Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
Anal Chem ; 96(1): 265-271, 2024 01 09.
Article in English | MEDLINE | ID: mdl-38153235

ABSTRACT

Direct analysis in real time (DART) enables direct desorption and ionization of analytes, bypassing the time-consuming chromatographic separation traditionally required for mass spectrometry (MS) analysis. However, DART-MS suffers from matrix interference of complex samples, resulting in compromised detection sensitivity and quantitation accuracy. In this study, DART-MS was combined with differential mobility spectrometry (DMS) to provide an additional dimension of post-ionization ion mobility separation within a millisecond time scale, compensating for the lack of separation in DART-MS analysis. As proof-of-concept, primary aromatic amines (PAAs), a class of potentially hazardous chemicals, were analyzed in various toy products, including bubble solutions, finger paints, and plush toys. In addition to commercial Dip-it glass rod and metal mesh sampling tools, a customized rapid extractive evaporation device was designed for the accelerated extraction and sensitive analysis of solid toy samples. The incorporation of DMS in DART-MS analysis enabled the rapid separation and differentiation of isomeric analytes, leading to improved accuracy and reliability. The developed protocols were optimized and validated, achieving good linearity with correlation coefficients greater than 0.99 and acceptable repeatability with relative standard deviations less than 10%. Moreover, satisfactory sensitivity was realized with limits of detection and quantitation ranges of 0.2-5 and 1-20 µg/kg (µg/L) for the 11 PAA analytes. The established methodology was applied for the analysis of real toy samples (n = 18), which confirmed its appealing potential for toy safety screening and consumer health protection.


Subject(s)
Amines , Play and Playthings , Reproducibility of Results , Mass Spectrometry/methods , Spectrum Analysis , Amines/analysis
2.
Molecules ; 29(13)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38998965

ABSTRACT

In this study, a self-responsive fluorescence aptasensor was established for the determination of lactoferrin (Lf) in dairy products. Herein, the aptamer itself functions as both a recognition element that specifically binds to Lf and a fluorescent signal reporter in conjunction with fluorescent moiety. In the presence of Lf, the aptamer preferentially binds to Lf due to its specific and high-affinity recognition by folding into a self-assembled and three-dimensional spatial structure. Meanwhile, its reduced spatial distance in the aptamer-Lf complex induces a FRET phenomenon based on the quenching of 6-FAM by amino acids in the Lf protein, resulting in a turn-off of the fluorescence of the system. As a result, the Lf concentration can be determined straightforwardly corresponding to the change in the self-responsive fluorescence signal. Under the optimized conditions, good linearities (R2 > 0.99) were achieved in an Lf concentration range of 2~10 µg/mL for both standard solutions and the spiked matrix, as well as with the desirable detection limits of 0.68 µg/mL and 0.46 µg/mL, respectively. Moreover, the fluorescence aptasensor exhibited reliable recoveries (89.5-104.3%) in terms of detecting Lf in three commercial samples, which is comparable to the accuracy of the HPCE method. The fluorescence aptasensor offers a user-friendly, cost-efficient, and promising sensor platform for point-of-need detection.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Dairy Products , Lactoferrin , Lactoferrin/analysis , Lactoferrin/chemistry , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , Dairy Products/analysis , Fluorescence , Limit of Detection , Spectrometry, Fluorescence/methods , Food Analysis/methods , Fluorescence Resonance Energy Transfer/methods
3.
Int J Obes (Lond) ; 47(12): 1263-1268, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37709861

ABSTRACT

INTRODUCTION: Research on the prevalence of body mass index (BMI) categories across different living arrangements remains limited. We aimed to quantify the prevalence of BMI categories among those living alone (LA) and those not living alone (NLA). METHODS: In this population-based cross-sectional study, we used individual-level data from the 2011-2021 Behavioral Risk Factor Surveillance System. Main outcomes were prevalence of BMI categories in LA and NLA, adjusted for age, gender, and race/ethnicity, and socioeconomic status, using logistic regression and model-predicted marginal prevalence to estimate BMI categories prevalence. RESULTS: Between 2011 and 2021, we quantified BMI categories prevalence in 4,195,414 adults in the BRFSS, with 1,197,787 (28.5%) adults LA and 2,997,627 (71.5%) adults NLA. In comparison to NLA, LA consistently demonstrates lower adjusted obesity prevalence across genders and age groups, with the highest prevalence observed in the 45-64 age range, particularly within the 45-54 group (LA: 37.4%, 95% CI: 37.1-37.8%; NLA: 34.3%, 95% CI: 33.8-34.7%). Additionally, LA displays an overall lower adjusted prevalence of overweight compared to NLA, notably in the 18-34 and >64 age groups. CONCLUSIONS: Heterogeneity in BMI categories prevalence exists between LA and NLA. Future studies and public health efforts should consider this heterogeneity.


