Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters

Publication year range
1.
Nano Lett ; 24(22): 6465-6473, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38767853

ABSTRACT

Neutrophilic superhalide-anion-triggered chalcogen conversion-based Zn batteries, despite latent high-energy merit, usually suffer from a short lifespan caused by dendrite growth and shuttle effect. Here, a superhalide-anion-motivator reforming strategy is initiated to simultaneously manipulate the anode interface and Se conversion intermediates, realizing a bipolar regulation toward longevous energy-type Zn batteries. With ZnF2 chaotropic additives, the original large-radii superhalide zincate anion species in ionic liquid (IL) electrolytes are split into small F-containing species, boosting the formation of robust solid electrolyte interphases (SEI) for Zn dendrite inhibition. Simultaneously, ion radius reduced multiple F-containing Se conversion intermediates form, enhancing the interion interaction of charged products to suppress the shuttle effect. Consequently, Zn||Se batteries deliver a ca. 20-fold prolonged lifespan (2000 cycles) at 1 A g-1 and high energy/power density of 416.7 Wh kgSe-1/1.89 kW kgSe-1, outperforming those in F-free counterparts. Pouch cells with distinct plateaus and durable cyclability further substantiate the practicality of this design.

2.
Angew Chem Int Ed Engl ; 63(15): e202400121, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38287460

ABSTRACT

Bipolar organic cathode materials (OCMs) implementing cation/anion storage mechanisms are promising for high-energy aqueous Zn batteries (AZBs). However, conventional organic functional group active sites in OCMs usually fail to sufficiently unlock the high-voltage/capacity merits. Herein, we initially report dynamically ion-coordinated bipolar OCMs as cathodes with chalcogen active sites to solve this issue. Unlike conventional organic functional groups, chalcogens bonded with conjugated group undergo multielectron-involved positive-valence oxidation and negative-valence reduction, affording higher redox potentials and reversible capacities. With phenyl diselenide (PhSe-SePh, PDSe) as a proof of concept, it exhibits a conversion pathway from (PhSe)- to (PhSe-SePh)0 and then to (PhSe)+ as unveiled by characterization and theoretical simulation, where the diselenide bonds are periodically broken and healed, dynamically coordinating with ions (Zn2+ and OTF-). When confined into ordered mesoporous carbon (CMK-3), the dissolution of PDSe intermediates is greatly inhibited to obtain an ultralong lifespan without voltage/capacity compromise. The PDSe/CMK-3 || Zn batteries display high reversibility capacity (621.4 mAh gPDSe -1), distinct discharge plateau (up to 1.4 V), high energy density (578.3 Wh kgPDSe -1), and ultralong lifespan (12 000 cycles) at 10 A g-1, far outperforming conventional bipolar OCMs. This work sheds new light on conversion-type active site engineering for high-voltage/capacity bipolar OCMs towards high-energy AZBs.

3.
Angew Chem Int Ed Engl ; : e202407639, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976402

ABSTRACT

Gradual disability of Zn anode and high negative/positive electrode (N/P) ratio usually depreciate calendar life and energy density of aqueous Zn batteries (AZBs). Herein, within original Zn2+-free hydrated electrolytes, a steric hindrance/electric field shielding-driven "hydrophobic ion barrier" is engineered towards ultradurable (002) plane-exposed Zn stripping/plating to solve this issue. Guided by theoretical simulations, hydrophobic adiponitrile (ADN) is employed as a steric hindrance agent to ally with inert electric field shielding additive (Mn2+) for plane adsorption priority manipulation, thereby constructing the "hydrophobic ion barrier". This design robustly suppresses the (002) plane/dendrite growth, enabling ultradurable (002) plane-exposed dendrite-free Zn stripping/plating. Even being cycled in Zn‖Zn symmetric cell over 2150 h at 0.5 mA cm-2, the efficacy remains well-kept. Additionally, Zn‖Zn symmetric cells can be also stably cycled over 918 h at 1 mA cm-2, verifying uncompromised Zn stripping/plating kinetics. As-assembled anode-less Zn‖VOPO4·2H2O full cells with a low N/P ratio (2:1) show a high energy density of 75.2 Wh kg-1full electrode after 842 cycles at 1 A g-1, far surpassing counterparts with thick Zn anode and low cathode loading mass, featuring excellent practicality. This study opens a new avenue by robust "hydrophobic ion barrier" design to develop long-life anode-less Zn batteries.

