Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters

Affiliation country
Publication year range
1.
Nature ; 622(7983): 499-506, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37704732

ABSTRACT

Solar steam interfacial evaporation represents a promising strategy for seawater desalination and wastewater purification owing to its environmentally friendly character1-3. To improve the solar-to-steam generation, most previous efforts have focused on effectively harvesting solar energy over the full solar spectrum4-7. However, the importance of tuning joint densities of states in enhancing solar absorption of photothermal materials is less emphasized. Here we propose a route to greatly elevate joint densities of states by introducing a flat-band electronic structure. Our study reveals that metallic λ-Ti3O5 powders show a high solar absorptivity of 96.4% due to Ti-Ti dimer-induced flat bands around the Fermi level. By incorporating them into three-dimensional porous hydrogel-based evaporators with a conical cavity, an unprecedentedly high evaporation rate of roughly 6.09 kilograms per square metre per hour is achieved for 3.5 weight percent saline water under 1 sun of irradiation without salt precipitation. Fundamentally, the Ti-Ti dimers and U-shaped groove structure exposed on the λ-Ti3O5 surface facilitate the dissociation of adsorbed water molecules and benefit the interfacial water evaporation in the form of small clusters. The present work highlights the crucial roles of Ti-Ti dimer-induced flat bands in enchaining solar absorption and peculiar U-shaped grooves in promoting water dissociation, offering insights into access to cost-effective solar-to-steam generation.

2.
Phys Chem Chem Phys ; 24(34): 20400-20408, 2022 Aug 31.
Article in English | MEDLINE | ID: mdl-35983832

ABSTRACT

Hydrogen trapping is a key factor in designing advanced vanadium alloys and steels, where the influence of carbon vacancies is still elusive. Herein we have investigated the effect of carbon vacancies on the hydrogen trapping of defect-complexes in vanadium carbide using first-principles calculations. When a carbon vacancy is present, the second nearest neighboring trigonal interstitial is a stable hydrogen trapping site. A C vacancy enhances the hydrogen trapping ability by reducing the chemical and mechanical effects on H atom solution energy. Electronic structure analysis shows that C vacancies increase the charge density and the Bader atomic volume, leading to a lower H atom solution energy. The strength of the V-H bond is predominant in determining the hydrogen trapping ability in the presence of a C vacancy, in contrast to that of a C-H bond when the C vacancy is absent.

3.
Phys Chem Chem Phys ; 24(36): 22332, 2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36098256

ABSTRACT

Correction for 'First-principles insights into hydrogen trapping in interstitial-vacancy complexes in vanadium carbide' by Shuai Tang et al., Phys. Chem. Chem. Phys., 2022, DOI: https://doi.org/10.1039/d2cp02425j.

4.
Materials (Basel) ; 17(19)2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39410326

ABSTRACT

Superelastic shape memory alloys with an integration of large elastocaloric response and good cyclability are crucially demanded for the advancement of solid-state elastocaloric cooling technology. In this study, we demonstrate a giant elastocaloric effect with improved cyclic stability in a <001>A textured polycrystalline (Ni50Mn31Ti19)99B1 alloy developed through directional solidification. It is shown that large adiabatic temperature variation (|ΔTad|) values more than 15 K are obtained across the temperature range from 283 K to 373 K. In particular, a giant ΔTad up to -27.2 K is achieved by unloading from a relatively low compressive stress of 412 MPa at 303 K. Moreover, persistent |ΔTad| values exceeding 8.5 K are sustained for over 12,000 cycles, exhibiting a very low attenuation behavior with a rate of 7.5 × 10-5 K per cycle. The enhanced elastocaloric properties observed in the present alloy are ascribed to the microstructure texturing as well as the introduction of a secondary phase due to boron alloying.

5.
Nat Commun ; 15(1): 3079, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594273

ABSTRACT

Reconstructive phase transitions involving breaking and reconstruction of primary chemical bonds are ubiquitous and important for many technological applications. In contrast to displacive phase transitions, the dynamics of reconstructive phase transitions are usually slow due to the large energy barrier. Nevertheless, the reconstructive phase transformation from ß- to λ-Ti3O5 exhibits an ultrafast and reversible behavior. Despite extensive studies, the underlying microscopic mechanism remains unclear. Here, we discover a kinetically favorable in-plane nucleated layer-by-layer transformation mechanism through metadynamics and large-scale molecular dynamics simulations. This is enabled by developing an efficient machine learning potential with near first-principles accuracy through an on-the-fly active learning method and an advanced sampling technique. Our results reveal that the ß-λ phase transformation initiates with the formation of two-dimensional nuclei in the ab-plane and then proceeds layer-by-layer through a multistep barrier-lowering kinetic process via intermediate metastable phases. Our work not only provides important insight into the ultrafast and reversible nature of the ß-λ transition, but also presents useful strategies and methods for tackling other complex structural phase transitions.

