Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Microvasc Res ; 122: 60-70, 2019 03.
Article in English | MEDLINE | ID: mdl-30472038

ABSTRACT

Every organ demonstrates specific vascular characteristics and functions maintained by interactions of endothelial cells (ECs) and parenchymal cells. Particularly, brain ECs play a central role in the formation of a functional blood brain barrier (BBB). Organ-specific ECs have their own morphological features, and organ specificity must be considered when investigating interactions between ECs and other cell types constituting a target organ. Here we constructed angiogenesis-based microvascular networks with perivascular cells in a microfluidic device setting by coculturing ECs and mesenchymal stem cells (MSCs). Furthermore, we analyzed endothelial barrier functions as well as fundamental morphology, an essential step to build an in vitro BBB model. In particular, we used both brain microvascular ECs (BMECs) and human umbilical vein ECs (HUVECs) to test if organ specificity of ECs affects the formation processes and endothelial barrier functions of an engineered microvascular network. We found that microvascular formation processes differed by the source of ECs. HUVECs formed more extensive microvascular networks compared to BMECs while no differences were observed between BMECs and HUVECs in terms of both the microvascular diameter and the number of pericytes peripherally associated with the microvasculatures. To compare the endothelial barrier functions of each type of EC, we performed fluorescence dextran perfusion on constructed microvasculatures. The permeability coefficient of BMEC microvasculatures was significantly lower than that of HUVEC microvasculatures. In addition, there were significant differences in terms of tight junction protein expression. These results suggest that the organ source of ECs influences the properties of engineered microvasculature and thus is a factor to be considered in the design of organ-specific cell culture models.


Subject(s)
Blood-Brain Barrier/metabolism , Brain/blood supply , Capillary Permeability , Human Umbilical Vein Endothelial Cells/metabolism , Mesenchymal Stem Cells/metabolism , Microvessels/metabolism , Neovascularization, Physiologic , Pericytes/metabolism , Blood-Brain Barrier/cytology , Cell Communication , Cell Differentiation , Cells, Cultured , Coculture Techniques , Humans , Lab-On-A-Chip Devices , Microvessels/cytology , Phenotype , Tight Junction Proteins/metabolism , Tight Junctions/metabolism
2.
Soft Matter ; 15(46): 9388-9393, 2019 Nov 27.
Article in English | MEDLINE | ID: mdl-31609367

ABSTRACT

In a proof-of-concept study, a mechano-chromic hydrogel was synthesized here, via chemoenzymatic click conjugation of fluorophore-labeled fibronectin into a synthetic hydrogel co-polymers (i.e., poly-N-isopropylacrylamide/polyethylene glycol). The optical FRET response could be tuned by macroscopic stretch.


Subject(s)
Acrylic Resins/chemistry , Fibronectins/chemistry , Hydrogels/chemistry , Polyethylene Glycols/chemistry , Fluorescence Resonance Energy Transfer , Fluorescent Dyes/chemistry , Mechanical Phenomena
3.
Acta Biomater ; 166: 301-316, 2023 08.
Article in English | MEDLINE | ID: mdl-37164300

