Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Curr Issues Mol Biol ; 45(7): 5422-5436, 2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37504260

ABSTRACT

NAC transcription factors (TFs) are one of the largest plant-specific gene families and play important roles in plant growth, development, and the biotic and abiotic stress response. Although the sequencing of Jojoba (Simmondsia chinensis) has been completed, the genome-wide identification and analysis of its NAC TFs has not been reported. In this study, a total of 57 genes were identified in Jojoba, which were divided into eight groups based on phylogenetic analysis. The genes clustered in the same groups have a similar gene structure and motif distribution. Based on the analysis of cis-elements in NAC TFs, nine cis-acting elements were identified in the promoter region that involved in light response, hormonal response, and stress response. Synteny analysis showed a greater collinearity between Jojoba and V. vinifera than Arabidopsis thaliana. The 24 genes in the Jojoba NAC TFs are derived from fragment replication, which may be the main source of NAC amplification. Gene expression analysis identified seven genes that were highly expressed in seeds. The differential expression analysis of NAC TFs in cotyledon and embryonic axis tissues showed that the expression of 10 genes was up-regulated and 1 gene was down-regulated. This study provides more information on the classification, gene structure, conserved motif, and evolution of NAC TFs in Jojoba, facilitating further exploration of their specific functional analysis in Jojoba seed development.

2.
Physiol Plant ; 175(1): e13869, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36723249

ABSTRACT

Mitogen-activated protein kinases (MAPKs) play important roles in plant growth and development, as well as hormone and stress responses by signaling to eukaryotic cells, through MAPK cascade, the presence of various cues; thereby, regulating various responses. The MAPK cascade consists mainly of three gene families, MAPK, MAPKK, and MAPKKK, which activate downstream signaling pathways through sequential phosphorylation. Although the MAPK cascade gene family has been reported in several species, there is a lack of comprehensive analysis in poplar. We identified 21 MAPK genes, 11 MAPKK genes, and 104 MAPKKK genes in Populus trichocarpa. The phylogenetic classification was supported by conservative motif, gene structure and motif analysis. Whole genome duplication has an important role in the expansion of MAPK cascade genes. Analysis of promoter cis-elements and expression profiles indicates that MAPK cascade genes have important roles in plant growth and development, abiotic and biotic stresses, and phytohormone response. Expression profiling revealed a significant upregulation of PtMAPK3-1 expression in response to drought, salt and disease stresses. Poplar transiently overexpressing PtMAPK3-1 and treated with methyl jasmonic acid (MeJA) had higher catalase and peroxidase levels than non-overexpressing poplar. This work represents the first complete inventory of the MAPK cascade in P. trichocarpa, which reveals that PtMAPK3-1 is induced by the MeJA hormone and participates in the MeJA-induced enhancement of the antioxidant enzyme system.


Subject(s)
Populus , Populus/genetics , Phylogeny , Mitogen-Activated Protein Kinase Kinases/chemistry , Mitogen-Activated Protein Kinase Kinases/genetics , Mitogen-Activated Protein Kinase Kinases/metabolism , Stress, Physiological/genetics , MAP Kinase Kinase Kinases/genetics , MAP Kinase Kinase Kinases/metabolism , Hormones , Gene Expression Regulation, Plant , Plant Proteins/metabolism , Gene Expression Profiling
3.
Int J Mol Sci ; 23(6)2022 Mar 21.
Article in English | MEDLINE | ID: mdl-35328791

ABSTRACT

Drought-induced 19 (Di19) proteins play important roles in abiotic stress responses. Thus far, there are no reports about Di19 family in woody plants. Here, eight Di19 genes were identified in poplar. We analyzed phylogenetic tree, conserved protein domain, and gene structure of Di19 gene members in seven species. The results showed the Di19 gene family was very conservative in both dicotyledonous and monocotyledonous forms. On the basis of transcriptome data, the expression patterns of Di19s in poplar under abiotic stress and ABA treatment were further studied. Subsequently, homologous genes PtDi19-2 and PtDi19-7 with strong response to drought stress were identified. PtDi19-2 functions as a nuclear transcriptional activator with a transactivation domain at the C-terminus. PtDi19-7 is a nuclear and membrane localization protein. Additionally, PtDi19-2 and PtDi19-7 were able to interact with each other in yeast two-hybrid system. Overexpression of PtDi19-2 and PtDi19-7 in Arabidopsis was found. Phenotype identification and physiological parameter analysis showed that transgenic Arabidopsis increased ABA sensitivity and drought tolerance. PtDi19-7 was overexpressed in hybrid poplar 84K (Populus alba × Populus glandulosa). Under drought treatment, the phenotype and physiological parameters of transgenic poplar were consistent with those of transgenic Arabidopsis. In addition, exogenous ABA treatment induced lateral bud dormancy of transgenic poplar and stomatal closure of transgenic Arabidopsis. The expression of ABA/drought-related marker genes was upregulated under drought treatment. These results indicated that PtDi19-2 and PtDi19-7 might play a similar role in improving the drought tolerance of transgenic plants through ABA-dependent signaling pathways.