Subject(s)
Obesity , Overweight , Adult , Humans , Male , Female , Body Mass Index , Cross-Sectional Studies , Obesity/epidemiology , Overweight/epidemiology , Ethnicity , Prevalence
4.
Mikrochim Acta ; 190(10): 387, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37700165

ABSTRACT

Food safety is a critical issue that is closely related to people's health and safety. As a simple, rapid, and sensitive detection technique, surface-enhanced Raman scattering (SERS) technology has significant potential for food safety detection. Recently, researchers have shown a growing interest in utilizing silent region molecules for SERS analysis. These molecules exhibit significant Raman scattering peaks in the cellular Raman silent region between 1800 and 2800 cm-1 avoiding overlapping with the SERS spectrum of biological matrices in the range 600-1800 cm-1, which could effectively circumvent matrix effects and improve the SERS accuracy. In this review, the application of silent region molecules-based SERS analytical technique for food safety detection is introduced, detection strategies including label-free detection and labeled detection are discussed, and recent applications of SERS analysis technology based on molecules containing alkyne and nitrile groups, as well as Prussian blue (PB) in the detection of pesticides, mycotoxins, metal ions, and foodborne pathogens are highlighted. This review aims to draw the attention to the silent region molecules-based SERS analytical technique and to provide theoretical support for its further applications in food safety detection.


Subject(s)
Mycotoxins , Pesticides , Humans , Food Safety , Alkynes , Nitriles
5.
Sensors (Basel) ; 23(8)2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37112213

ABSTRACT

Traffic sign detection is an important part of environment-aware technology and has great potential in the field of intelligent transportation. In recent years, deep learning has been widely used in the field of traffic sign detection, achieving excellent performance. Due to the complex traffic environment, recognizing and detecting traffic signs is still a challenging project. In this paper, a model with global feature extraction capabilities and a multi-branch lightweight detection head is proposed to increase the detection accuracy of small traffic signs. First, a global feature extraction module is proposed to enhance the ability of extracting features and capturing the correlation within the features through self-attention mechanism. Second, a new, lightweight parallel decoupled detection head is proposed to suppress redundant features and separate the output of the regression task from the classification task. Finally, we employ a series of data enhancements to enrich the context of the dataset and improve the robustness of the network. We conducted a large number of experiments to verify the effectiveness of the proposed algorithm. The accuracy of the proposed algorithm is 86.3%, the recall is 82.1%, the mAP@0.5 is 86.5% and the mAP@0.5:0.95 is 65.6% in TT100K dataset, while the number of frames transmitted per second is stable at 73, which meets the requirement of real-time detection.

6.
J Environ Manage ; 344: 118683, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37531670

ABSTRACT

Antibiotic resistance genes (ARGs) can threaten the clean production of rice owing to continuous selective pressure in heavy metal-antibiotic co-contaminated paddy soils. As an important soil carbon reservoir, the role of humic substances from different types of manure in the regulation of soil ARGs remains unclear. In this study, fulvic acid (FA) and humic acid (HA) were extracted from pig manure (PM), cow dung (CD), and chicken manure (CM). The influence of their characteristics and doses on the fate of ARGs was investigated in arsenic (As)-antibiotic co-contaminated paddy soils. The release of As and degradation of antibiotics were promoted in 1% PM-FA treatment, with increases of 4.8%-5.6% and 8.3%-8.8% compared with CM-FA and CD-FA treatments, respectively. The coexistence of FA/HA, Fe, As, and antibiotics in soil pore water affected the environmental behavior of ARGs, with FA showing a more positive effect. Species including Bacillus, Geobacter, Desulfitobacterium, and Christensenellaceae_R-7_group were considered potential hosts of ARGs, and their resistance to co-contamination increased after the addition of FA. Membrane transport is a potential strategy for host bacteria of ARGs to cope with As-antibiotic complex pressure. These results demonstrate the coupling mechanisms of As, antibiotics, and ARGs regulated by different humic substances in co-contaminated paddy soils, which could support the clean production of rice in agricultural practice.


