ABSTRACT
BACKGROUND: Changes in the oxidative stress and lipid metabolism (OSLM) pathways play important roles in polycystic ovarian syndrome (PCOS) pathogenesis and development. Consequently, a systematic analysis of genes related to OSLM was conducted to identify molecular clusters and explore new biomarkers that are helpful for the diagnostic of PCOS. METHODS: Gene expression and clinical data from 22 PCOS women and 14 normal women were obtained from the GEO database (GSE34526, GSE95728, and GSE106724). Consensus clustering identified OSLM-related molecular clusters, and WGCNA revealed co-expression patterns. The immune microenvironment was quantitatively assessed utilizing the CIBERSORT algorithm. Multiple machine learning models and connectivity map analyses were subsequently applied to explore potential biomarkers for PCOS, and nomograms were employed to develop a predictive multigene model of PCOS. Finally, the OSLM status of PCOS and the hub genes expression profiles were preliminarily verified using TUNEL, qRTâPCR, western blot, and IHC assays in a PCOS mouse model. RESULTS: 19 differential expression genes (DEGs) related to OSLM were identified. Based on 19 DEGs that were strongly influenced by OSLM, PCOS patients were stratified into two distinct clusters, designated Cluster 1 and Cluster 2. Distinct differences in the immune cell proportions existed in normal and two PCOS clusters. The random forest showed the best results, with the least cross-entropy and the utmost AUC (cross-entropy: 0.111 AUC: 0.960). Among the 19 OSLM-related genes, CXCR1, ACP5, CEACAM3, S1PR4, and TCF7 were identified by a Bayesian network and had a good fit with PCOS disease risk by the nomogram (AUC: 0.990 CI: 0.968-1.000). TUNEL assays revealed more severe DNA damage within the ovarian granule cells of PCOS mice than in those of normal mice (P < 0.001). The RNA and protein expression levels of the five hub genes were significantly elevated in PCOS mice, which was consistent with the results of the bioinformatics analyses. CONCLUSION: A novel predictive model was constructed for PCOS patients and five hub genes were identified as potential biomarkers to offer novel insights into clinical diagnostic strategies for PCOS.
Subject(s)
Lipid Metabolism , Oxidative Stress , Polycystic Ovary Syndrome , Polycystic Ovary Syndrome/genetics , Polycystic Ovary Syndrome/immunology , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/pathology , Female , Humans , Lipid Metabolism/genetics , Oxidative Stress/genetics , Mice , Animals , Gene Expression Profiling , Gene Regulatory Networks , Gene Expression Regulation , Biomarkers/metabolism , Disease Models, Animal , NomogramsABSTRACT
A novel, convenient and efficient protocol to access functionalized 5-amidoimidazoles is developed via one-pot synthesis from readily available materials of arylamines, carbon disulfide and isocyanides. The transformation was realized at room temperature and provided 5-amidoimidazoles in moderate to good yields in the presence of NaH. In addition, control experiments indicated that the process might be achieved via the base-induced cyclization of activated methylene isocyanides with N,N-disubstituted thioureas that produced from the reaction of amines and carbon disulfide.
Subject(s)
Carbon Disulfide , Cyanides , Amines , CyclizationABSTRACT
Bladder cancer (BLCA) has a high incidence and recurrence rate, and the effect of immunotherapy varies from person to person. Immune-related genes (IRGs) have been shown to be associated with immunotherapy and prognosis in many other cancers, but their role in immunogenic BLCA is less well defined. In this study, we constructed an eight-IRG risk model, which demonstrated strong prognostic and immunotherapeutic predictive power. The signature was significantly related to tumor clinicopathological characteristics, tumor class, immune cell infiltration and mutation status. Additionally, a nomogram containing the risk score and other potential risk factors could effectively predict the long-term overall survival probability of BLCA patients. The enriched mechanisms identified by gene set enrichment analysis suggested that the reason why this signature can accurately distinguish high- and low-risk populations may be closely related to the different degrees of innate immune response and T cell activation in different patients.