ABSTRACT

Tissue engineers have utilised a variety of three-dimensional (3D) scaffolds for controlling multicellular dynamics and the resulting tissue microstructures. In particular, cutting-edge microfabrication technologies, such as 3D bioprinting, provide increasingly complex structures. However, unpredictable microtissue detachment from scaffolds, which ruins desired tissue structures, is becoming an evident problem. To overcome this issue, we elucidated the mechanism underlying collective cellular detachment by combining a new computational simulation method with quantitative tissue-culture experiments. We first quantified the stochastic processes of cellular detachment shown by vascular smooth muscle cells on model curved scaffolds and found that microtissue morphologies vary drastically depending on cell contractility, substrate curvature, and cell-substrate adhesion strength. To explore this mechanism, we developed a new particle-based model that explicitly describes stochastic processes of multicellular dynamics, such as adhesion, rupture, and large deformation of microtissues on structured surfaces. Computational simulations using the developed model successfully reproduced characteristic detachment processes observed in experiments. Crucially, simulations revealed that cellular contractility-induced stress is locally concentrated at the cell-substrate interface, subsequently inducing a catastrophic process of collective cellular detachment, which can be suppressed by modulating cell contractility, substrate curvature, and cell-substrate adhesion. These results show that the developed computational method is useful for predicting engineered tissue dynamics as a platform for prediction-guided scaffold design. STATEMENT OF SIGNIFICANCE: Microfabrication technologies aiming to control multicellular dynamics by engineering 3D scaffolds are attracting increasing attention for modelling in cell biology and regenerative medicine. However, obtaining microtissues with the desired 3D structures is made considerably more difficult by microtissue detachments from scaffolds. This study reveals a key mechanism behind this detachment by developing a novel computational method for simulating multicellular dynamics on designed scaffolds. This method enabled us to predict microtissue dynamics on structured surfaces, based on cell mechanics, substrate geometry, and cell-substrate interaction. This study provides a platform for the physics-based design of micro-engineered scaffolds and thus contributes to prediction-guided biomaterials design in the future.


Subject(s)
Myocytes, Smooth Muscle , Tissue Engineering , Tissue Engineering/methods , Cell Adhesion , Microtechnology , Tissue Scaffolds/chemistry
4.
Sci Adv ; 9(13): eadd9275, 2023 03 29.
Article in English | MEDLINE | ID: mdl-36989370

ABSTRACT

Controlled tissue growth is essential for multicellular life and requires tight spatiotemporal control over cell proliferation and differentiation until reaching homeostasis. As cells synthesize and remodel extracellular matrix, tissue growth processes can only be understood if the reciprocal feedback between cells and their environment is revealed. Using de novo-grown microtissues, we identified crucial actors of the mechanoregulated events, which iteratively orchestrate a sharp transition from tissue growth to maturation, requiring a myofibroblast-to-fibroblast transition. Cellular decision-making occurs when fibronectin fiber tension switches from highly stretched to relaxed, and it requires the transiently up-regulated appearance of tenascin-C and tissue transglutaminase, matrix metalloprotease activity, as well as a switch from α5ß1 to α2ß1 integrin engagement and epidermal growth factor receptor signaling. As myofibroblasts are associated with wound healing and inflammatory or fibrotic diseases, crucial knowledge needed to advance regenerative strategies or to counter fibrosis and cancer progression has been gained.


Subject(s)
Extracellular Matrix , Fibroblasts , Humans , Extracellular Matrix/metabolism , Fibroblasts/metabolism , Myofibroblasts/metabolism , Wound Healing , Fibrosis , Biophysics
5.
Anal Bioanal Chem ; 402(1): 99-107, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21845527

ABSTRACT

By combining cell technology and microchip technology, innovative cellular biochemical tools can be created from the microscale to the nanoscale for both practical applications and fundamental research. On the microscale level, novel practical applications taking advantage of the unique capabilities of microfluidics have been accelerated in clinical diagnosis, food safety, environmental monitoring, and drug discovery. On the other hand, one important trend of this field is further downscaling of feature size to the 10(1)-10(3) nm scale, which we call extended-nano space. Extended-nano space technology is leading to the creation of innovative nanofluidic cellular and biochemical tools for analysis of single cells at the single-molecule level. As a pioneering group in this field, we focus not only on the development of practical applications of cellular microchip devices but also on fundamental research to initiate new possibilities in the field. In this paper, we review our recent progress on tissue reconstruction, routine cell-based assays on microchip systems, and preliminary fundamental method for single-cell analysis at the single-molecule level with integration of the burgeoning technologies of extended-nano space.