Subject(s)
Arsenic , Oryza , Swine , Animals , Soil , Anti-Bacterial Agents/pharmacology , Humic Substances , Manure , Soil Microbiology , Drug Resistance, Microbial/genetics , Genes, Bacterial , Chickens
7.
Molecules ; 28(12)2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37375349

ABSTRACT

To comprehensively understand the volatile compounds and assess the aroma profiles of different types of Pyrus ussuriensis Maxim. Anli, Dongmili, Huagai, Jianbali, Jingbaili, Jinxiangshui, and Nanguoli were detected via headspace solid phase microextraction (HS-SPME) coupled with two-dimensional gas chromatography/time-of-flight mass spectrometry (GC×GC-TOFMS). The aroma composition, total aroma content, proportion and number of different aroma types, and the relative quantities of each compound were analyzed and evaluated. The results showed that 174 volatile aroma compounds were detected in various cultivars, mainly including esters, alcohols, aldehydes, and alkenes: Jinxiangshui had the highest total aroma content at 2825.59 ng/g; and Nanguoli had the highest number of aroma species detected at 108. The aroma composition and content varied among pear varieties, and the pears could be divided into three groups based on principal component analysis. Twenty-four kinds of aroma scents were detected; among them, fruit and aliphatic were the main fragrance types. The proportions of aroma types also varied among different varieties, visually and quantitatively displaying changes of the whole aroma of the different varieties of pears brought by the changes in aroma composition. This study contributes to further research on volatile compound analysis, and provides useful data for the improvement of fruit sensory quality and breeding work.


Subject(s)
Odorants , Pyrus , Volatile Organic Compounds , Odorants/analysis , Plant Breeding , Pyrus/chemistry , Pyrus/genetics , Solid Phase Microextraction/methods , Volatile Organic Compounds/analysis , Gas Chromatography-Mass Spectrometry , China
8.
Analyst ; 147(10): 2215-2222, 2022 May 17.
Article in English | MEDLINE | ID: mdl-35467672

ABSTRACT

The enzyme-linked apta-sorbent assay (ELASA) is widely used for the detection of small-molecule compounds as a result of low cost and reagent stability of aptamers. However, enzyme labels used in ELASA still suffer from some drawbacks, such as high production cost and limited stability. To overcome the drawbacks, we reported a nanozyme-linked apta-sorbent assay (NLASA) coupled with surface-enhanced Raman scattering (SERS)-colorimetric dual-mode detection. For nanozyme labels, Pd-Pt bimetallic nanocrystals (Pd-Pt NRs) could catalyze 3,3',5,5'-tetramethylbenzidine (TMB) to blue TMB2+, whose color variation could not only be distinguished by naked eyes but also had a strong SERS signal. The NLASA method was employed to detect ochratoxin A (OTA) with a limit of detection values of 0.097 nM (0.039 ppb) and 0.042 nM (0.017 ppb) via the colorimetric and SERS methods, respectively. This method was applied for the determination of OTA in wine and grape samples, and the detection results were in a satisfied agreement with those determined by the high performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) method. The proposed NLASA method provided a rapid and sensitive detection for OTA and could also be broadened for other small-molecules.


Subject(s)
Aptamers, Nucleotide , Ochratoxins , Aptamers, Nucleotide/chemistry , Colorimetry/methods , Limit of Detection , Ochratoxins/analysis , Tandem Mass Spectrometry
9.
J Digit Imaging ; 33(6): 1401-1403, 2020 12.
Article in English | MEDLINE | ID: mdl-33025167

ABSTRACT

PURPOSE: Radiomics features can be positioned to monitor changes throughout treatment. In this study, we evaluated machine learning for predicting tumor response by analyzing CT images of lung cancer patients treated with radiotherapy. EXPERIMENTAL DESIGN: For this retrospective study, screening or standard diagnostic CT images were collected for 100 patients (mean age, 67 years; range, 55-82 years; 64 men [mean age, 68 years; range, 55-82 years] and 36 women [mean age, 65 years; range, 60-72 years]) from two institutions between 2013 and 2017. Radiomics analysis was available for each patient. Features were pruned to train machine learning classifiers with 50 patients, then trained in the test dataset. RESULT: A support vector machine classifier with 2 radiomic features (flatness and coefficient of variation) achieved an area under the receiver operating characteristic curve (AUC) of 0.91 on the test set. CONCLUSION: The 2 radiomic features, flatness, and coefficient of variation, from the volume of interest of lung tumor, can be the biomarkers for predicting tumor response at CT.