4.
BMC Plant Biol ; 23(1): 301, 2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37280506

ABSTRACT

BACKGROUND: Medicago sativa is the most important forage world widely, and is characterized by high quality and large biomass. While abiotic factors such as salt stress can negatively impact the growth and productivity of alfalfa. Maintaining Na+/K+ homeostasis in the cytoplasm helps reduce cell damage and nutritional deprivation, which increases a salt-tolerance of plant. Teosinte Branched1/ Cycloidea/ Proliferating cell factors (TCP) family genes, a group of plant-specific transcription factors (TFs), involved in regulating plant growth and development and abiotic stresses. Recent studies have shown TCPs control the Na+/K+ concentration of plants during salt stress. In order to improve alfalfa salt tolerance, it is important to identify alfalfa TCP genes and investigate if and how they regulate alfalfa Na+/K+ homeostasis. RESULTS: Seventy-one MsTCPs including 23 non-redundant TCP genes were identified in the database of alfalfa genome (C.V XinJiangDaYe), they were classified into class I PCF (37 members) and class II: CIN (28 members) and CYC/TB1 (9 members). Their distribution on chromosome were unequally. MsTCPs belonging to PCF were expressed specifically in different organs without regularity, which belonging to CIN class were mainly expressed in mature leaves. MsTCPs belongs to CYC/TB1 clade had the highest expression level at meristem. Cis-elements in the promoter of MsTCPs were also predicted, the results indicated that most of the MsTCPs will be induced by phytohormone and stress treatments, especially by ABA-related stimulus including salinity stress. We found 20 out of 23 MsTCPs were up-regulated in 200 mM NaCl treatment, and MsTCP3/14/15/18 were significantly induced by 10 µM KCl, a K+ deficiency treatment. Fourteen non-redundant MsTCPs contained miR319 target site, 11 of them were upregulated in MIM319 transgenic alfalfa, and among them four (MsTCP3/4/10A/B) genes were directly degraded by miR319. MIM319 transgene alfalfa plants showed a salt sensitive phenotype, which caused by a lower content of potassium in alfalfa at least partly. The expression of potassium transported related genes showed significantly higher expression in MIM319 plants. CONCLUSIONS: We systematically analyzes the MsTCP gene family at a genome-wide level and reported that miR319-TCPs model played a function in K+ up-taking and/ or transportation especially in salt stress. The study provide valuable information for future study of TCP genes in alfalfa and supplies candidate genes for salt-tolerance alfalfa molecular-assisted breeding.


Subject(s)
Genes, Plant , Medicago sativa , Medicago sativa/metabolism , Genes, Plant/genetics , Salt Tolerance/genetics , Plants, Genetically Modified/genetics , Potassium/metabolism , Homeostasis , Gene Expression Regulation, Plant
5.
Plant Cell Rep ; 42(4): 805-819, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36757447

ABSTRACT

KEY MESSAGE: Sequestering microRNA396 by overexpression of MIM396 enhanced alfalfa resistance to Spodoptera litura larvae, which may be due to increased lignin content and enhanced low-molecular weight flavonoids and glucosinolates biosynthesis. Alfalfa (Medicago sativa), the most important leguminous forage crop, suffers from the outbreak of defoliator insects, especially Spodoptera litura, resulting in heavy losses in yield and forage quality. Here, we found that the expression of alfalfa microRNA396 (miR396) precursor genes and mature miR396 was significantly up-regulated in wounding treatment that simulates feeding injury by defoliator insects. To verify the function of miR396 in alfalfa resistance to insect, we generated MIM396 transgenic alfalfa plants with significantly down-regulated miR396 expression by Agrobacterium-mediated genetic transformation. The MIM396 transgenic alfalfa plants exhibited improved resistance to Spodoptera litura larvae with increased lignin content but decreased JA accumulation. Most of the miR396 putative target GRF genes were up-regulated in MIM396 transgenic lines, and responded to the wounding treatment. By RNA sequencing analysis, we found that the differentially expressed genes related to insect resistance between WT and MIM396 transgenic plants mainly clustered in biosynthesis pathways in lignin, flavonoids and glucosinolates. In addition to the phenotype of enhanced insect resistance, MIM396 transgenic plants also displayed reduced biomass yield and forage quality. Our results broaden the function of miR396 in alfalfa and provide genetic resources for studying alfalfa insect resistance.


