Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Angew Chem Int Ed Engl ; 63(23): e202405059, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38563771

ABSTRACT

We present herein the synthesis of novel pseudo-metalla-carbaporphyrinoid species (1M: M=Pd and Pt) achieved through the inner coordination of palladium(II) and platinum(II) with an acyclic N-confused tetrapyrrin analogue. Despite their tetrapyrrole frameworks being small, akin to well-known porphyrins, these species exhibit an unusually narrow HOMO-LUMO gap, resulting in an unprecedentedly low-energy absorption in the second near-infrared (NIR-II) region. Density functional theory (DFT) calculations revealed unique dπ-pπ-conjugated electronic structures involving the metal dπ-ligand pπ hybridized molecular orbitals of 1M. Magnetic circular dichroism (MCD) spectroscopy confirmed distinct electronic structures. Remarkably, the complexes feature an open-metal coordination site in the peripheral NN dipyrrin site, forming hetero-metal complexes (1Pd-BF2 and 1Pt-BF2) through boron difluoride complexation. The resulting hetero metalla-carbaporphyrinoid species displayed further redshifted NIR-II absorption, highly efficient photothermal conversion efficiencies (η; 62-65 %), and exceptional photostability. Despite the challenges associated with the theoretical and experimental assessment of dπ-pπ-conjugated metalla-aromaticity in relatively larger (more than 18π electrons) polycyclic ring systems, these organometallic planar tetrapyrrole systems could serve as potential molecular platforms for aromaticity-relevant NIR-II dyes.

SELECTION OF CITATIONS
SEARCH DETAIL