Subject(s)
Lung Neoplasms , Tomography, X-Ray Computed , Aged , Aged, 80 and over , Female , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/radiotherapy , Machine Learning , Male , Middle Aged , ROC Curve , Retrospective Studies
10.
Mikrochim Acta ; 186(4): 215, 2019 Mar 05.
Article in English | MEDLINE | ID: mdl-30834981

ABSTRACT

The published version of this article, unfortunately, contains error. Author name was corrected as "A. M. Abd EI-Aty" - upper case of "i" in "EI-Aty", instead of "A. M. Abd El-Aty" - lower case of "L". Given in this paper is the correct author name.

11.
Mikrochim Acta ; 186(3): 143, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30707371

ABSTRACT

A class-specific molecular imprinted polymer (MIP) is described for simultaneous recognition of prometryn and simetryn prior to their determination via a fingerprint signal (at 974 cm-1 and 1074 cm-1) in the surface enhanced Raman scattering (SERS) spectra that were acquired in the presence of gold nanoparticles. The imprinted nanoparticles were applied to the analysis of rice and wheat samples spiked with both herbicides. The method has fairly good recoveries (72.7-90.9%) with a relative standard deviation of 1.7-7.8%, and a 20 µg·kg-1 limit of detection. The imprint factors (compared to non-imprinted polymers) are 5.3 for prometryn and 4.2 for simetryn (both at 10 µg·mL-1 of the initial solution). Graphical abstract A MIP-SERS method was developed for simultaneous detection of triazine herbicides (prometryn and simetryn) in food samples.

12.
Mikrochim Acta ; 186(6): 390, 2019 05 31.
Article in English | MEDLINE | ID: mdl-31152243

ABSTRACT

A novel and highly sensitive enzyme inhibition assay was developed for the rapid detection of the organophosphate pesticide dichlorvos and the carbamate pesticide carbofuran. It achieves signal amplification by the secondary catalysis of platinum nanoparticles. Acetylcholinesterase (AChE) is capable of catalyzing the hydrolysis of acetylthiocholine to form thiocholine. Thiocholine causes the aggregation of citrate-capped platinum nanoparticles which then lose their peroxidase-mimicking properties. After addition of pesticides, the activity of AChE is inhibited, less thiocholine is produced, less aggregation occurs, and the peroxidase-mimetic properties are increasingly retained. In the presence of tetramethylbenzidine and H2O2, a deep blue coloration with an absorption maximum at 650 nm will be formed. The assay was applied to the determination of dichlorvos and carbofuran, and detection limits of 2.3 µg·L-1 and 1.4 µg·L-1 were obtained, respectively. Recovery experiments with spiked tap water and pears gave satisfactory relative standard deviations. Graphical abstract The blue product formed by platinum nanoparticle-catalyzed oxidation of 3,3'5,5'-tetramethylbenzidine (TMB) by H2O2 is reduced if acetylthiocholine (ATCh) is hydrolyzed by acetylcholinesterase (AChE) to form thiocholine. However, if AChE is inhibited by pesticides, color formation will recover.


Subject(s)
Carbofuran/analysis , Colorimetry/methods , Dichlorvos/analysis , Metal Nanoparticles/chemistry , Pesticides/analysis , Acetylcholinesterase/chemistry , Acetylthiocholine/chemistry , Benzidines/chemistry , Biomimetic Materials/chemistry , Cholinesterase Inhibitors/analysis , Drinking Water/analysis , Hydrogen Peroxide/chemistry , Limit of Detection , Peroxidase/chemistry , Platinum/chemistry , Thiocholine/chemistry , Water Pollutants, Chemical/analysis
13.
Mikrochim Acta ; 186(6): 339, 2019 05 09.
Article in English | MEDLINE | ID: mdl-31073796