Subject(s)
Herbivory , Medicago sativa , Plants, Genetically Modified , Spodoptera , Animals , Flavonoids , Gene Expression Regulation, Plant , Glucosinolates , Lignin , Medicago sativa/genetics , MicroRNAs/genetics , Plants, Genetically Modified/genetics
6.
Chemistry ; 28(49): e202201151, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35695712

ABSTRACT

Lithium metal batteries (LMBs) have attracted extensive attention owing to their high energy density. However, the uncontrolled volume changes and serious dendrite growth of the Li metal anode have hindered their commercialization. Herein, a three-dimensional Cu foam decorated with Au nanoparticles and conformal graphene layer was designed to tune the Li plating/stripping behaviors. The 3D-Cu conductive host anchored by lithiophilic Au nanoparticles can effectively alleviate the volume expansion caused by the continuous plating/stripping of Li and reduce the nucleation energy barrier. Notably, the conductive graphene not only facilitates the transfer of electrons, but also acts as an ionic rectifier, thereby avoiding the aggregation of local current density and Li+ ions around Au nanoparticles and enabling the uniform Li+ flux. As a result, the G-Au@3D-Cu/Li anode ensures the non-dendritic and homogeneous Li+ plating/stripping. Electrochemical results show that the symmetric G-Au@3D-Cu/Li cell delivers a low voltage hysteresis of 110 mV after 1000 h at 1 mA cm-2 . Matched with a layered LiNi0.6 Co0.2 Mn0.2 O2 cathode, the NCM622||G-Au@3D-Cu/Li full cell exhibits a long cycle life of 2000 cycles and an ultra-low capacity decay rate (0.01 % per cycle).

7.
Plant Biotechnol J ; 19(8): 1523-1536, 2021 08.
Article in English | MEDLINE | ID: mdl-33567151

ABSTRACT

Improving plant biomass yield and/or feedstock quality for highly efficient lignocellulose conversion has been the main research focus in genetic modification of switchgrass (Panicum virgatum L.), a dedicated model plant for biofuel production. Here, we proved that overexpression of miR396 (OE-miR396) leads to reduced plant height and lignin content mainly by reducing G-lignin monomer content. We identified nineteen PvGRFs in switchgrass and proved thirteen of them were cleaved by miR396. MiR396-targeted PvGRF1, PvGRF9 and PvGRF3 showed significantly higher expression in stem. By separately overexpressing rPvGRF1, 3 and 9, in which synonymous mutations abolished the miR396 target sites, and suppression of PvGRF1/3/9 activity via PvGRF1/3/9-SRDX overexpression in switchgrass, we confirmed PvGRF1 and PvGRF9 played positive roles in improving plant height and G-lignin content. Overexpression of PvGRF9 was sufficient to complement the defective phenotype of OE-miR396 plants. MiR396-PvGRF9 modulates these traits partly by interfering GA and auxin biosynthesis and signalling transduction and cell wall lignin, glucose and xylan biosynthesis pathways. Moreover, by enzymatic hydrolysis analyses, we found that overexpression of rPvGRF9 significantly enhanced per plant sugar yield. Our results suggest that PvGRF9 can be utilized as a candidate molecular tool in modifying plant biomass yield and feedstock quality.


Subject(s)
MicroRNAs , Panicum , Biomass , Gene Expression Regulation, Plant , MicroRNAs/genetics , Panicum/genetics , Panicum/metabolism , Plant Proteins/genetics , Plants, Genetically Modified/genetics
8.
Plant Biotechnol J ; 17(12): 2370-2383, 2019 12.
Article in English | MEDLINE | ID: mdl-31094071

ABSTRACT

Salinity-induced accumulation of certain microRNAs accompanied by gaseous phytohormone ethylene production has been recognized as a mechanism of plant salt tolerance. MicroRNA319 (miR319) has been characterized as an important player in abiotic stress resistance in some C3 plants, such as Arabidopsis thaliana and rice. However, its role in the dedicated biomass plant switchgrass (Panicum virgatum L.), a C4 plant, has not been reported. Here, we show crosstalk between miR319 and ethylene (ET) for increasing salt tolerance. By overexpressing Osa-MIR319b and a target mimicry form of miR319 (MIM319), we showed that miR319 positively regulated ET synthesis and salt tolerance in switchgrass. By experimental treatments, we demonstrated that ET-mediated salt tolerance in switchgrass was dose-dependent, and miR319 regulated the switchgrass salt response by fine-tuning ET synthesis. Further experiments showed that the repression of a miR319 target, PvPCF5, in switchgrass also led to enhanced ethylene accumulation and salt tolerance in transgenic plants. Genome-wide transcriptome analysis demonstrated that overexpression of miR319 (OE-miR319) down-regulated the expression of key genes in the methionine (Met) cycle but promoted the expression of genes in ethylene synthesis. The results enrich our understanding of the synergistic effects of the miR319-PvPCF5 module and ethylene synthesis in the salt tolerance of switchgrass, a C4 bioenergy plant.