Subject(s)
Microfluidics/methods , Nanotechnology/methods , Oligonucleotide Array Sequence Analysis/methods , Single-Cell Analysis/methods , Animals , Humans , Microfluidics/instrumentation , Nanotechnology/instrumentation , Oligonucleotide Array Sequence Analysis/instrumentation , Single-Cell Analysis/instrumentation
6.
Tissue Eng Part A ; 28(13-14): 573-585, 2022 07.
Article in English | MEDLINE | ID: mdl-34841881

ABSTRACT

Glioblastoma (GBM) is the most common and lethal type of malignant primary brain tumor in adults. GBM displays heterogeneous tumor cell population comprising glioma-initiating cells (GICs) with stem cell-like characteristics and differentiated glioma cells. During GBM cell invasion into normal brain tissues, which is the hallmark characteristic of GBM, GICs at the invasion front retain stemness, while cells at the tumor core display cellular differentiation. However, the mechanism of cellular differentiation underlying the formation of spatial cellular heterogeneity in GBM remains unknown. In the present study, we first observed spatially heterogeneous GBM cell populations emerged from an isogenic clonal population of GICs during invasion into a 3D collagen hydrogel in a microfluidic device. Specifically, GICs at the invasion front maintained stemness, while trailing cells displayed astrocytic differentiation. The spatial cellular heterogeneity resulted from the difference in cell density between GICs at the invasion front and trailing cells. Trailing GICs at high cell density exhibited astrocytic differentiation through local accumulation of paracrine factors they secreted, while cells at the invasion front of low cell density retained stemness due to the lack of paracrine factors. In addition, we demonstrated that interstitial flow suppressed astrocytic differentiation of trailing GICs by the clearance of paracrine factors. Our findings suggest that intercellular crosstalk between tumor cells is an essential factor in developing the spatial cellular heterogeneity of GBM cells with various differentiation statuses. It also provides insights into the development of novel therapeutic strategies targeting GBM cells with stem cell characteristics at the invasion front. Impact Statement We elucidated the mechanism of cellular differentiation underlying the spatial cellular heterogeneity of glioblastoma composed of glioma-initiating cells (GICs) and differentiated glioma cells during invasion in a microfluidic device. Trailing cells at high cell density exhibited astrocytic differentiation through local accumulation of paracrine factors they produced, while cells at the invasion front of low cell density were shown to retain stemness due to the lack of paracrine factors. Our findings provide valuable knowledge for the development of effective therapeutic strategies targeting GICs at the invasion front.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Cell Line, Tumor , Glioma/pathology , Humans , Neoplastic Stem Cells/pathology , Paracrine Communication
7.
Adv Sci (Weinh) ; 9(28): e2202317, 2022 10.
Article in English | MEDLINE | ID: mdl-35971167

ABSTRACT

Intimal hyperplasia (IH) represents a major challenge following cardiovascular interventions. While mechanisms are poorly understood, the inefficient preventive methods incentivize the search for novel therapies. A vessel-on-a-dish platform is presented, consisting of direct-contact cocultures with human primary endothelial cells (ECs) and smooth muscle cells (SMCs) exposed to both laminar pulsatile and disturbed flow on an orbital shaker. With contractile SMCs sitting below a confluent EC layer, a model that successfully replicates the architecture of a quiescent vessel wall is created. In the novel IH model, ECs are seeded on synthetic SMCs at low density, mimicking reendothelization after vascular injury. Over 3 days of coculture, ECs transition from a network conformation to confluent 2D islands, as promoted by pulsatile flow, resulting in a "defected" EC monolayer. In defected regions, SMCs incorporated plasma fibronectin into fibers, increased proliferation, and formed multilayers, similarly to IH in vivo. These phenomena are inhibited under confluent EC layers, supporting therapeutic approaches that focus on endothelial regeneration rather than inhibiting proliferation, as illustrated in a proof-of-concept experiment with Paclitaxel. Thus, this in vitro system offers a new tool to study EC-SMC communication in IH pathophysiology, while providing an easy-to-use translational disease model platform for low-cost and high-content therapeutic development.


