptors to various cytoplasmic and nuclear targets. One of the key components of this pathway is the serine/threonine protein kinase, Raf. The Raf family kinases (A-Raf, B-Raf and C-Raf) have been intensively studied since being identified in the early 1980s as retroviral oncogenes, especially with respect to the discovery of activating mutations of B-Raf in a large number of tumors which led to intensified efforts to develop drugs targeting Raf kinases. This also resulted in a rapid increase in our knowledge of the biological functions of the B-Raf and C-Raf isoforms, which may in turn be contrasted with the little that is known about A-Raf. The biological functions of A-Raf remain mysterious, although it appears to share some of the basic properties of the other two isoforms. Recently, emerging evidence has begun to reveal the functions of A-Raf, of which some are kinase-independent. These include the inhibition of apoptosis by binding to MST2, acting as safeguard against oncogenic transformation by suppressing extracellular signal-regulated kinases (ERK) activation and playing a role in resistance to Raf inhibitors. In this review, we discuss the regulation of A-Raf protein expression, and the roles of A-Raf in apoptosis and cancer, with a special focus on its role in resistance to Raf inhibitors. We also describe the scaffold functions of A-Raf and summarize the unexpected complexity of Raf signaling.


Subject(s)
Neoplasms/genetics , Proto-Oncogene Proteins A-raf/genetics , Proto-Oncogene Proteins A-raf/metabolism , Animals , Drug Resistance, Neoplasm , Endocytosis , Gene Expression Regulation, Neoplastic , Humans , Mutation , Neoplasms/drug therapy , Neoplasms/metabolism , Protein Interaction Maps , Protein Isoforms/analysis , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins A-raf/analysis , Proto-Oncogene Proteins A-raf/antagonists & inhibitors , Signal Transduction
12.
Cell Physiol Biochem ; 39(1): 137-56, 2016.
Article in English | MEDLINE | ID: mdl-27322838

ABSTRACT

Rap, a member of the Ras-like small G-protein family, is a key node among G-protein coupled receptors (GPCR), receptor tyrosine kinases (RTKs), ion channels and many other downstream pathways. Rap plays a unique role in cell morphogenesis, adhesion, migration, exocytosis, proliferation, apoptosis and carcinogenesis. The complexity and diversity of Rap functions are tightly regulated by Rap-interacting proteins such as GEFs, GAPs, Rap effectors and scaffold proteins. These interacting proteins decide the subcellular localization of Rap, the interaction modes with downstream Rap effectors and tune Rap as an atypical molecular conductor, coupling extra- and intracellular signals to various pathways. In this review, we summarize four groups of Rap-interacting proteins, highlight their distinctions in Rap-binding properties and interactive modes and discuss their contribution to the spatiotemporal regulation of Rap as well as the implications of targeting Rap-interacting proteins in human cancer therapy.


Subject(s)
GTPase-Activating Proteins/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Signal Transduction , rap GTP-Binding Proteins/metabolism , Humans , Models, Biological , Protein Binding , Protein Interaction Maps , Protein Isoforms/metabolism
13.
Biochem J ; 470(2): 155-67, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26348905

ABSTRACT

GPCRs (G-protein-coupled receptors) are members of a family of proteins which are generally regarded as the largest group of therapeutic drug targets. Ligands of GPCRs do not usually activate all cellular signalling pathways linked to a particular seven-transmembrane receptor in a uniform manner. The fundamental idea behind this concept is that each ligand has its own ability, while interacting with the receptor, to activate different signalling pathways (or a particular set of signalling pathways) and it is this concept which is known as biased signalling. The importance of biased signalling is that it may selectively activate biological responses to favour therapeutically beneficial signalling pathways and to avoid adverse effects. There are two levels of biased signalling. First, bias can arise from the ability of GPCRs to couple to a subset of the available G-protein subtypes: Gαs, Gαq/11, Gαi/o or Gα12/13. These subtypes produce the diverse effects of GPCRs by targeting different effectors. Secondly, biased GPCRs may differentially activate G-proteins or ß-arrestins. ß-Arrestins are ubiquitously expressed and function to terminate or inhibit classic G-protein signalling and initiate distinct ß-arrestin-mediated signalling processes. The interplay of G-protein and ß-arrestin signalling largely determines the cellular consequences of the administration of GPCR-targeted drugs. In the present review, we highlight the particular functionalities of biased signalling and discuss its biological effects subsequent to GPCR activation. We consider that biased signalling is potentially allowing a choice between signalling through 'beneficial' pathways and the avoidance of 'harmful' ones.