Subject(s)
Ethylenes/biosynthesis , MicroRNAs/genetics , Panicum/genetics , Salt-Tolerant Plants/genetics , Gene Expression Regulation, Plant , Plants, Genetically Modified , RNA, Plant/genetics , Salt Tolerance
9.
J Cell Mol Med ; 21(5): 894-903, 2017 05.
Article in English | MEDLINE | ID: mdl-27998018

ABSTRACT

Heme oxygenase 1 (HMOX1) plays an important role in the development of chronic obstructive pulmonary disease (COPD). However, the association of HMOX1 length polymorphism in promoter region to the risk and severity of COPD has not been well studied. In this study, we searched the databases including PubMed, EMBASE, Cochrane Library and China National Knowledge Infrastructure (CNKI) and extracted the information from related articles. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to study the effect of HMOX1 polymorphism on the risk and severity of COPD. As a result, nine studies were included for this meta-analysis. Higher frequencies of L allele and type I genotype (containing at least one L allele) were found in patients with COPD (for L allele, OR 2.02, 95% CI: 1.32-3.11, P = 0.001; for type I genotype, OR 1.82, 95% CI: 1.28-2.61, P = 0.001), especially in Asian population (for L allele, OR 2.23, 95% CI: 1.68-2.95, P < 0.001; for type I genotype, OR 2.02, 95% CI: 1.51-2.70, P < 0.001). Genotyping method, source of control subjects, literature quality and language also affected the results to some extent. However, there was little difference in HMOX1 genotypes distribution in patients with COPD with different severity. Our study indicated L allele and type I genotype were related to the susceptibility but not the severity of COPD.


Subject(s)
Genetic Predisposition to Disease , Heme Oxygenase-1/genetics , Polymorphism, Genetic , Promoter Regions, Genetic , Pulmonary Disease, Chronic Obstructive/epidemiology , Pulmonary Disease, Chronic Obstructive/genetics , Severity of Illness Index , Alleles , Case-Control Studies , Genetic Association Studies , Genetic Heterogeneity , Genotype , Humans , Publication Bias , Pulmonary Disease, Chronic Obstructive/enzymology , Risk Factors
10.
Plant Cell Physiol ; 58(12): 2226-2240, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-29069481

ABSTRACT

The microRNA393 (miR393) family is one of the conserved miRNA families in the plant kingdom. MiR393 was reported to regulate rice tillering and abiotic stress resistance positively through an auxin signaling pathway. However, little is known about the function of miR393 in switchgrass (Panicum virgatum L.), an important bioenergy C4 grass plant. We tested the expression level of miR393 and its four putative target genes (PvAFB1, PvAFB2, PvAFB3 and PvTIR1) in switchgrass, and found that these genes all responded to cold stress and exogenous 1-naphthaleneacetic acid (NAA) treatment. To investigate the function of miR393 in switchgrass, we enhanced miR393 expression by introducing an Osa-miR393a gene into switchgrass. The results showed that cold tolerance of the transgenic T0 and T1 generation plants was highly improved. Cold tolerance-related genes PvCOR47, PvICE1 and PvRAV1 were negatively regulated by exogenous NAA, and the expression of these genes was significantly higher in transgenic plants than in wild-type plants. The transgenic T1 seedlings were more tolerant to exogenous NAA treatment, accumulating less H2O2 after cold treatments. It was also observed that the miR393/target module regulates cold tolerance responses in Arabidopsis. In addition, transgenic plants overexpressing miR393 had significantly more tillers and higher biomass yield per plant in greenhouse and field tests. Forage quality analyses revealed that the soluble sugar contents of transgenic plants were increased markedly. Overall, the results suggested that overexpression of miR393 improved cold tolerance and tillering of switchgrass through regulation of auxin signaling transduction.


Subject(s)
Cold-Shock Response/genetics , Gene Expression Regulation, Plant , MicroRNAs , Panicum/physiology , Plants, Genetically Modified/physiology , Arabidopsis/metabolism , Arabidopsis/physiology , Cold-Shock Response/physiology , Hydrogen Peroxide/metabolism , Indoleacetic Acids/metabolism , Naphthaleneacetic Acids/pharmacology , Oryza/genetics , Panicum/drug effects , Panicum/genetics , Plants, Genetically Modified/drug effects , Seedlings/genetics , Seedlings/growth & development , Seedlings/metabolism
11.
Plant Cell Rep ; 34(7): 1099-108, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25698105