ABSTRACT

A competitive bio-barcode immunoassay is described for the trace detection of parathion in water, pear, cabbage, and rice samples. It is based on amplification by platinum nanoparticle acting as a nanozyme. Gold nanoparticles (AuNPs) were modified with (a) monoclonal antibodies (mAbs) against parathion, and (b) thiolated single-stranded DNA (ssDNA) oligonucleotides. Magnetic nanoparticles (MNPs) were functionalized with ovalbumin coupled with parathion hapten. Parathion and its hapten compete with mAbs on the surface of the AuNPs. Subsequently, the platinum nanoparticles (PtNPs) probe, which was functionalized with the complementary thiolated ssDNA (C-ssDNA), was added to the reaction mixture for the detection of parathion. The signal was catalytically amplified by coupling with platinum nanozyme using teramethylbenzidine and H2O2 as the chromogenic system. The immunoassay has a linear range that extends from 0.01-50 µg·L-1, and the limit of detection is 2.0 × 10-3 µg·L-1. The recoveries and relative standard deviations (RSDs) ranged from 91.1-114.4% and 3.6-15.8%, respectively. The method correlates well with data obtained by gas chromatography-tandem mass spectrometry (GC-MS/MS). Graphical abstract The parathion and the magnetic nanoparticles (MNPs) labelled with hapten-OVA competitively reacted to AuNPs modified with mAbs and thiolated DNA for the detection of parathion. The signal was catalyzed by platinum nanozyme. The limit of detection for parathion is 2.0 ng·L-1.


Subject(s)
Immunoassay/methods , Metal Nanoparticles/chemistry , Parathion/analysis , Antibodies, Monoclonal/immunology , Benzidines/chemistry , Brassica/chemistry , Catalysis , Colorimetry/methods , Gold/chemistry , Hydrogen Peroxide/chemistry , Limit of Detection , Oryza/chemistry , Parathion/immunology , Pesticide Residues/analysis , Pesticide Residues/immunology , Platinum/chemistry , Pyrus/chemistry , Water/analysis , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/immunology
14.
Int J Mol Sci ; 19(10)2018 Oct 19.
Article in English | MEDLINE | ID: mdl-30347770

ABSTRACT

Clinical applications of camptothecin (CPT) have been heavily hindered due to its non-targeted toxicity, active lactone ring instability, and poor water solubility. Targeted drug delivery systems may offer the possibility to overcome the above issues as reported. In this research, a series of prostate-specific membrane antigen (PSMA)-activated CPT prodrugs were designed and synthesized by coupling water-soluble pentapeptide, a PSMA hydrolyzing substrate, to CPT through an appropriate linker. The cytotoxicity of CPT prodrugs was masked temporarily until they were hydrolyzed by the PSMA present within the tumor sites, which restored cytotoxicity. The in vitro selective cytotoxic activities of the prodrugs were evaluated against PSMA-expressing human prostate cancer cells LNCaP-FGC and non-PSMA-expressing cancer cells HepG2, Hela, MCF-7, DU145, PC-3 and normal cells MDCK, LO2 by standard methylthiazol tetrazolium (MTT) assay. Most of the newly synthesized CPT prodrugs showed excellent selective toxicity to PSMA-producing prostate cancer cells LNCaP-FGC with improved water solubility. From among the library, CPT-HT-J-ZL12 showed the best cytotoxic selectivity between the PSMA-expressing and the non-PSMA-expressing cancer cells. For example, the cytotoxicity of CPT-HT-J-ZL12 (IC50 = 1.00 ± 0.20 µM) against LNCaP-FGC (PSMA⁺) was 40-fold, 40-fold, 21-fold, 5-fold and 40-fold, respectively, higher than that against the non-PSMA-expressing cells HepG2 (IC50 > 40.00 µM), Hela (IC50 > 40.00 µM), MCF-7 (IC50 = 21.68 ± 4.96 µM), DU145 (IC50 = 5.40 ± 1.22 µM), PC-3 (IC50 = 42.96 ± 3.69 µM) cells. Moreover, CPT-HT-J-ZL12 exhibited low cytotoxicity (IC50 > 40 µM) towards MDCK and LO2 cells. The cellular uptake experiment demonstrated the superior PSMA-targeting ability of the CPT-HT-J-ZL12, which was significantly accumulated in LNCaP-FGC (PSMA⁺), while it was minimized in HepG2 (PSMA-) cells. Further cell apoptosis analyses indicated that it showed a dramatically higher apoptosis-inducing activity in LNCaP-FGC (PSMA⁺) cells than in HepG2 (PSMA-) cells. Cell cycle analysis indicated that CPT-HT-J-ZL12 could induce cell cycle arrest at the S phase.