Subject(s)
Arabidopsis , Populus , Abscisic Acid/metabolism , Abscisic Acid/pharmacology , Arabidopsis/metabolism , Droughts , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/metabolism , Populus/genetics , Populus/metabolism , Stress, Physiological
5.
BMC Plant Biol ; 21(1): 447, 2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34615481

ABSTRACT

BACKGROUND: Panax notoginseng (Burk.) F. H. Chen (P. notoginseng) is a medicinal plant. Cytochrome P450 (CYP450) monooxygenase superfamily is involved in the synthesis of a variety of plant hormones. Studies have shown that CYP450 is involved in the synthesis of saponins, which are the main medicinal component of P. notoginseng. To date, the P. notoginseng CYP450 family has not been systematically studied, and its gene functions remain unclear. RESULTS: In this study, a total of 188 PnCYP genes were identified, these genes were divided into 41 subfamilies and clustered into 9 clans. Moreover, we identified 40 paralogous pairs, of which only two had Ka/Ks ratio greater than 1, demonstrating that most PnCYPs underwent purification selection during evolution. In chromosome mapping and gene replication analysis, 8 tandem duplication and 11 segmental duplication events demonstrated that PnCYP genes were continuously replicating during their evolution. Gene ontology (GO) analysis annotated the functions of 188 PnCYPs into 21 functional subclasses, suggesting the functional diversity of these gene families. Functional divergence analyzed the members of the three primitive branches of CYP51, CYP74 and CYP97 at the amino acid level, and found some critical amino acid sites. The expression pattern of PnCYP450 related to nitrogen treatment was studied using transcriptome sequencing data, 10 genes were significantly up-regulated and 37 genes were significantly down-regulated. Combined with transcriptome sequencing analysis, five potential functional genes were screened. Quantitative real-time PCR (qRT-PCR) indicated that these five genes were responded to methyl jasmonate (MEJA) and abscisic acid (ABA) treatment. CONCLUSIONS: These results provide a valuable basis for comprehending the classification and biological functions of PnCYPs, and offer clues to study their biological functions in response to nitrogen treatment.


Subject(s)
Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Nitrogen/metabolism , Panax notoginseng/genetics , Panax notoginseng/metabolism , Plants, Medicinal/genetics , Plants, Medicinal/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant , Genes, Plant , Genetic Variation , Genome , Genotype , Phylogeny
6.
Physiol Plant ; 171(3): 309-327, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32134494

ABSTRACT

In the past few years, many studies have reported that the transcription factor Nuclear Factor Y (NF-Y) gene family plays important roles in embryonic development, photosynthesis, flowering time regulation and stress response, in various plants. Although the NF-Y gene family has been systematically studied in many species, little is known about NF-Y genes in Populus. In this study, the NF-Y gene family in the Populus genome was identified and its structural characteristics were described. Fifty-two NF-Y genes were authenticated in the Populus trichocarpa genome and categorized into three subfamilies (NF-YA/B/C) by phylogenetic analysis. Chromosomal localization of these genes revealed that they were distributed randomly across 17 of the 19 chromosomes. Segmental duplication played a vital role in the amplification of Populus NF-Y gene family. Moreover, microsynteny analysis indicated that, among Populus trichocarpa, Arabidopsis thaliana, Vitis vinifera and Carica papaya, NF-Y duplicated regions were more conserved between Populus trichocarpa and Vitis vinifera. Redundant stress-related cis-elements were also found in the promoters of most 13 NF-YA genes and their expression levels varied widely following drought, salt, ABA and cold treatments. Subcellular localization experiments in tobacco showed that PtNF-YA3 was localized in nucleus and cytomembrane, while PtNF-YA4 was only in the nucleus in tobacco. According to the transcriptional activity experiments, neither of them had transcriptional activity in yeast. In summary, a comprehensive analysis of the Populus NF-Y gene family was performed to establish a theoretical basis for further functional studies on this family.