ABSTRACT

KEY MESSAGE: Selection of pre-embryogenic callus from a core structure from mature seed-derived callus is the key for high-efficiency plant regeneration and transformation of switchgrass different cultivars. Switchgrass (Panicum virgatum L.) has been identified as a dedicated biofuel crop. For its trait improvement through biotechnological approaches, we have developed a highly efficient plant regeneration and genetic transformation protocol for both lowland and upland cultivars. We identified and separated a pre-embryogenic "core" structure from the seed-derived callus, which often leads to development of highly regenerative type II calluses. From the type II callus, plant regeneration rate of lowland cultivars Alamo and Performer reaches 95%, and upland cultivars Blackwell and Dacotah, 50 and 76%, respectively. The type II callus was also amenable for Agrobacterium-mediated transformation. Transformation efficiency of 72.8% was achieved for lowland cultivar Alamo, and 8.0% for upland cultivar Dacotah. PCR, Southern blot and GUS staining assays were performed to verify the transgenic events. High regenerative callus lines could be established in 3 months, and transgenic plants could be obtained in 2 months after Agrobacterium infection. To our knowledge, this is the first report on successful plant regeneration and recovery of transgenic plants from upland switchgrass cultivars by Agrobacterium-mediated transformation. The method presented here could be helpful in breaking through the bottleneck of regeneration and transformation of lowland and upland switchgrass cultivars and probably other recalcitrant grass crops.


Subject(s)
Agrobacterium/physiology , Panicum/genetics , Panicum/physiology , Regeneration , Transformation, Genetic , Agrobacterium/drug effects , Blotting, Southern , Culture Media/pharmacology , Panicum/drug effects , Panicum/embryology , Plants, Genetically Modified , Polymerase Chain Reaction , Regeneration/drug effects , Transformation, Genetic/drug effects
12.
COPD ; 12(4): 444-52, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25415045

ABSTRACT

In chronic obstructive pulmonary disease (COPD), two major pathological changes that occur are the loss of alveolar structure and airspace enlargement. Type II alveolar epithelial cells (AECII) play a vital role in maintaining alveolar homeostasis and lung tissue repair. Sirtuin 1 (SIRT1), a NAD(+)-dependent histone deacetylase, regulates many pathophysiological processes including inflammation, apoptosis, cellular senescence and stress resistance. The main aim of this study was to investigate whether SRT1720, a pharmacological SIRT1 activator, could protect against AECII apoptosis in rats with emphysema caused by cigarette smoke exposure and intratracheal lipopolysaccharide instillation in vivo. During the induction of emphysema in rats, administration of SRT1720 improved lung function including airway resistance and pulmonary dynamic compliance. SRT1720 treatment up-regulated the levels of surfactant protein (SP)A, SPC, SIRT1 and forkhead box O 3, increased SIRT1 activity, down-regulated the level of p53 and inhibited AECII apoptosis. Lung injury caused by emphysema was alleviated after SRT1720 treatment. SRT1720 could protect against AECII apoptosis in rats with emphysema and thus could be used in COPD treatment.


Subject(s)
Alveolar Epithelial Cells/drug effects , Apoptosis/drug effects , Enzyme Activators/therapeutic use , Heterocyclic Compounds, 4 or More Rings/therapeutic use , Lung Injury/prevention & control , Pulmonary Emphysema/drug therapy , Alveolar Epithelial Cells/physiology , Animals , Biomarkers/metabolism , Blotting, Western , Enzyme Activators/pharmacology , Heterocyclic Compounds, 4 or More Rings/pharmacology , Immunohistochemistry , In Situ Nick-End Labeling , Lung Injury/etiology , Lung Injury/metabolism , Male , Pulmonary Emphysema/complications , Pulmonary Emphysema/metabolism , Random Allocation , Rats , Rats, Sprague-Dawley , Real-Time Polymerase Chain Reaction , Treatment Outcome
13.
Respir Res ; 15: 120, 2014 Oct 16.
Article in English | MEDLINE | ID: mdl-25319435

ABSTRACT

BACKGROUND: In chronic obstructive pulmonary disease (COPD), two major pathological changes that occur are the loss of alveolar structure and airspace enlargement. To treat COPD, it is crucial to repair damaged lung tissue and regenerate the lost alveoli. Type II alveolar epithelial cells (AECII) play a vital role in maintaining lung tissue repair, and amniotic fluid-derived mesenchymal stromal cells (AFMSCs) possess the characteristics of regular mesenchymal stromal cells. However, it remains untested whether transplantation of rat AFMSCs (rAFMSCs) might alleviate lung injury caused by emphysema by increasing the expression of surfactant protein (SP)A and SPC and inhibiting AECII apoptosis. METHODS: We analyzed the phenotypic characteristics, differentiation potential, and karyotype of rAFMSCs, which were isolated from pregnant Sprague-Dawley rats. Moreover, we examined the lung morphology and the expression levels of SPA and SPC in rats with emphysema after cigarette-smoke exposure and intratracheal lipopolysaccharide instillation and rAFMSC transplantation. The ability of rAFMSCs to differentiate was measured, and the apoptosis of AECII was evaluated. RESULTS: In rAFMSCs, the surface antigens CD29, CD44, CD73, CD90, CD105, and CD166 were expressed, but CD14, CD19, CD34, and CD45 were not detected; rAFMSCs also strongly expressed the mRNA of octamer-binding transcription factor 4, and the cells could be induced to differentiate into adipocytes and osteocytes. Furthermore, rAFMSC treatment up-regulated the levels of SPA, SPC, and thyroid transcription factor 1 and inhibited AECII apoptosis, and rAFMSCs appeared to be capable of differentiating into AECII-like cells. Lung injury caused by emphysema was alleviated after rAFMSC treatment. CONCLUSIONS: rAFMSCs might differentiate into AECII-like cells or induce local regeneration of the lung alveolar epithelium in vivo after transplantation and thus could be used in COPD treatment and lung regenerative therapy.