Subject(s)
Receptors, Odorant/metabolism , Signal Transduction , Animals , Arrestins/metabolism , GTP-Binding Proteins/metabolism , Humans , Ligands , Protein Conformation , Receptors, Odorant/chemistry , beta-Arrestins
14.
Sheng Li Xue Bao ; 68(1): 57-64, 2016 Feb 25.
Article in Zh | MEDLINE | ID: mdl-26915323

ABSTRACT

Gab proteins, Grb2 (growth factor receptor binding protein 2)-associated binder, are important scaffolding adapter proteins required by many signaling pathways. In mammals, the Gab proteins mainly consist of Gab1, Gab2 and Gab3, and are involved in the amplification and integration of signal transduction evoked by a variety of extracellular stimuli, including various growth factors and cytokines. They are known to play key roles in many biological processes through the two classical signal pathways, SHP2/RAS/ERK and PI3K/AKT. In this review, we provide an overview of the structure and function of the scaffolding adapter, Gab, with a special focus on its role in tumor, inflammation and cardiovascular diseases.


Subject(s)
Cardiovascular Diseases , Inflammation , Neoplasms , Adaptor Proteins, Signal Transducing , Humans , Intercellular Signaling Peptides and Proteins , Phosphatidylinositol 3-Kinases , Phosphorylation , Signal Transduction
15.
Sheng Li Ke Xue Jin Zhan ; 47(1): 14-20, 2016 Feb.
Article in Zh | MEDLINE | ID: mdl-27424400

ABSTRACT

Rap has different biological functions on intracellular signaling pathways, such as regulating cell polarity, cell proliferation, cell differentiation, cell adhesion and cell movement. Furthermore, at tissue and organ level, Rap controls the establishment of neural polarity, synaptic growth, synaptic plasticity, neuronal migration and so on. Rap belongs to Ras family which contains two subtypes, Rap1 and Rap2. By binding GTP or GDP Rap transform between active or inactive state, and plays an important role as a molecular switch. Moreover, in the signal pathway of tumor, Rap inhibits cell transformation induced by the oncogene Ras, therefore inhibits the proliferation, invasion and migration of certain cancer cells by interacting with its downstream target molecules. In this review, we summarized the biological functions of Rap and discussed It's significance in cancer therapy and drug treatment of neurological diseases.


Subject(s)
rap GTP-Binding Proteins/physiology , Cell Adhesion , Cell Movement , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Nervous System Diseases/drug therapy , Nervous System Diseases/metabolism , Neuronal Plasticity , Signal Transduction
16.
Acta Biochim Biophys Sin (Shanghai) ; 47(7): 477-87, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26040315

ABSTRACT

Tobacco usage is a major risk factor in the development, progression, and outcomes for lung cancer. Of the carcinogens associated with lung cancer, tobacco-specific nitrosamines 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is among the most potent ones. The oncogenic mechanisms of NNK are not entirely understood, hindering the development of effective strategies for preventing and treating smoking-associated lung cancers. Here, we introduce the NNK-induced lung cancer animal models in different species and its potential mechanisms. Finally, we summarize several chemopreventive agents developed from these animal models.


Subject(s)
Carcinogenesis , Carcinogens/toxicity , Lung Neoplasms/chemically induced , Models, Animal , Nitrosamines/toxicity , Animals , Lung Neoplasms/pathology
17.
Biochem J ; 452(2): 303-12, 2013 Jun 01.
Article in English | MEDLINE | ID: mdl-23521066

ABSTRACT

The literature on GPCR (G-protein-coupled receptor) homo-oligomerization encompasses conflicting views that range from interpretations that GPCRs must be monomeric, through comparatively newer proposals that they exist as dimers or higher-order oligomers, to suggestions that such quaternary structures are rather ephemeral or merely accidental and may serve no functional purpose. In the present study we use a novel method of FRET (Förster resonance energy transfer) spectrometry and controlled expression of energy donor-tagged species to show that M(3)Rs (muscarinic M(3) acetylcholine receptors) at the plasma membrane exist as stable dimeric complexes, a large fraction of which interact dynamically to form tetramers without the presence of trimers, pentamers, hexamers etc. That M(3)R dimeric units interact dynamically was also supported by co-immunoprecipitation of receptors synthesized at distinct times. On the basis of all these findings, we propose a conceptual framework that may reconcile the conflicting views on the quaternary structure of GPCRs.