Subject(s)
Endothelial Cells , Muscle, Smooth, Vascular , Fibronectins , Humans , Hyperplasia , Myocytes, Smooth Muscle/physiology , Paclitaxel
8.
Anal Sci ; 36(8): 1015-1019, 2020 Aug 10.
Article in English | MEDLINE | ID: mdl-32201406

ABSTRACT

We report on a novel microdevice to tune the curvature of a cell-adhering surface by controlling the air-pressure and micro-slit. Human aortic smooth muscle cells were cultured on demi-cylindrical concaves formed on a microdevice. Their shape-adapting behavior could be tracked when the groove direction was changed to the orthogonal direction. This microdevice demonstrated live observation of cells responding to dynamic changes of the anisotropic curvature of the adhering surface and could serve as a new platform to pursue mechanobiology on curved surfaces.


Subject(s)
Air Pressure , Cell Culture Techniques/instrumentation , Lab-On-A-Chip Devices , Anisotropy , Aorta , Calibration , Cell Adhesion , Equipment Design , Humans , Myocytes, Smooth Muscle/cytology
9.
Biofabrication ; 12(4): 045008, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32644945

ABSTRACT

Vascular networks consist of hierarchical structures of various diameters and are necessary for efficient blood distribution. Recent advances in vascular tissue engineering and bioprinting have allowed us to construct large vessels, such as arteries, small vessels, such as capillaries and microvessels, and intermediate-scale vessels, such as arterioles, individually. However, little is known about the control of vessel diameters between small vessels and intermediate-scale vessels. Here, we focus on vascular remodeling, which creates lasting structural changes in the vessel wall in response to hemodynamic stimuli, to regulate vessel diameters in vitro. The purpose of this study is to control the vessel diameter at an intermediate scale by inducing outward remodeling of microvessels in vitro. Human umbilical vein endothelial cells and mesenchymal stem cells were cocultured in a microfluidic device to construct microvessels, which were then perfused with a culture medium to induce outward vascular remodeling. We successfully constructed vessels with diameters of 40-150 µm in perfusion culture, whereas vessels with diameters of <20 µm were maintained in static culture. We also revealed that the in vitro vascular remodeling was mediated by NO pathways and MMP-9. These findings provide insight into the regulation of diameters of tissue-engineered blood vessels. This is an important step toward the construction of hierarchical vascular networks within biofabricated three-dimensional systems.


Subject(s)
Blood Vessels/anatomy & histology , Blood Vessels/physiology , Hemorheology , Neovascularization, Physiologic , Vascular Remodeling , Blood Vessels/drug effects , Blood Vessels/enzymology , Dextrans/chemistry , Fluorescence , Hemorheology/drug effects , Human Umbilical Vein Endothelial Cells/cytology , Human Umbilical Vein Endothelial Cells/drug effects , Humans , Hydrodynamics , Matrix Metalloproteinase 9/metabolism , Microspheres , NG-Nitroarginine Methyl Ester/pharmacology , Neovascularization, Physiologic/drug effects , Nitric Oxide/pharmacology , Perfusion , Time Factors , Vascular Remodeling/drug effects
10.
Acta Biomater ; 95: 307-318, 2019 09 01.
Article in English | MEDLINE | ID: mdl-30593886

ABSTRACT

There is a great deal of demand for the construction of transplantable liver grafts. Over the last decade, decellularization techniques have been developed to construct whole liver tissue grafts as potential biomaterials. However, the lack of intact vascular networks, especially sinusoids, in recellularized liver scaffolds leads to hemorrhage and thrombosis after transplantation, which is a major obstacle to the development of transplantable liver grafts. In the present study, we hypothesized that both mechanical (e.g., fluid shear stress) and chemical factors (e.g., fibronectin coating) can enhance the formation of hierarchical vascular networks including sinusoid-scale microvessels. We demonstrated that perfusion culture promoted formation of sinusoid-scale microvessels in recellularized liver scaffolds, which was not observed in static culture. In particular, perfusion culture at 4.7 ml/min promoted the formation of sinusoid-scale microvessels compared to perfusion culture at 2.4 and 9.4 ml/min. In addition, well-aligned endothelium was observed in perfusion culture, suggesting that endothelial cells sensed the flow-induced shear stress. Moreover, fibronectin coating of decellularized liver scaffolds enhanced the formation of sinusoid-scale microvessels in perfusion culture at 4.7 ml/min. This study represents a critical step in the development of functional recellularized liver scaffolds, which can be used not only for transplantation but also for drug screening and disease-modeling studies. STATEMENT OF SIGNIFICANCE: Decellularized liver scaffolds are promising biomaterials that allow production of large-scale tissue-engineered liver grafts. However, it is difficult to maintain recellularized liver grafts after transplantation due to hemorrhage and thrombosis. To overcome this obstacle, construction of an intact vascular network including sinusoid-scale microvessels is essential. In the present study, we succeeded in constructing sinusoid-scale microvessels in decellularized liver scaffolds via a combination of perfusion culture and surface coating. We further confirmed that endothelial cells in decellularized liver scaffolds responded to flow-derived mechanical stress by aligning actin filaments. Our strategy to construct sinusoid-scale microvessels is critical for the development of intact vascular networks, and addresses the limitations of recellularized liver scaffolds after transplantation.