Subject(s)
Antigens, Surface/metabolism , Antineoplastic Agents/chemical synthesis , Camptothecin/analogs & derivatives , Glutamate Carboxypeptidase II/metabolism , Prodrugs/chemical synthesis , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , HeLa Cells , Hep G2 Cells , Humans , MCF-7 Cells , Oligopeptides/chemistry , Prodrugs/pharmacology , Quantitative Structure-Activity Relationship
15.
Molecules ; 23(2)2018 Feb 02.
Article in English | MEDLINE | ID: mdl-29393898

ABSTRACT

Activated hepatic stellate cells (HSCs) are the main extracellular matrix (ECM)-producing cells in the injured liver and the key mediators of liver fibrosis; they also promote the progression of hepatocellular carcinoma (HCC). In the acidic extracellular microenvironment of HCC, HSCs are activated to promote the migration of HCC cells. It is worth attempting to alter the weak acidic microenvironment to promote activated HSC apoptosis to treat liver fibrosis and liver cancer. In the present study, a series of novel OA-amino acids analogues were designed and synthesized to introduce different amino acids in the 3-hydroxyl of OA using the ester condensation reaction to enhance hydrophilicity, alkalinity, and biological activity. We found that OA-lysine derivative (3g) could improve the hydrophilic of OA and induce HSCs apoptosis via inducing MMP depolarization and increasing intracellular Ca2+ levels. Additionally, 3g displayed a better hepatoprotective effect than OA (20 mg/kg, intragastric administration) against the acute liver injury induced by carbon tetrachloride (CCl4) in mice. The results suggested that basic amino acids (lysine) could effectively enhance OA's hydrophilicity, alkalinity, and hepatoprotective activity in vitro and in vivo, which might be likely associated with increasing bioavailability and altering an extracellular weak acidic microenvironment with further verification. Therefore, the OA-lysine derivative (3g) has the potential to be developed as an agent with hepatoprotective activity.


Subject(s)
Chemical and Drug Induced Liver Injury/drug therapy , Hepatic Stellate Cells/drug effects , Liver/drug effects , Lysine/analogs & derivatives , Oleanolic Acid/analogs & derivatives , Protective Agents/chemical synthesis , Animals , Apoptosis/drug effects , Calcium/metabolism , Carbon Tetrachloride , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Esters , Hep G2 Cells , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Humans , Hydrophobic and Hydrophilic Interactions , Inhibitory Concentration 50 , Liver/metabolism , Liver/pathology , Lysine/pharmacology , Membrane Potential, Mitochondrial/drug effects , Mice , Oleanolic Acid/pharmacology , Protective Agents/pharmacology , Structure-Activity Relationship
16.
Int J Mol Sci ; 18(3)2017 Mar 06.
Article in English | MEDLINE | ID: mdl-28272302

ABSTRACT

A novel hepatoprotective oleanolic acid derivative, 3-oxours-oleana-9(11), 12-dien-28-oic acid (Oxy-Di-OA), has been reported. In previous studies, we found that Oxy-Di-OA presented the anti-HBV (Hepatitis B Virus) activity (IC50 = 3.13 µg/mL). Remarkably, it is superior to lamivudine in the inhibition of the rebound of the viral replication rate. Furthermore, Oxy-Di-OA showed good performance of anti-HBV activity in vivo. Some studies showed that liver fibrosis may affiliate with HBV gene mutations. In addition, the anti-hepatic fibrosis activity of Oxy-Di-OA has not been studied. Therefore, we evaluated the protective effect of Oxy-Di-OA against carbon tetrachloride (CCl4)-induced liver injury in rats. Daily intraperitoneally administration of Oxy-Di-OA prevented the development of CCl4-induced liver fibrosis, which was evidenced by histological study and immunohistochemical analysis. The entire experimental protocol lasted nine weeks. Oxy-Di-OA significantly suppressed the increases of plasma aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels (p < 0.05). Furthermore, Oxy-Di-OA could prevent expression of transforming growth factor ß1 (TGF-ß1). It is worth noting that the high-dose group Oxy-Di-OA is superior to bifendate in elevating hepatic function. Compared to the model group, Oxy-Di-OA in the high-dose group and low-dose group can significantly reduce the liver and spleen indices (p < 0.05). The acute toxicity test showed that LD50 and a 95% confidence interval (CIs) value of Oxy-Di-OA were 714.83 mg/kg and 639.73-798.73 mg/kg via intraperitoneal injection in mice, respectively. The LD50 value of Oxy-Di-OA exceeded 2000 mg/kg via gavage in mice. In addition, a simple and rapid high performance liquid chromatography-ultraviolet (HPLC-UV) method was developed and validated to study the pharmacokinetic characteristics of the compound. After single-dose oral administration, time to reach peak concentration of Oxy-Di-OA (Cmax = 8.18 ± 0.66 µg/mL) was 10 ± 2.19 h; the elimination half-life and area under the concentration-time curve from t = 0 to the last time of Oxy-Di-OA was 2.19 h and 90.21 µg·h/mL, respectively.