Subject(s)
Cell Membrane/chemistry , Receptor, Muscarinic M3/chemistry , Cell Membrane/genetics , Cell Membrane/metabolism , Fluorescence Resonance Energy Transfer/methods , HEK293 Cells , Humans , Models, Molecular , Protein Multimerization/genetics , Protein Stability , Protein Structure, Quaternary/genetics , Receptor, Muscarinic M3/genetics , Receptor, Muscarinic M3/metabolism , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
18.
J Ethnopharmacol ; 327: 117982, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38423411

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Cynanchum otophyllum C.K.Schneid.PI.Wilson, commonly referred as ''Qingyangshen'' (QYS), is a traditional folk medicine from Yunnan, renowned for its efficacy in neurological and psychiatric disorders. Glycosides isolated from QYS have shown promise in alleviating epilepsy, however, mechanisms of action and specific molecular targets remain to be elucidated. AIM OF THE STUDY: The study aimed to evaluate the anticonvulsant effects of Qingyangshen glycosides M1 (M1), a C21 steroidal glycoside from QYS, on pentylenetetrazol (PTZ)-induced convulsions in zebrafish (Danio rerio), and its neuroprotective effect on Glutamate (Glu)-induced damage to PC12 cells, and importantly to identify its potential molecular targets. MATERIALS AND METHODS: To evaluate anticonvulsant activity of M1, 7 days-post-fertilization (7-dpf) animals were pretreated (by immersion) and then exposed to PTZ (10 mM) solution. Furthermore, Glu-induced PC12 cell damage was employed to investigate the neuroprotective and anti-apoptotic capacity. Cells were pretreated with various concentrations of M1 (0-10 µM) for 12 h and then co-treated with Glu (15 mM) for an additional 24 h. The cell viability, apoptosis rate and apoptosis-related proteins (p-PI3K, PI3K, Akt, p-Akt, CREB, p-CREB, BDNF, Bax and Bcl-2) were measured using CCK-8, annexin V/PI and Western blot assays. To model the expected interaction between M1 and candidate cannabinoid receptor type 1 (CB1R), ERK phosphorylation, molecular docking, and drug affinity responsive target stability (DARTS) techniques were employed. Finally, CB1R antagonist Rimonabant (Rim) was validated by co-administration in both zebrafish and cells to confirm the requirement of CB1R for M1 efficacy. RESULTS: At a concentration of 400 µM, M1 dramatically reversed PTZ-induced convulsive-like behaviors in zebrafish, as evidenced by a significant reduction in locomotor activity. In the context of Glu-induced cytotoxicity, M1 (10 µM) demonstrated a notable increase in cell viability and suppressed apoptosis through modulation of the Bax/Bcl-2 ratio and activation of the PI3K/Akt/CREB/BDNF signaling axis. These effects were facilitated through CB1R activation. In contrast, Rim dampened the beneficial activities of M1 as a cannabinoid agonist. CONCLUSIONS: These results demonstrated that M1 as a potential CB1R activator, exhibiting anticonvulsive effects in a PTZ-induced zebrafish model and neuroprotective properties via the PI3K/Akt/CREB/BDNF signaling axis in a Glu-induced PC12 cell injury model. Notably, the observed seizure relief attenuated by CB1R chemical antagonism.


Subject(s)
Neuroprotective Agents , Proto-Oncogene Proteins c-akt , Humans , Rats , Animals , Proto-Oncogene Proteins c-akt/metabolism , Glycosides/pharmacology , Glycosides/therapeutic use , Glycosides/chemistry , Zebrafish , Anticonvulsants/pharmacology , Anticonvulsants/therapeutic use , Phosphatidylinositol 3-Kinases/metabolism , bcl-2-Associated X Protein , Brain-Derived Neurotrophic Factor/metabolism , Molecular Docking Simulation , China , Seizures/chemically induced , Seizures/drug therapy , Seizures/metabolism , Apoptosis Regulatory Proteins , Apoptosis , Proto-Oncogene Proteins c-bcl-2 , Pentylenetetrazole/toxicity , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use
19.
Biochem Pharmacol ; 223: 116194, 2024 May.
Article in English | MEDLINE | ID: mdl-38583812