Subject(s)
Liver/cytology , Microvessels/cytology , Perfusion , Animals , Fibronectins/pharmacology , Green Fluorescent Proteins/metabolism , Human Umbilical Vein Endothelial Cells/cytology , Human Umbilical Vein Endothelial Cells/drug effects , Humans , Male , Neovascularization, Physiologic/drug effects , Rats, Sprague-Dawley , Stress, Mechanical , Tissue Scaffolds/chemistry
11.
PLoS One ; 12(4): e0173647, 2017.
Article in English | MEDLINE | ID: mdl-28380036

ABSTRACT

The geometrical confinement of small cell colonies gives differential cues to cells sitting at the periphery versus the core. To utilize this effect, for example to create spatially graded differentiation patterns of human mesenchymal stem cells (hMSCs) in vitro or to investigate underpinning mechanisms, the confinement needs to be robust for extended time periods. To create highly repeatable micro-fabricated structures for cellular patterning and high-throughput data mining, we employed here a simple casting method to fabricate more than 800 adhesive patches confined by agarose micro-walls. In addition, a machine learning based image processing software was developed (open code) to detect the differentiation patterns of the population of hMSCs automatically. Utilizing the agarose walls, the circular patterns of hMSCs were successfully maintained throughout 15 days of cell culture. After staining lipid droplets and alkaline phosphatase as the markers of adipogenic and osteogenic differentiation, respectively, the mega-pixels of RGB color images of hMSCs were processed by the software on a laptop PC within several minutes. The image analysis successfully showed that hMSCs sitting on the more central versus peripheral sections of the adhesive circles showed adipogenic versus osteogenic differentiation as reported previously, indicating the compatibility of patterned agarose walls to conventional microcontact printing. In addition, we found a considerable fraction of undifferentiated cells which are preferentially located at the peripheral part of the adhesive circles, even in differentiation-inducing culture media. In this study, we thus successfully demonstrated a simple framework for analyzing the patterned differentiation of hMSCs in confined microenvironments, which has a range of applications in biology, including stem cell biology.


Subject(s)
Cell Differentiation/physiology , Culture Media/metabolism , Mesenchymal Stem Cells/cytology , Sepharose/metabolism , Adipogenesis/physiology , Alkaline Phosphatase/metabolism , Cell Culture Techniques , Humans , Machine Learning , Mesenchymal Stem Cells/metabolism , Osteogenesis/physiology , Software
12.
Acta Biomater ; 45: 85-97, 2016 11.
Article in English | MEDLINE | ID: mdl-27562610