Subject(s)
Amniotic Fluid/cytology , Emphysema/therapy , Lung Injury/therapy , Mesenchymal Stem Cell Transplantation/methods , Amniotic Fluid/physiology , Animals , Cells, Cultured , Emphysema/pathology , Female , Lung Injury/pathology , Male , Mesenchymal Stem Cells/physiology , Pregnancy , Rats , Rats, Sprague-Dawley , Treatment Outcome
14.
Zhonghua Yi Xue Za Zhi ; 94(26): 2050-4, 2014 Jul 08.
Article in Zh | MEDLINE | ID: mdl-25312668

ABSTRACT

OBJECTIVE: To explore the in vitro differentiation of rat amniotic fluid-derived mesenchymal stem cells (AF-MSCs) into type II alveolar epithelial cells (AECII). METHODS: Flow cytometry was used to analyze the phenotypes of AF-MSCs from 10 pregnant Sprague-Dawley rats. And the Oct-4 mRNA expression level was detected by quantitative real-time polymerase chain reaction (qRT-PCR). Rat embryonic stem cell was used as a positive control. According to different culturing methods, AF-MSCs were randomly divided into 5 groups of A (control group), B, C, D and E. After in vitro differentiation, SPA, SPB, SPC, SPD and TTF1 mRNA expressions were detected by qRT-PCR, SPA and SPC protein expressions measured by immunofluorescence and lamellar bodies observed by transmission electron microscopy. RESULTS: AF-MSCs could grow spirally in L-DMEM medium containing 20% fetal bovine serum and 4 µg/L basic fibroblast growth factor. The expressions of such surface antigens of AF-MSCs (third passage) as CD29 (99.1 ± 7.9)%, CD44 (99.2 ± 7.4)%, CD73 (75.6 ± 5.2)%, CD90 (98.9 ± 8.1)%, CD105 (92.9 ± 7.3)% and CD166 (89.3 ± 6.7)% were positive while CD34 and CD45 were negative. And the expression of Oct-4 mRNA (relative quantity: 0.690 ± 0.059) was significantly lower than rat embryonic stem cells (relative quantity: 1.000 ± 0.002) positive control group (P < 0.01). After in vitro differentiation, the expressions of SPA, SPB, SPC, SPD and TTF1 mRNA and SPA and SPC protein were negative in group A and positive in group B. The expressions of SPA, SPB, SPC, SPD and TTF1 mRNA (relative quantity: 0.426 ± 0.043, 0.368 ± 0.028, 0.492 ± 0.058, 0.327 ± 0.024 and 0.183 ± 0.018) and SPA and SPC protein in group B were significantly higher than other groups (all P < 0.01). Lamellar bodies could be found in the differentiated cells of group B. CONCLUSION: Rat AF-MSCs from amniotic fluid may differentiated into AECII like cells in vitro.


Subject(s)
Cell Differentiation , Epithelial Cells/cytology , Mesenchymal Stem Cells/cytology , Amniotic Fluid , Animals , Cells, Cultured , Female , Flow Cytometry , Fluorescent Antibody Technique , Pregnancy , Rats , Rats, Sprague-Dawley , Real-Time Polymerase Chain Reaction
15.
Biotechnol Biofuels Bioprod ; 17(1): 69, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802880