6.
Materials (Basel) ; 17(4)2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38399136

ABSTRACT

Seeking novel high-performance elastocaloric materials with low critical stress plays a crucial role in advancing the development of elastocaloric refrigeration technology. Here, as a first attempt, the elastocaloric effect of TiZrNbAl shape memory alloy at both room temperature and finite temperatures ranging from 245 K to 405 K, is studied systematically. Composition optimization shows that Ti-19Zr-14Nb-1Al (at.%), possessing excellent room-temperature superelasticity with a critical stress of around 100 MPa and a small stress hysteresis of around 70 MPa and outstanding fracture resistance with a compressive strain of 20% and stress of 1.7 GPa, demonstrates a substantial advantage as an elastocaloric refrigerant. At room temperature, a large adiabatic temperature change (ΔTad) of -6.7 K is detected, which is comparable to the highest value reported in the Ti-based alloys. A high elastocaloric cyclic stability, with almost no degradation of ΔTad after 4000 cycles, is observed. Furthermore, the sizeable elastocaloric effect can be steadily expanded from 255 K to 395 K with a temperature window of as large as 140 K. A maximum ΔTad of -7.9 K appears at 355 K. The present work demonstrates a promising potential of TiZrNbAl as a low critical stress and low hysteresis elastocaloric refrigerant.

7.
Materials (Basel) ; 16(19)2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37834667

ABSTRACT

CoCrNi alloys exhibit excellent strength and ductility. In this work, the CoCrNiV multi-principal alloy with single-phase fine grained (FG) structure was prepared by rolling and heat treatment. The characteristics of deformation microstructures and mechanical properties were systematically investigated by scanning electron microscope (SEM) and transmission electron microscope (TEM). The results indicate that the CoCrNiV alloy successfully attains a yield strength of 1060 MPa while maintaining a uniform elongation of 24.1%. The enhanced strength originates from FG structure and severe lattice distortion induced by V addition. Meanwhile, the exceptional ductility arises from the stable strain-hardening ability facilitated by dislocations and stacking faults. The deformation mechanisms and the optimization strategies for attaining both strength and ductility are thoroughly discussed.

8.
Materials (Basel) ; 16(14)2023 Jul 22.
Article in English | MEDLINE | ID: mdl-37512441

ABSTRACT

Equiatomic CoCrNi medium-entropy alloys exhibit superior strength and ductility. In this work, a non-equiatomic CoCrNi alloy with low stacking fault energy was designed, and different fractions of V were added to control the stacking fault energy and lattice distortion. Mechanical properties were evaluated by tensile tests, and deformation microstructures were characterized by transmission electron microscope (TEM). The main deformation mechanisms of CoCrNiV alloy with low V content are dislocation slip, stacking faults, and deformation-induced HCP phase transformation, while the dominant deformation patterns of CoCrNiV alloy with high V contents are dislocation slip and stacking faults. The yield strength increases dramatically when the V content is high, and the strain-hardening behavior changes non-monotonically with increasing the V content. V addition increases the stacking fault energy (SFE) and lattice distortion. The lower strain-hardening rate of 6V alloy than that of 2V alloy is dominated by the SFE. The higher strain-hardening rate of 10V alloy than that of 6V alloy is dominated by the lattice distortion. The effects of V addition on the SFE, lattice distortion, and strain-hardening behavior are discussed.

9.
Materials (Basel) ; 16(3)2023 Jan 29.
Article in English | MEDLINE | ID: mdl-36770149

ABSTRACT

Giant magnetostriction could be achieved in MnCoSi-based alloys due to the magneto-elastic coupling accompanied by the meta-magnetic transition. In the present work, the effects of hydrostatic pressure on magnetostrictive behavior in MnCo0.92Ni0.08Si alloy have been investigated. The saturation magnetostriction (at 30,000 Oe) could be enhanced from 577 ppm to 5034 ppm by the hydrostatic pressure of 3.2 kbar at 100 K. Moreover, under a magnetic field of 20,000 Oe, the reversible magnetostriction was improved from 20 ppm to 2112 ppm when a hydrostatic pressure of 6.4 kbar was applied at 70 K. In all, it has been found that the magnetostrictive effect of the MnCo0.92Ni0.08Si compound is strongly sensitive to external hydrostatic pressure. This work proves that the MnCoSi-based alloys as a potential cryogenic magnetostrictive material can be modified through applied hydrostatic pressure.