Subject(s)
Populus , CCAAT-Binding Factor , Gene Expression Profiling , Gene Expression Regulation, Plant/genetics , Multigene Family , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Populus/genetics , Populus/metabolism , Transcription Factors/metabolism
7.
Planta ; 251(5): 99, 2020 Apr 21.
Article in English | MEDLINE | ID: mdl-32318830

ABSTRACT

MAIN CONCLUSION: Overexpression ofPeVQ28in Arabidopsis regulated the expression of salt/ABA-responsive genes and indicated thatPeVQ28may affect the ABA synthesis induced by stress in plants by regulating salt tolerance. Plant-specific VQ proteins, which contain a conserved short FxxhVQxhTG amino acid sequence motif, play an important role in abiotic stress responses, but their functions have not been previously studied in Moso bamboo (Phyllostachys edulis). In this study, real-time quantitative PCR analysis indicated that expression of PeVQ28 was induced by salt and abscisic acid stresses. A subcellular localization experiment showed that PeVQ28 was localized in the nuclei of tobacco leaf cells. Yeast two-hybrid and bimolecular fluorescence complementation analyses indicated that PeVQ28 and WRKY83 interactions occurred in the nucleus. The PeVQ28-overexpressing Arabidopsis lines showed increased resistance to salt stress and enhanced sensitivity to ABA. Compared with wild-type plants under salt stress, PeVQ28-transgenic plants had lower malondialdehyde and higher proline contents, which might enhance stress tolerance. Overexpression of PeVQ28 in Arabidopsis enhanced expression of salt- and ABA-responsive genes. These results suggest that PeVQ28 functions in the positive regulation of salt tolerance mediated by an ABA-dependent signaling pathway.


Subject(s)
Abscisic Acid/metabolism , Gene Expression Regulation, Plant , Plant Growth Regulators/metabolism , Plant Proteins/metabolism , Poaceae/genetics , Proline/metabolism , Arabidopsis/genetics , Arabidopsis/physiology , Gene Expression , Malondialdehyde/metabolism , Plant Proteins/genetics , Plants, Genetically Modified , Poaceae/physiology , Salt Stress , Salt Tolerance , Signal Transduction , Species Specificity , Stress, Physiological , Two-Hybrid System Techniques
8.
BMC Plant Biol ; 19(1): 154, 2019 Apr 25.
Article in English | MEDLINE | ID: mdl-31023225

ABSTRACT

BACKGROUND: Trihelix transcription factors (TTFs) are photoresponsive proteins that have a representative three-helix structure (helix-loop-helix-loop-helix). Members of this gene family have been reported to play roles in many plant processes. RESULTS: In this study, we performed a functional and evolutionary analysis of the TTFs in Moso bamboo (Phyllostachys edulis). A total of 35 genes were identified and grouped into five subfamilies (GT-1, GT-γ, GT-2, SIP1 and SH4) according to their structural properties. Gene structure analysis showed that most genes in the PeTTF family had fewer introns. A unique motif (Motif 16) to the GT-γ subfamily was identified by conserved motif analysis. Promoter analysis revealed various cis-acting elements related to plant growth and development, abiotic and biotic stresses, and phytohormone responses. Data for the 35 Moso bamboo TTF genes were used to generate heat maps, which indicated that these genes were expressed in different tissues or developmental stages. Most of the TTF genes identified here had high expression in leaves and panicles according to the expression profile analysis. The expression levels of the TTF members in young leaves were studied using quantitative real-time PCR to determine their tissue specificity and stress-related expression patterns to help functionally characterize individual members. CONCLUSIONS: The results indicated that members of the TTF gene family may be involved in plant responses to stress conditions. Additionally, PeTTF29 was shown to be located in the nucleus by subcellular localization analysis and to have transcriptional activity in a transcriptional activity assay. Our research provides a comprehensive summary of the PeTTF gene family, including functional and evolutionary perspectives, and provides a basis for functionally characterizing these genes.