ABSTRACT

BACKGROUND: MicroRNA396 (miR396) plays an important role in the regulation of plant growth and development by repressing the expression level of its target growth-regulating factor (GRF) family genes. In our previous study, we found that overexpression of miR396 negatively regulated both tillering and biomass yield in switchgrass (Panicum virgatum L.). We, therefore, speculated that blocking the expression of miR396 could enhance switchgrass tillering and biomass yield. Here, we produced transgenic switchgrass plants overexpressing a target mimicry form of miR396 (MIM396) in wild type (WT) and Os-MIR319b overexpressing switchgrass plant (with higher enzymatic hydrolysis efficiency, but reduced tillering), in which the expression of miR396 was blocked. The phenotype and biological yields of these plants were analyzed. RESULTS: Blocking miR396 to improve its target PvGRFs expression in switchgrass improved the tiller number and dry weight of transgenic plants. Further morphological analysis revealed that MIM396 plants increased the number of aerial branches and basal tillers compared to those of wild-type plants. The enzymatic efficiency of MIM396 plants was reduced; however, the total sugar production per plant was still significantly higher than that of wild-type plants due to the increase in biomass. In addition, blocking miR396 in a transgenic switchgrass plant overexpressing Os-MIR319b (TG21-Ms) significantly increased the PvGRF1/3/5 expression level and tiller number and biomass yield. The miR156-target gene PvSPL4, playing a negative role in aerial and basal buds outgrowth, showed significant downregulated in MIM396 and TG21-Ms. Those results indicate that miR396-PvGRFs, through disrupting the PvSPL4 expression, are involved in miR319-PvPCFs in regulating tiller number, at least partly. CONCLUSIONS: MIM396 could be used as a molecular tool to improving tiller number and biomass yield in switchgrass wild type and miR319b transgenic plants. This finding may be applied to other graminaceous plants to regulate plant biological yield.

16.
Sci Rep ; 13(1): 5484, 2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37015955

ABSTRACT

Convolutional Neural Network (CNN) has been extensively used in bearing fault diagnosis and Remaining Useful Life (RUL) prediction. However, accompanied by CNN's increasing performance is a deeper network structure and growing parameter size. This prevents it from being deployed in industrial applications with limited computation resources. To this end, this paper proposed a two-step method to build a cell-based light CNN by Neural Architecture Search (NAS) and weights-ranking-based model pruning. In the first step, a cell-based CNN was constructed with searched optimal cells and the number of stacking cells was limited to reduce the network size after influence analysis. To search for the optimal cells, a base CNN model with stacking cells was initially built, and Differentiable Architecture Search was adopted after continuous relaxation. In the second step, the connections in the built cell-based CNN were further reduced by weights-ranking-based pruning. Experiment data from the Case Western Reserve University was used for validation under the task of fault classification. Results showed that the CNN with only two cells achieved a test accuracy of 99.969% and kept at 99.968% even if 50% connections were removed. Furthermore, compared with base CNN, the parameter size of the 2-cells CNN was reduced from 9.677MB to 0.197MB. Finally, after minor revision, the network structure was adapted to achieve bearing RUL prediction and validated with the PRONOSTIA test data. Both tasks confirmed the feasibility and superiority of constructing a light cell-based CNN with NAS and pruning, which laid the potential to realize a light CNN in embedded systems.

17.
Front Pharmacol ; 13: 965354, 2022.
Article in English | MEDLINE | ID: mdl-36160394

ABSTRACT

Objective: This study aimed to determine the effective dose 50% (ED50) value of remifentanil in inhibiting coughing during extubation in children with snoring. Methods: The subjects were children who scored a grade I in the American Society of Anesthesiology (ASA) metric and who were undergoing tonsillectomy (with or without adenoidectomy) under general anesthesia. Using Dixon's up-and-down sequential method, the initial infusion rate of remifentanil was 0.06 µg/kg/min, and the difference between the infusion rates of the two adjacent groups was 0.01 µg/kg/min. If a child had no cough response during extubation, the infusion rate for the next child was reduced by 0.01 µg/kg/min. If that child had cough response, the infusion rate for the next child was increased by 0.01 µg/kg/min, and the test was terminated when seven pairs of children with positive-negative alternating results were obtained. The ED50 value and its 95% confidence interval (CI) were calculated by probit regression. The times for extubation, awakening, agitation, and respiratory complications after extubation were compared between the two groups. Results: 1) The ED50 value of a continuous infusion of remifentanil required to inhibit the cough response of children during extubation was 0.042 µg/kg/min, and the 95% confidence interval was 0.025-0.062 µg/kg/min. 2) The total dosage and infusion rate of remifentanil in the cough suppression group were higher than those in the cough group (p < 0.05), but the differences in the times for extubating and awakening between the two groups were not statistically significant (p > 0.05). 3) There was no correlation between the infusion rate of remifentanil and the time for extubating and awakening in the cough suppression group; the r values were 0.13 and 0.12, respectively, and p > 0.05. 4) The differences in postoperative respiratory complications between the two groups were not statistically significant (p > 0.05). Conclusion: The ED50 value of a continuous infusion of remifentanil required to inhibit the cough response of children during extubation after tonsillectomy (with or without adenoidectomy) was 0.042 µg/kg/min, and a low-dose infusion of remifentanil does not affect the times for awakening and extubating in children.