10.
Materials (Basel) ; 16(20)2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37895661

ABSTRACT

Impacts of Mn alloying on lattice stabilities, magnetic properties, electronic structures of the bcc and fcc phases and the fcc→bcc phase transition in Fe16-xMnx (x = 0, 1 and 2) alloys are studied by first-principles calculations. Results show that the doped Mn atom prefers ferromagnetic and antiferromagnetic interaction with the host Fe atoms in the bcc and fcc phases, respectively. In these two phases, the magnetic moment of Mn is smaller and larger than Fe, respectively. The local moment of Fe is decided by the Fe-Mn distance in the bcc phase, whereas in the fcc phase, it is determined by spatial orientation with Mn. In the different phases, Mn prefers different site occupations, which can be understood from the electronic density of states near Fermi energy, implying a possibility of element redistribution during phase transition. The driving force of phase transition decreases with Mn alloying. Both destabilized bcc phase and stabilized fcc phase contribute to the inhibited phase transition, but the latter plays a dominant role. Antiferromagnetism is recognized as the key reason for the enhanced stability of the fcc phase by Mn alloying.

11.
Materials (Basel) ; 16(7)2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37049143

ABSTRACT

In this paper, indium tin oxide/silver indium/indium tin oxide (ITO/AgIn/ITO) composite films were deposited on glass substrates by magnetron sputtering. The effects of the sputtering temperature on the optical and electrical properties of the composite films were systematically investigated. The ITO/AgIn/ITO composite films deposited at sputtering temperatures of 25 °C and 100 °C demonstrated a high reflectivity of 95.3% at 550 nm and a resistivity of about 6.8-7.3 µΩ·cm. As the sputtering temperature increased, the reflectivity decreased and the resistivity increased slightly. The close connection between microstructure and surface morphology and the optical and electrical properties of the composite films was further illustrated by scanning electron microscopy imaging and atomic force microscopy imaging. It is shown that the ITO/AgIn/ITO thin films have a promising application for high-reflectivity anodes.

12.
Materials (Basel) ; 15(6)2022 Mar 11.
Article in English | MEDLINE | ID: mdl-35329524

ABSTRACT

Large magnetostrain can be demonstrated in Ni-Mn-X (X = In, Sn, Sb) meta-magnetic shape memory alloys by resuming the predeformed martensite through magnetic-field-induced reverse martensitic transformation. However, owing to the constraint from the self-accommodated microstructure and randomly distributed crystallographic orientation, spontaneous magnetostrain without predeformation in polycrystalline alloys remains low. Here, by combining microstructure texturing and superelastic training, enhanced spontaneous magnetostrain was achieved in a directionally solidified Ni44.5Co4.9Mn37.5In13.1 alloy with strong <0 0 1>A preferred orientation. After superelastic training through cyclic compressive loading/unloading on the directionally solidified alloy, a large spontaneous magnetostrain of ~0.65% was obtained by applying a magnetic field of 5 T, showing great improvement when compared to that of the untrained situation, i.e., ~0.45%. Such enhanced magnetoresponse is attributed to the internal stress generated through superelastic training, which affects the variant distribution and the resultant output strain in association with the martensitic transformation.

13.
Materials (Basel) ; 15(5)2022 Mar 04.
Article in English | MEDLINE | ID: mdl-35269146

ABSTRACT

Epitaxial Ni-Mn-Ga thin films have been extensively investigated, due to their potential applications in magnetic micro-electro-mechanical systems. It has been proposed that the martensitic phase in the <1 1 0>A-oriented film is much more stable than that in the <1 0 0>A-oriented film. Nevertheless, the magnetic properties, microstructural features, and crystal structures of martensite in such films have not been fully revealed. In this work, the <1 1 0>A-oriented Ni51.0Mn27.5Ga21.5 films with different thicknesses were prepared by epitaxially growing on Al2O3(1 1 2¯ 0) substrate by magnetron sputtering. The characterization by X-ray diffraction technique and transmission electron microscopy revealed that all the Ni51.0Mn27.5Ga21.5 films are of 7M martensite at the ambient temperature, with their Type-I and Type-II twinning interfaces nearly parallel to the substrate surface.