Subject(s)
Evolution, Molecular , Poaceae/genetics , Transcription Factors/genetics , Acetates/pharmacology , Arabidopsis/genetics , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Conserved Sequence , Cyclopentanes/pharmacology , Gene Expression Profiling , Gene Expression Regulation, Plant/drug effects , Gene Ontology , Genes, Plant , Nucleotide Motifs , Oryza/genetics , Oxylipins/pharmacology , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Promoter Regions, Genetic , Transcription Factors/metabolism , Transcriptional Activation/drug effects , Transcriptional Activation/genetics
9.
Int J Mol Sci ; 20(9)2019 May 05.
Article in English | MEDLINE | ID: mdl-31060272

ABSTRACT

The basic leucine zipper (bZIP) transcription factor (TF) family is one of the largest gene families, and play crucial roles in many processes, including stress responses, hormone effects. The TF family also participates in plant growth and development. However, limited information is available for these genes in moso bamboo (Phyllostachys edulis), one of the most important non-timber forest products in the world. In the present study, 154 putative PhebZIP genes were identified in the moso bamboo genome. The phylogenetic analyses indicate that the PhebZIP gene proteins classify into 9 subfamilies and the gene structures and conserved motifs that analyses identified among all PhebZIP proteins suggested a high group-specificity. Microsynteny and evolutionary patterns analyses of the non-synonymous (Ka) and synonymous (Ks) substitution rates and their ratios indicated that paralogous pairs of PhebZIP genes in moso bamboo underwent a large-scale genome duplication event that occurred 7-15 million years ago (MYA). According to promoter sequence analysis, we further selected 18 genes which contain the higher number of cis-regulatory elements for expression analysis. The result showed that these genes are extensively involved in GA-, ABA- and MeJA-responses, with possibly different mechanisms. The tissue-specific expression profiles of PhebZIP genes in five plant tissues/organs/developmental stages suggested that these genes are involved in moso bamboo organ development, especially seed development. Subcellular localization and transactivation activity analysis showed that PhebZIP47 and PhebZIP126 were localized in the nucleus and PhebZIP47 with no transcriptional activation in yeast. Our research provides a comprehensive understanding of PhebZIP genes and may aid in the selection of appropriate candidate genes for further cloning and functional analysis in moso bamboo growth and development, and improve their resistance to stress during their life.


Subject(s)
Basic-Leucine Zipper Transcription Factors/genetics , Gene Expression Regulation, Plant , Genome, Plant , Genome-Wide Association Study , Sasa/genetics , Amino Acid Motifs , Amino Acid Sequence , Basic-Leucine Zipper Transcription Factors/chemistry , Basic-Leucine Zipper Transcription Factors/metabolism , Chromosome Mapping , Computational Biology , Conserved Sequence , Evolution, Molecular , Gene Expression Profiling , Phylogeny , Regulatory Sequences, Nucleic Acid , Sasa/classification , Sasa/metabolism , Transcriptome
10.
Planta ; 247(5): 1133-1148, 2018 May.
Article in English | MEDLINE | ID: mdl-29383450

ABSTRACT

MAIN CONCLUSION: 74 phytocyanin genes were identified in the Populus trichocarpa genome. Phylogenetic analysis grouped the PC proteins into four subfamilies (UCs, PLCs, SCs, and ENODLs). Closely related PC proteins share similar motifs, implying similar functions. Expression profiles of PtPC genes were analyzed in response to drought and salt-stress. Phytocyanins (PCs) are blue copper proteins associated with electron carrier activity that have a large influence on plant growth and resistance. The majority of PCs are chimeric arabinogalactan proteins (AGPs). In this work, we identified 74 PC genes in Populus trichocarpa and analyzed them comprehensively. Based on the ligands composition of copper-binding sites, glycosylation state, the domain structure and spectral characteristics of PC genes, PCs were divided into four subfamilies [uclacyanins (UCs), plantacyanins (PLCs), stellacyanins (SCs) and early nodulin-like proteins (ENODLs)], and phylogenetic relationship analysis classified them into seven groups. All PtPCs are randomly distributed on 17 of the 19 poplar chromosomes, and they appear to have undergone expansion via segmental duplication. Eight PtPCs do not contain introns, and each group has a similar conserved motif structure. Promoter analysis revealed cis-elements related to growth, development and stress responses, and established orthology relationships of PCs between Arabidopsis and poplar by synteny analysis. Expression profile analysis and qRT-PCR analysis showed that PtPCs were expressed widely in various tissues. Quantitative real-time RT-PCR analysis of PC genes expression in response to salt and drought stress revealed their stress-responses profiles. This work provides a theoretical basis for a further study of stress resistance mechanisms and the function of PC genes in poplar growth and development.