Subject(s)
Liver Cirrhosis/drug therapy , Oleanolic Acid/analogs & derivatives , Alanine Transaminase/blood , Animals , Aspartate Aminotransferases/blood , Carbon Tetrachloride/toxicity , Female , Liver Cirrhosis/etiology , Male , Mice , Oleanolic Acid/administration & dosage , Oleanolic Acid/adverse effects , Oleanolic Acid/chemistry , Oleanolic Acid/pharmacology , Oleanolic Acid/therapeutic use , Rats , Rats, Sprague-Dawley , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism
17.
Molecules ; 22(9)2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28862668

ABSTRACT

Previous studies have shown that compounds in the form of precipitate (CFP) from Huang-Lian-Jie-Du-Tang (HLJDT) were stable, and the CFP content reached 2.63% of the whole decoction and had good neuroprotective effects. However, there has been no research on their specific source. In this study, it was found that HLJDT CFP mainly came from the reaction of Scutellaria baicalensis and Coptis chinensis by studying the separated prescription components (accounting for 81.33% of HLJDT CFP). Unlike previous studies on HLJDT CFP, in this research the chemical composition of Scutellaria baicalensis-Coptis chinensis (SB-CC) CFP was identified by high performance liquid chromatography coupled with mass spectrometry (HPLC-MSn), which further proved that the main source of HLJDT CFP was Scutellaria baicalensis-Coptis chinensis CFP compared with previous HLJDT CFP studies. To explain the reaction mechanism between the decoctions of Scutellaria baicalensis and Coptis chinensis, isothermal titration calorimetry (ITC) was used to analyze their binding heat and the thermodynamic parameters (ΔH, ΔS, ΔG, n, Ka) of the reaction between baicalin and berberine, which are the main components of Scutellaria baicalensis and Coptis chinensis, respectively. The results showed that the reaction between decoctions of Scutellaria baicalensis and Coptis chinensis was exothermic and the reaction between baicalin and berberine was a spontaneous and enthalpy-driven chemical reaction, the binding ratio being 1:1. In addition, HLJDT CFP (EC50 = 14.71 ± 0.91 µg/mL) and SB-CC CFP (EC50 = 6.11 ± 0.12 µg/mL) showed similar protective activities on PC12 cells injured by cobalt chloride (CoCl2). This study provided a new angle to research on the main chemical components and therapeutic values of CFP in Traditional Chinese Medicine compounds.


Subject(s)
Calorimetry/methods , Chemical Precipitation , Drugs, Chinese Herbal/isolation & purification , Drugs, Chinese Herbal/pharmacology , Medicine, Chinese Traditional , Prescription Drugs/pharmacology , Animals , Berberine/analysis , Berberine/chemistry , Cell Shape/drug effects , Chromatography, High Pressure Liquid , Flavonoids/analysis , Flavonoids/chemistry , Mass Spectrometry , Neuroprotective Agents/pharmacology , PC12 Cells , Prescription Drugs/isolation & purification , Rats , Scutellaria baicalensis/chemistry , Thermodynamics
18.
Molecules ; 22(6)2017 Jun 02.
Article in English | MEDLINE | ID: mdl-28574470

ABSTRACT

Glycyrrhetinic Acid (GA), a triterpenoid aglycone component of the natural product glycyrrhizinic acid, was found to possess remarkable anti-proliferative and apoptosis-inducing activity in various cancer cell lines. Though GA was not as active as other triterpenes, such as betulinic acid and oleanolic acid, it could trigger apoptosis in tumor cells and it can be obtained easily and cheaply, which has stimulated scientific interest in using GA as a scaffold to synthesize new antitumor agents. The structural modifications of GA reported in recent decades can be divided into four groups, which include structural modifications on ring-A, ring-C, ring-E and multiple ring modifications. The lack of a comprehensive and recent review on this topic prompted us to gather more new information. This overview is dedicated to summarizing and updating the structural modification of GA to improve its antitumor activity published between 2005 and 2016. We reviewed a total of 210 GA derivatives that we encountered and compiled the most active GA derivatives along with their activity profile in different series. Furthermore, the structure activity relationships of these derivatives are briefly discussed. The included information is expected to be of benefit to further studies of structural modifications of GA to enhance its antitumor activity.