14.
ACS Appl Mater Interfaces ; 14(1): 1505-1518, 2022 Jan 12.
Article in English | MEDLINE | ID: mdl-34949086

ABSTRACT

High-performance elastocaloric materials are highly sought in developing energy-efficient and environmentally friendly solid-state elastocaloric refrigeration. Here, we present an effective strategy to achieve a giant elastocaloric response by enlarging the lattice volume change ΔV/V0 upon the martensitic transformation. Using the Ni50Mn50 binary alloy as the prototype, a large transformation entropy change ΔStr can be tailored in the vicinity of room temperature by simultaneously doping Cu and Ga. Especially, the |ΔStr| values in the ⟨001⟩A-textured Ni30Cu20Mn39.5Ga10.5 and Ni30Cu20Mn39Ga11 alloys prepared by directional solidification can be as large as 47.5 and 46.7 Jkg-1 K-1, respectively, due to the significant ΔV/V0 values, i.e., 1.81 and 1.82%, respectively. Such enhanced ΔStr values thus yield giant ΔTad values of up to -23.5 and -19.3 K on removing the compressive stress in these two alloys, being much higher than those in Heusler-type alloys reported previously. Moreover, owing to the relatively low driving stress endowed by the highly textured microstructure, the specific adiabatic temperature change (|ΔTad/Δσmax|) in the present work can be as large as 77.2 K/GPa. This work is expected to provide new routes in designing high-performance elastocaloric materials with the combination of a giant elastocaloric response and low driving stress.

15.
Materials (Basel) ; 14(18)2021 Sep 11.
Article in English | MEDLINE | ID: mdl-34576457

ABSTRACT

First-order isostructural magnetoelastic transition with large magnetization difference and controllable thermal hysteresis are highly desirable in the development of high-performance magnetocaloric materials used for energy-efficient and environmental-friendly magnetic refrigeration. Here, we demonstrate large magnetocaloric effect covering the temperature range from 325 K to 245 K in Laves phase Hf1-xTaxFe2 (x = 0.13, 0.14, 0.15, 0.16) alloys undergoing the magnetoelastic transition from antiferromagnetic (AFM) state to ferromagnetic (FM) state on decreasing the temperature. It is shown that with the increase of Ta content, the nature of AFM to FM transition is gradually changed from second-order to first-order. Based on the direct measurements, large reversible adiabatic temperature change (ΔTad) values of 2.7 K and 3.4 K have been achieved under a low magnetic field change of 1.5 T in the Hf0.85Ta0.15Fe2 and Hf0.84Ta0.16Fe2 alloys with the first-order magnetoelastic transition, respectively. Such remarkable magnetocaloric response is attributed to the rather low thermal hysteresis upon the transition as these two alloys are close to intermediate composition point of second-order transition converting to first-order transition.

16.
IUCrJ ; 6(Pt 5): 843-853, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31576218

ABSTRACT

Meta-magnetic shape-memory alloys combine ferroelastic order with ferromagnetic order and exhibit attractive multifunctional properties, but they are extremely brittle, showing hardly any tensile deformability, which impedes their practical application. Here, for the first time, an Ni-Cu-Co-Mn-In microwire has been developed that simultaneously exhibits a magnetic field-induced first-order meta-magnetic phase transition and huge tensile superelasticity. A temperature-dependent in situ synchrotron high-energy X-ray diffraction investigation reveals that the martensite of this Ni43.7Cu1.5Co5.1Mn36.7In13 microwire shows a monoclinic six-layered modulated structure and the austenite shows a cubic structure. This microwire exhibits an oligocrystalline structure with bamboo grains, which remarkably reduces the strain incompatibility during deformation and martensitic transformation. As a result, huge tensile superelasticity with a recoverable strain of 13% is achieved in the microwire. This huge tensile superelasticity is in agreement with our theoretical calculations based on the crystal structure and lattice correspondence of austenite and martensite and the crystallographic orientation of the grains. Owing to the large magnetization difference between austenite and martensite, a pronounced magnetic field-induced magnetostructural transition is achieved in the microwire, which could give rise to a variety of magnetically driven functional properties. For example, a large magnetocaloric effect with an isothermal entropy change of 12.7 J kg-1 K-1 (under 5 T) is obtained. The realization of magnetic-field- and tensile-stress-induced structural transformations in the microwire may pave the way for exploiting the multifunctional properties under the coupling of magnetic field and stress for applications in miniature multifunctional devices.

SELECTION OF CITATIONS
SEARCH DETAIL