Subject(s)
Genome, Plant/genetics , Metalloproteins/genetics , Plant Proteins/genetics , Populus/genetics , Chromosomes, Plant/genetics , Copper/metabolism , Genes, Plant/genetics , Metalloproteins/classification , Metalloproteins/metabolism , Phylogeny , Plant Proteins/classification , Plant Proteins/metabolism , Populus/metabolism , Real-Time Polymerase Chain Reaction , Transcriptome/genetics
11.
Physiol Plant ; 162(3): 333-352, 2018 Mar.
Article in English | MEDLINE | ID: mdl-28902414

ABSTRACT

Previous studies have shown that the serine carboxypeptidase-like (SCPL) proteins in several plants play a key part in plant growth, development and stress responses. However, little is known about the functions of the SCPL genes in poplar. We identified 57 SCPL genes and divided into 3 subfamilies, which were unevenly distributed on 19 poplar chromosomes. Gene structure indicated that SCPL genes contain more introns, and motifs of each subfamily were relatively conserved. There were a total of 14 pairs of paralogs, with 6 pairs of these paralogs generated by segmental duplication and 1 generated by tandem duplication. In microsynteny analysis, large-scale duplication events played a key part in the expansion of Carboxypeptidase III genes. Expression of these genes was higher in mature leaf. Quantitative real-time PCR showed that majority of the SCPL genes were induced by methyl jasmonate (MeJA) treatment. PtSCPL27 and PtSCPL40 were located on the cytomembrane by conducting subcellular localization analysis. Our paper provides a theoretical basis for further functional research of PtSCPL genes and will benefit the molecular breeding for resistance to disease in poplar.


Subject(s)
Carboxypeptidases/genetics , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Plant , Genome, Plant/genetics , Plant Proteins/genetics , Populus/genetics , Carboxypeptidases/classification , Chromosome Mapping , Chromosomes, Plant/genetics , Cluster Analysis , Gene Expression Profiling/methods , Multigene Family/genetics , Phylogeny , Populus/enzymology
12.
Planta ; 246(1): 165-181, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28417193

ABSTRACT

MAIN CONCLUSION: 29 Moso bamboo VQ proteins were genome-wide identified for the first time, and bioinformatics analysis was performed to investigate phylogenetic relationships and evolutionary divergence. The qRT-PCR data show that PeVQ genes response to different stress treatments. Accumulating evidence suggests that VQ motif-containing proteins in rice (Oryza sativa), Arabidopsis (Arabidopsis thaliana), and maize (Zea mays) play fundamental roles in response to various biotic and abiotic stresses. However, little is known about the functions of VQ family proteins in Moso bamboo (Phyllostachys edulis). In this study, we performed a genome-wide bioinformatic analysis and expression profiling of PeVQ genes. A total of 29 VQ genes was identified and divided into seven subgroups (I-VII) based on phylogenetic analysis. Gene structure and conserved motif analysis revealed that 25 of 29 VQ genes contained no introns. Multiple sequence alignment showed that Moso bamboo VQ motif-containing proteins contained five variations of the conserved motif. The time of duplication and divergence of Moso bamboo from rice and maize was calculated using K s analysis. A heat map was generated using microarray data from 29 Moso bamboo VQ genes suggesting that these genes were expressed in different tissues or developmental stages. Quantitative real-time PCR (qRT-PCR) and promoter analysis indicated that PeVQ genes were differentially regulated following treatment with polyethylene glycol, abscisic acid and salicylic acid. Our results provide a solid foundation for further research of the specific functions of VQ motif-containing proteins in Moso bamboo.