ABSTRACT

Glutathione peroxidase 4 (GPX4) is a promising anticancer therapeutic target; however, the application of GPX4 inhibitors (GPX4i) is limited owing to intrinsic or acquired drug resistance. Hence, understanding the mechanisms underlying drug resistance and discovering molecules that can overcome drug resistance are crucial. Herein, we demonstrated that GPX4i killed bladder cancer cells by inducing lipid reactive oxygen species-mediated ferroptosis and apoptosis, and cisplatin-resistant bladder cancer cells were also resistant to GPX4i, representing a higher half-maximal inhibitory concentration value than that of parent bladder cancer cells. In addition, thioredoxin reductase 1 (TrxR1) overexpression was responsible for GPX4i resistance in cisplatin-resistant bladder cancer cells, and inhibiting TrxR1 restored the sensitivity of these cells to GPX4i. In vitro and in vivo studies revealed that Jolkinolide B (JB), a natural diterpenoid and previously identified as a TrxR1 inhibitor, potentiated the antiproliferative efficacy of GPX4i (RSL3 and ML162) against cisplatin-resistant bladder cancer cells. Furthermore, GPX4 knockdown and inhibition could augment JB-induced paraptosis and apoptosis. Our results suggest that inhibiting TrxR1 can effectively improve GPX4 inhibition-based anticancer therapy. A combination of JB and GPX4i, which is well-tolerated and has several anticancer mechanisms, may serve as a promising therapy for treating bladder cancer.


Subject(s)
Aniline Compounds , Diterpenes , Thiophenes , Urinary Bladder Neoplasms , Humans , Cisplatin/pharmacology , Thioredoxin Reductase 1 , Cell Line, Tumor , Urinary Bladder Neoplasms/drug therapy
20.
J Biol Chem ; 287(18): 14937-49, 2012 Apr 27.
Article in English | MEDLINE | ID: mdl-22389503

ABSTRACT

Intramolecular fluorescence resonance energy transfer (FRET) sensors able to detect changes in distance or orientation between the 3rd intracellular loop and C-terminal tail of the human orexin OX(1) and OX(2) G protein-coupled receptors following binding of agonist ligands were produced and expressed stably. These were directed to the plasma membrane and, despite the substantial sequence alterations introduced, in each case were able to elevate [Ca(2+)](i), promote phosphorylation of the ERK1/2 MAP kinases and become internalized effectively upon addition of the native orexin peptides. Detailed characterization of the OX(1) sensor demonstrated that it was activated with rank order of potency orexin A > orexin B > orexin A 16-33, that it bound antagonist ligands with affinity similar to the wild-type receptor, and that mutation of a single residue, D203A, greatly reduced the binding and function of orexin A but not antagonist ligands. Addition of orexin A to individual cells expressing an OX(1) sensor resulted in a time- and concentration-dependent reduction in FRET signal consistent with mass-action and potency/affinity estimates for the peptide. Compared with the response kinetics of a muscarinic M(3) acetylcholine receptor sensor upon addition of agonist, response of the OX(1) and OX(2) sensors to orexin A was slow, consistent with a multistep binding and activation process. Such sensors provide means to assess the kinetics of receptor activation and how this may be altered by mutation and sequence variation of the receptors.


Subject(s)
Intracellular Signaling Peptides and Proteins/pharmacology , MAP Kinase Signaling System/drug effects , Neuropeptides/pharmacology , Peptides/pharmacology , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/metabolism , Receptors, Neuropeptide/agonists , Receptors, Neuropeptide/metabolism , Amino Acid Substitution , Biosensing Techniques/methods , Fluorescence Resonance Energy Transfer , HEK293 Cells , Humans , Kinetics , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/genetics , Mitogen-Activated Protein Kinase 3/metabolism , Mutation, Missense , Orexin Receptors , Orexins , Phosphorylation/drug effects , Protein Structure, Secondary , Receptor, Muscarinic M3/agonists , Receptor, Muscarinic M3/genetics , Receptor, Muscarinic M3/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, Neuropeptide/genetics
SELECTION OF CITATIONS
SEARCH DETAIL