18.
Ultrasound Q ; 37(2): 123-128, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34057912

ABSTRACT

ABSTRACT: The aim of this research was to compare the use of shear wave elastography (sound touch elastography [STE] and sound touch quantify [STQ]) and serum liver fibrosis indexes in the evaluation and staging of chronic hepatitis B (CHB) liver fibrosis. Sound touch elastography is a form of 2-dimensional shear wave elastography, and STQ is a form of point shear wave elastography. Between June 2018 and March 2019, 122 patients with CHB were assessed using STE and STQ. Serum liver biomarkers tests were undertaken, and liver biopsy was performed, and these were used to assign a pathological stage based on the Scheuer scoring system. A receiver operating characteristic curve was used to analyze the diagnostic value of noninvasive methods for evaluating and staging liver fibrosis. The cutoff values of STE for liver fibrosis stages S2 to S4 were 8.85, 9.97, and 10.29 kPa, respectively, and the areas under the receiver operating characteristic (AUCs) curve were 0.703, 0.821, and 0.900, respectively. The cutoff values of STQ for liver fibrosis stages S2 to S4 were 11.31, 13.81, and 20.60 kPa, respectively, and the AUCs were 0.674, 0.807, and 0.893, respectively. The AUCs of STE and STQ in diagnosing fibrosis stage were significantly higher than those of liver serum biomarkers (P < 0.05). The AUCs for the ability of the aspartate transaminase-to-platelet ratio index, the fibrosis index based on the 4 factors, the King score, and the Forns index to diagnose S2 fibrosis were 0.502, 0.624, 0.542, and 0.616, respectively, and the AUCs for their ability to diagnose S4 fibrosis were 0.856, 0.861, 0.883, and 0.823, respectively. Both STE and STQ are noninvasive methods for the assessment of liver fibrosis in CHB patients, with better diagnostic performances than those of 4 serum fibrosis indexes.


Subject(s)
Elasticity Imaging Techniques , Hepatitis B, Chronic , Biopsy , Hepatitis B, Chronic/complications , Hepatitis B, Chronic/diagnostic imaging , Humans , Liver Cirrhosis/diagnostic imaging , Touch
19.
Guang Pu Xue Yu Guang Pu Fen Xi ; 30(1): 270-3, 2010 Jan.
Article in Zh | MEDLINE | ID: mdl-20302130

ABSTRACT

For the system of Ce(NO3)2.6H2O and urea solution during homogeneous precipitation method, X-ray diffraction (XRD), infrared spectrum (IR) and especially X-ray photoelectron spectroscopy (XPS) were used to study and characterize the product structure, variety of cerium ion valence, compound surface character and kernel electronic configurations. The results of XRD and IR showed that calcination temperature had a great effect on the cerium ion valence. The products are orthorhombic Ce2 O(CO3)2.H2O with valence III by using homogeneous precipitation method directly. When heated from the temperature 200 degrees C to 250 degrees C, the product of CeO(CO3)2.H2O with valence VI was finally changed into stable CeO2 with valence IV. XPS was used to study the surface character and kernel electronic configurations of the three different compounds through fine scanning of O(1s), Ce(3d) and Ce(4d) apices, and the results approved that the compounds with different valences are caused by the different valence electronic configurations of the products.

20.
Exp Ther Med ; 20(4): 3887-3894, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32905367

ABSTRACT

Non-gonococcal urethritis (NGU) is one of the most common sexually transmitted diseases caused by chlamydia or mycoplasma. The present study aimed to explore the clinical efficacy of azithromycin combined with doxycycline in patients with NGU and its effect on serum levels of inflammatory cytokine interleukin-6 (IL-6). A total of 98 patients with non-gonococcal urethritis were prospectively selected, of which 46 patients were assigned to an azithromycin group (treated with azithromycin alone), while the rest were assigned to a combination group (treated with azithromycin and doxycycline). The conditions of the patients were evaluated and compared between the two groups. The treatment efficacy in patients in the combination group was significantly better than that in the azithromycin group, and the time to symptom relief, period of medication, recurrence rate within 1 year of withdrawal and level of serum IL-6 in the combination group were significantly lower than those in the azithromycin group. The quality of life of patients in the combination group was significantly improved compared to those in the azithromycin group. However, there was no significant difference in the incidence of adverse reactions between the two groups. Azithromycin combined with doxycycline was revealed to be more effective than azithromycin monotherapy for NGU.

SELECTION OF CITATIONS
SEARCH DETAIL