Subject(s)
Plant Proteins/genetics , Poaceae/genetics , Gene Expression Regulation, Plant/genetics , Genome, Plant/genetics , Multigene Family/genetics
13.
BMC Bioinformatics ; 17: 289, 2016 Jul 27.
Article in English | MEDLINE | ID: mdl-27465544

ABSTRACT

BACKGROUND: Intronless genes are a significant characteristic of prokaryotes. Systematic identification and annotation are primary and crucial steps for determining the functions of intronless genes and understanding their occurrence in eukaryotes. DESCRIPTION: In this paper, we describe the construction of the Intronless Genes Database in Dicots (IGDD; available at http://bio.njfu.edu.cn/igdd/ ), which contains data for five well-annotated plants including Arabidopsis thaliana, Carica papaya, Populus trichocarpa, Salix suchowensis and Vitis vinifera. Using highly visual settings, IGDD displays the structural and functional annotations, the homolog groups, the syntenic relationships, the expression patterns, and the statistical characteristics of intronless genes. In addition, useful tools such as an advanced search and local BLAST are available through a user-friendly and intuitive web interface. CONCLUSION: In conclusion, the IGDD provides a comprehensive and up-to-date platform for researchers to assist the exploration of intronless genes in dicot plants.


Subject(s)
Databases, Genetic , Magnoliopsida/genetics , Arabidopsis/genetics , Carica/genetics , Internet , Introns , Populus/genetics , Salix/genetics , User-Computer Interface , Vitis/genetics
14.
BMC Genomics ; 15: 832, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25270086

ABSTRACT

BACKGROUND: Intronless genes are a feature of prokaryotes; however, they are widespread and unequally distributed among eukaryotes and represent an important resource to study the evolution of gene architecture. Although many databases on exons and introns exist, there is currently no cohesive database that collects intronless genes in plants into a single database. DESCRIPTION: In this study, we present the Poaceae Intronless Genes Database (PIGD), a user-friendly web interface to explore information on intronless genes from different plants. Five Poaceae species, Sorghum bicolor, Zea mays, Setaria italica, Panicum virgatum and Brachypodium distachyon, are included in the current release of PIGD. Gene annotations and sequence data were collected and integrated from different databases. The primary focus of this study was to provide gene descriptions and gene product records. In addition, functional annotations, subcellular localization prediction and taxonomic distribution are reported. PIGD allows users to readily browse, search and download data. BLAST and comparative analyses are also provided through this online database, which is available at http://pigd.ahau.edu.cn/. CONCLUSION: PIGD provides a solid platform for the collection, integration and analysis of intronless genes in the Poaceae. As such, this database will be useful for subsequent bio-computational analysis in comparative genomics and evolutionary studies.


Subject(s)
Databases, Genetic , Genes, Plant , Poaceae/genetics , Introns , Poaceae/classification , User-Computer Interface , Web Browser
15.
Plant Cell Physiol ; 55(6): 1142-56, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24817160

ABSTRACT

Increasing evidence suggests that homeodomain-leucine zipper I (HD-Zip) I transcription factors play important roles in abiotic stress responses, but no HD-Zip I proteins have been reported in maize. Here, a drought-induced HD-Zip I gene, Zmhdz10, was isolated from maize and characterized for its role in stress responses. Real-time quantitative PCR showed that expression of Zmhdz10 was also induced by salt stress and ABA. Transient expression of Zmhdz10-green fluorescent protein (GFP) fusion proteins in onion cells showed a nuclear localization of Zmhdz10. Yeast hybrid assays demonstrated that Zmhdz10 has transactivation and DNA-binding activity in yeast cells. Overexpression of Zmhdz10 in rice led to enhanced tolerance to drought and salt stresses and increased sensitivity to ABA. Moreover, Zmhdz10 transgenic plants had lower relative electrolyte leakage (REL), lower malondialdehyde (MDA) and increased proline content relative to wild-type plants under stress conditions, which may contribute to enhanced stress tolerance. Zmhdz10 transgenic Arabidopsis plants also exhibited enhanced tolerance to drought and salt stresses that was concomitant with altered expression of stress/ABA-responsive genes, including Δ1-Pyrroline-5-carboxylate synthetase 1 (P5CS1), Responsive to dehydration 22 (RD22), Responsive to dehydration 29B (RD29B) and ABA-insensitive 1 (ABI1). Taken together, these results suggest that Zmhdz10 functions as a transcriptional regulator that can positively regulate drought and salt tolerance in plants through an ABA-dependent signaling pathway.