Subject(s)
Antineoplastic Agents/pharmacology , Glycyrrhetinic Acid/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Glycyrrhetinic Acid/analogs & derivatives , Glycyrrhetinic Acid/chemical synthesis , Glycyrrhetinic Acid/chemistry , Humans , Inhibitory Concentration 50 , Structure-Activity Relationship
19.
Anal Bioanal Chem ; 408(15): 4151-8, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27052777

ABSTRACT

Aptamer-based strip assay is an easy, highly efficient and low-cost detection method, which has been developed and easily applied to onsite detection. A new sensitive sandwich dipstick assay for adenosine triphosphate (ATP) detection was successfully developed based on specific recognition between split aptamer fragments and the target. In this method, the thiolated aptamer was first conjugated to the surface of gold nanoparticles (AuNPs), while the biotin-aptamer was immobilized on the surface of a nitrocellulose filter in the test line. In the presence of ATP, the thiol-aptamer/ATP/biotin-aptamer complexes were generated, which led to an obvious increase in optical signals at the test line. Under the optimal determination conditions, an excellent linear logarithmic response to the ATP concentration was obtained within the range of 0.5 µM to 5 mM. The limit of detection (LOD) of 0.5 µM was reached at a signal-to-noise ratio of 3. The dipstick assay showed a good average recovery of 96-108 % with the RSD of less than 20 % in urine samples. The proposed method exhibited high specificity against other nucleotides such as the uridine triphosphate (UTP), cytidine triphosphate (CTP), and guanosine triphosphate (GTP). The results indicated that the dipstick strip may be considered as an inexpensive screening tool for onsite ATP determination. Graphical Abstract A simple split aptamer fragments based sandwich-type dipstick assay was developed for ATP detection.


Subject(s)
Adenosine Triphosphate/analysis , SELEX Aptamer Technique/methods , Aptamers, Nucleotide/chemistry , Biotin/chemistry , Gold/chemistry , Limit of Detection , Metal Nanoparticles/chemistry , SELEX Aptamer Technique/instrumentation , Sensitivity and Specificity
20.
Analyst ; 140(9): 3064-9, 2015 May 07.
Article in English | MEDLINE | ID: mdl-25741673

ABSTRACT

Cyromazine (CYR) can cause serious damage to the organs of animals or human beings, and it was found to bind to polythymine (polyT10) via multiple hydrogen bonding interactions. Based on this novel finding, a highly sensitive and simple colorimetric method was developed for CYR detection by using label-free gold nanoparticles (AuNPs) and polyT10. Under the optimized conditions, excellent linearity was acquired for CYR within the range of 1-500 ng mL(-1). In addition, the spectra and color changes of the AuNP solution were measured by spectrophotometry and observed by the naked eye, and the results showed that as low as 1 and 5 ng mL(-1) of CYR could be detected, depending upon the measurement methods. Afterwards, cucumber was selected to investigate the sample matrix effect and a sample pretreatment procedure was developed with simple homogenization and filtration. Even after 200 times dilution, the limit of detection (LOD) and limit of quantitation (LOQ) reached 252 ng g(-1) and 500 ng g(-1), respectively. The LOD and LOQ satisfied the Chinese requirement for the maximum residue limit (MRL), which is 0.5-1 µg g(-1) of CYR in most vegetables. The assay also showed a good average recovery of 83.7-104.8% with the RSD of less than 7% and good selectivity for cyromazine over other pesticides that may exist in vegetable samples. The method proposed in this study was simple, fast, and highly sensitive and accurate, and the test result with this method was visible to the naked eye. Therefore, it could be used for routine determination of CYR residues in cucumber samples.


Subject(s)
Cucumis sativus/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Pesticides/analysis , Triazines/analysis , Colorimetry/methods , Limit of Detection , Poly T/chemistry , Spectrophotometry, Ultraviolet/methods
SELECTION OF CITATIONS
SEARCH DETAIL