ABSTRACT

Despite of the progress made to engineer structured microtissues such as BioMEMS and 3D bioprinting, little control exists how microtissues transform as they mature, as the misbalance between cell-generated forces and the strength of cell-cell and cell-substrate contacts can result in unintended tissue deformations and ruptures. To develop a quantitative perspective on how cellular contractility, scaffold curvature and cell-substrate adhesion control such rupture processes, human aortic smooth muscle cells were grown on glass substrates with submillimeter semichannels. We quantified cell sheet detachment from 3D confocal image stacks as a function of channel curvature and cell sheet tension by adding different amounts of Blebbistatin and TGF-ß to inhibit or enhance cell contractility, respectively. We found that both higher curvature and higher contractility increased the detachment probability. Variations of the adhesive strength of the protein coating on the substrate revealed that the rupture plane was localized along the substrate-extracellular matrix interface for non-covalently adsorbed adhesion proteins, while the collagen-integrin interface ruptured when collagen I was covalently crosslinked to the substrate. Finally, a simple mechanical model is introduced that quantitatively explains how the tuning of substrate curvature, cell sheet contractility and adhesive strength can be used as tunable parameters as summarized in a first semi-quantitative phase diagram. These parameters can thus be exploited to either inhibit or purposefully induce a collective detachment of sheet-like microtissues for the use in tissue engineering and regenerative therapies. STATEMENT OF SIGNIFICANCE: Despite of the significant progress in 3D tissue fabrication technologies at the microscale, there is still no quantitative model that can predict if cells seeded on a 3D structure maintain the imposed geometry while they form a continuous microtissue. Especially, detachment or loss of shape control of growing tissue is a major concern when designing 3D-structured scaffolds. Utilizing semi-cylindrical channels and vascular smooth muscle cells, we characterized how geometrical and mechanical parameters such as curvature of the substrate, cellular contractility, or protein-substrate adhesion strength tune the catastrophic detachment of microtissue. Observed results were rationalized by a theoretical model. The phase diagram showing how unintended tissue detachment progresses would help in designing of mechanically-balanced 3D scaffolds in future tissue engineering applications.


Subject(s)
Cell Culture Techniques/methods , Tissue Engineering/methods , Animals , Cell Shape , Cells, Cultured , Collagen/pharmacology , Cross-Linking Reagents/pharmacology , Endothelial Cells/cytology , Endothelial Cells/drug effects , Fibronectins/metabolism , Humans , Integrins/metabolism , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/drug effects , Rats , Spheroids, Cellular/cytology , Spheroids, Cellular/drug effects , Transforming Growth Factor beta/pharmacology
13.
Biomaterials ; 32(10): 2459-65, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21251708

ABSTRACT

Various micro cell culture systems have recently been developed. However, it is extremely difficult to recover cultured cells from a microchannel because the upper and lower substrates of a microchip are permanently combined. Therefore, we developed a cell culture and recovery system that uses a separable microchip with reversible combining that allows separation between closed and open channels. To realize this system, two problems related to microfluidic control-prevention of leakage and non-invasive recovery of cultured cells from the substrate-must be overcome. In the present study, we used surface chemistry modification to solve both problems. First, octadecyltrimethoxysilane (ODTMS) was utilized to control the Laplace pressure at the liquid/vapor phase interface, such that it was directed toward the microchannels, which suppressed leakage from the slight gap between two substrates. Second, a thermoresponsive polymer poly(N-isopropyl acrylamide) (PNIPAAm) was used to coat the surface of the ODTMS-modified microchannel by UV-mediated photopolymerization. PNIPAAm substrates are well known for controlled cell adhesion/detachment by alteration of temperature. Finally, the ODTMS- and PNIPAAm-modified separable microchips were subjected to patterning, and human arterial endothelial cells (HAECs) were cultured in the resulting microchannels with no leakage. After 96 h of the culture, the HAECs were detached from the microchips by decreasing the temperature and were then recovered from the microchannels. This study is the first to demonstrate the recovery of living cells cultured in a microchannel, and may be useful as a fundamental technique for vascular tissue engineering.


Subject(s)
Cell Culture Techniques/methods , Cell Separation/methods , Endothelial Cells/cytology , Microfluidic Analytical Techniques/methods , Acrylamides/chemistry , Acrylic Resins , Arteries/cytology , Cell Adhesion , Cells, Cultured , Fluorescence , Glass/chemistry , Humans , Organosilicon Compounds/chemistry , Polymers/chemistry , Pressure , Surface Properties , Water
SELECTION OF CITATIONS
SEARCH DETAIL