Subject(s)
Arabidopsis/physiology , Basic-Leucine Zipper Transcription Factors/metabolism , Gene Expression Regulation, Plant , Oryza/physiology , Zea mays/genetics , Abscisic Acid/pharmacology , Amino Acid Sequence , Arabidopsis/drug effects , Arabidopsis/genetics , Base Sequence , Basic-Leucine Zipper Transcription Factors/genetics , Droughts , Genes, Reporter , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Molecular Sequence Data , Oryza/drug effects , Oryza/genetics , Plant Growth Regulators/pharmacology , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Salt Tolerance , Sequence Alignment , Sequence Analysis, DNA , Signal Transduction , Stress, Physiological
16.
Biochem Biophys Res Commun ; 449(1): 146-50, 2014 Jun 20.
Article in English | MEDLINE | ID: mdl-24820954

ABSTRACT

Intronless genes, as a characteristic feature of prokaryotes, are an important resource for the study of the evolution of gene architecture in eukaryotes. In the study, 14,623 (36.87%) intronless genes in maize were identified and the percentage is greater than that of other monocots and algae. The number of maize intronless genes on each chromosome has a significant linear correlation with the number of total genes on the chromosome and the length of the chromosomes. Intronless genes in maize play important roles in translation and energy metabolism. Evolutionary analysis revealed that 2601 intronless genes conserved among the three domains of life and 2323 intronless genes that had no homology with genes of other species. These two sets of intronless genes were distinct in genetic features, physical locations and function. These results provided a useful source to understand the evolutionary patterns of related genes and genomes and some intronless genes are good candidates for subsequent functional analyses specifically.


Subject(s)
Chromosomes, Plant/genetics , Evolution, Molecular , Genes, Plant/genetics , Genome, Plant/genetics , Inteins/genetics , Plant Proteins/genetics , Zea mays/genetics , Models, Genetic
17.
Mol Genet Genomics ; 289(6): 1061-74, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25213600

ABSTRACT

By promoting cell wall loosening, expansins contribute to cell enlargement during various developmental processes. Nevertheless, the role of expansins in the expansion and development of endosperm--a major seed component whose cell size is significantly associated with grain yield--is poorly understood. To explore associated biological processes and the evolution of expansins in maize, we performed a systematic analysis of the expansin gene family encompassing gene structure, phylogeny, chromosomal location, gene duplication, and gene ontology. A total of 88 maize expansin genes (ZmEXPs) were identified and categorized into three subfamilies according to their phylogenetic relationships. Expression patterns of ZmEXPs were also investigated in nine different tissues by semi-quantitative RT-PCR. The expression of eight ZmEXPs was detected in endosperm, with five showing endosperm-specific expression. Quantitative RT-PCR was used to analyze expression patterns of the eight ZmEXPs in endosperm (10 days after pollination) under abscisic acid (ABA) and gibberellic acid (GA3) treatments. All eight ZmEXPs were found to be significantly regulated by ABA and GA3 in endosperm, suggesting important roles for these hormones in the regulation of ZmEXPs during endosperm development. Our results provide essential information for ZmEXPs cloning and functional exploration, which will assist research on expansin-related mechanisms and contribute to future enhancement of maize grain yield.


Subject(s)
Endosperm/metabolism , Plant Proteins/genetics , Zea mays/genetics , Chromosomes, Plant , Endosperm/genetics , Gene Expression , Genes, Duplicate , Genes, Plant , Genome, Plant , Plant Proteins/classification , Plant Proteins/metabolism , Zea mays/metabolism
18.
Int J Biol Macromol ; 256(Pt 1): 128328, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38000574

ABSTRACT

Osmanthus fragrans is a famous ornamental tree species for its pleasing floral fragrance. Monoterpenoids are the core floral volatiles of O. fragrans flowers, which have tremendous commercial value. Geranyl diphosphate synthase (GPPS) is a key enzyme that catalyzes the formation of GPP, the precursor of monoterpenoids. However, there are no reports of GPPSs in O. fragrans. Here, we performed RNA sequencing on the O. fragrans flowers and identified three GPPSs. Phylogenetic tree analysis showed that OfLSU1/2 belonged to the GPPS.LSU branch, while the OfSSUII belonged to the GPPS.SSU branch. OfLSU1, OfLSU2 and OfSSUII were all localized in chloroplasts. Y2H and pull-down assays showed that OfLSU1 or OfLSU2 interacted with OfSSUII to form heteromeric GPPSs. Site mutation experiments revealed that the conserved CXXXC motifs of OfLSU1/2 and OfSSUII were essential for the interaction between OfLSU1/2 and OfSSUII. Transient expression experiments showed that OfLSU1, OfLSU2 and OfSSUII co-expressed with monoterpene synthase genes OfTPS1 or OfTPS2 improved the biosynthesis of monoterpenoids (E)-ß-ocimene and linalool. The heteromeric GPPSs formed by OfLSU1/2 interacting with OfSSUII further improves the biosynthesis of monoterpenoids. Overall, these preliminary results suggested that the GPPSs play a key role in regulating the production of aromatic monoterpenes in O. fragrans.


Subject(s)
Dimethylallyltranstransferase , Diphosphates , Diterpenes , Monoterpenes/metabolism , Phylogeny , Dimethylallyltranstransferase/metabolism , Diterpenes/metabolism
19.
Plant Physiol Biochem ; 207: 108360, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38266559

ABSTRACT

Brassinazole-resistant (BZR) transcription factor plays an important role in plant growth and stress resistance through brassinosteroid (BR) signal transduction. However, systematic analysis of the BZR family in dicots remains limited. In this study, we conducted a genome-wide study of four typical dicots: Arabidopsis thaliana, Carica papaya, Vitis vinifera and Populus trichocarpa. Thirty-four BZR gene family members were identified and classified them into three subfamilies. Analysis of promoter and expression patterns revealed crucial role of a pair of homologous BZR genes, PtBZR9 and PtBZR12, in poplar may play a critical role under abiotic stress. PtBZR9 and PtBZR12 were localised in the nucleus and exhibited mutual interactions. Moreover, transient overexpression (OE) of PtBZR9 and PtBZR12 in poplar enhanced tolerance to drought stress. The phenotypic and physiological characteristics of PtBZR9 and PtBZR12 OE in Arabidopsis mirrored those of transient OE in the poplar. Additionally, PtBZR9 and PtBZR12 can bind to the E-box element. Under exogenous BR treatment, transgenic lines displayed a greater decrease in root length than the wild type. Thus, these findings provide a solid foundation for future research on the complex regulatory mechanisms of BZR genes.


Subject(s)
Droughts , Populus , Triazoles , Genome-Wide Association Study , Transcription Factors/genetics , Stress, Physiological/genetics , Brassinosteroids/metabolism , Gene Expression Regulation, Plant/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Populus/genetics , Populus/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism
20.
Animals (Basel) ; 14(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38791653

ABSTRACT

Affected by the continuously rising temperature, thermal stress leads to a delinked growth rate and resistance to stress in cultured largemouth bass (Micropterus salmoides, LMB) in China. Identification of LMB with better thermal resistance will benefit the breeding of new varieties. However, there has been limited reporting on the evaluation to identify LMB with better thermal resistance. LMB consists of the northern LMB (Micropterus salmoides salmoides, NLMB) and the Florida LMB (Micropterus salmoides floridanus, FLMB). Due to their different geographical distributions, it has been suggested that FLMB exhibit better thermal resistance compared to NLMB. In this study, NLMB and FLMB were subjected to thermal stress for 3 h (acute) and 60 d (chronic) at 33 °C, respectively. Subsequently, the variations of 12 candidate biomarkers between NLMB and FLMB were analyzed. Exposure to acute thermal stress significantly increased plasma cortisol, blood glucose, and lactate levels; activities of superoxide dismutase (SOD), glutathione peroxidase (GPX), catalase (CAT), glucose kinase (GK), pyruvate kinase (PK), lactate dehydrogenase (LDH), and glucose 6 phosphatase (G6Pase); and the expressions of hsp70 and hsp90 in both NLMB and FLMB (p < 0.05). Compared to NLMB, FLMB exhibited a lower plasma cortisol level and a higher expression of hsp90 under acute thermal stress (p < 0.05). Exposure to chronic thermal stress significantly increased plasma cortisol and blood glucose levels, as well as activities of GK, PK, LDH, and G6Pase, as well as expressions of hsp70 and hsp90 in both NLMB and FLMB (p < 0.05). Additionally, FLMB showed a lower expression of hsp70 compared to NLMB (p < 0.05). In conclusion, our results showed that LMB with lower plasma cortisol level and higher expression of hsp90 under acute thermal stress, as well as lower expression of hsp70 under chronic thermal stress were suggested to have better thermal resistance. Our study provides valuable information for identifying and breeding LMB varieties with better thermal resistance in the future.

SELECTION OF CITATIONS
SEARCH DETAIL