Subject(s)
Urinary Bladder Neoplasms , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic , Humans , Nomograms , Prognosis , Urinary Bladder Neoplasms/pathologyABSTRACT
Obesity is strongly linked to male infertility. Testicular spermatogenic cell apoptosis plays an important role in obesity-related male infertility. Pituitary adenylate cyclase-activating peptide (PACAP) has been recently shown to exhibit antiapoptotic and antidiabetic effects. However, the effects of PACAP on obesity-related male infertility remain unknown. The purpose of the current study is to explore the role of PACAP in obesity-related male infertility. Here, C57BL/6 male mice were fed with a high-fat diet to induce obesity and then treated with PACAP. PACAP treatment ameliorated obesity characteristics, including body weight, epididymal adipose weight, testes/body weight, serum lipids levels, and reproductive hormone levels in vivo. Additionally, PACAP was shown to improve the reproductive function of the obese mice, which was characterized by improved testis morphology, sperm parameters, acrosome reaction, and embryo quality after in vitro fertilization via silent information regulator 1 (Sirt1) activation and p53 deacetylation. These beneficial effects of PACAP were abolished in obese mice with testis-specific knockdown of Sirt1. The mechanism studies showed that PACAP selectively binds to the PAC1 receptor to attenuate palmitic acid-induced mouse spermatogenic cell (GC-1) apoptosis via the PKA/CREB/Sirt1/p53 pathway. However, this mechanism was inhibited in GC-1 cells lacking Sirt1. Finally, human semen studies showed that the decline in sperm quality in obese infertile men was partly due to Sirt1 downregulation and p53 acetylation. Our data suggest that PACAP could ameliorate fertility in obese male mice and may be a promising candidate drug for obesity-induced male infertility.
Subject(s)
Cyclic AMP Response Element-Binding Protein/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Fertility/physiology , Obesity/metabolism , Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Sirtuin 1/metabolism , Tumor Suppressor Protein p53/metabolism , Animals , Cell Line/chemistry , Down-Regulation/physiology , Infertility, Male/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Signal Transduction/physiology , Spermatozoa/metabolism , Testis/metabolismABSTRACT
BACKGROUND: Improved prediction of prognosis for gastrointestinal stromal tumours (GISTs) has become increasingly important since the introduction of targeted therapy. Here, we aimed to evaluate the prognostic significance of preoperative plasma fibrinogen (Fib) levels in patients with primary GISTs and to analyse their correlations with clinicopathological characteristics. METHODS: A total of 201 previously untreated patients with primary GISTs who had undergone radical surgery at our institution between October 2004 and July 2018 were enrolled. The optimal cut-off value for Fib levels was calculated using time-dependent receiver-operating characteristic curve analysis. RFS, the primary endpoint, was calculated by the Kaplan-Meier method and compared by the log-rank test. Univariate and multivariate Cox regression models were calculated. RESULTS: High preoperative plasma Fib levels were detected as an independent adverse prognostic factor (p = 0.008, hazard ratio 3.136, 95% CI 1.356â7.256). Furthermore, high preoperative plasma Fib levels also indicated a poor prognosis within the modified National Institutes of Health (mNIH) high-risk subgroup (p = 0.041). In addition, preoperative plasma Fib levels showed a positive correlation with several prognostic factors and even a linear relationship with tumour size (Spearman correlation coefficient [r] = 0.411, p < 0.001). CONCLUSIONS: Our results suggest that high preoperative plasma Fib levels may indicate a poor prognosis in patients with primary GISTs. As a cost-effective biomarker, preoperative assessment of plasma Fib levels may help to further risk stratify patients with mNIH high-risk GISTs and instruct the application of targeted therapy.
Subject(s)
Fibrinogen/analysis , Gastrointestinal Stromal Tumors/blood , Gastrointestinal Stromal Tumors/mortality , Gastrointestinal Stromal Tumors/surgery , Adult , Aged , Aged, 80 and over , Biomarkers/blood , Female , Gastrointestinal Stromal Tumors/pathology , Humans , Male , Middle Aged , Preoperative Period , Prognosis , Proportional Hazards Models , ROC Curve , Retrospective StudiesABSTRACT
Prostate cancer is the second-most common malignancy of the male genitourinary system. TNF-α has attracted intense attention as a potential therapeutic agent against various cancers. However, its therapeutic application is restricted by short half life and severe toxic side-effects. In this study, we constructed a stable nanodrug, called TNF-α-derived polypeptide (P16)-conjugated, chitosan (CTS)-modified selenium nanoparticle (SC; SCP), which is composed of SC as a slow-release carrier conjugated to P16. SCP had significant inhibitory effects on multiple types of tumor cells, especially DU145 prostate cancer cells, but not on RWPE-1 normal human prostate epithelial cells. SCP could induce G0/G1 cell-cycle arrest and apoptosis in DU145 cells more effectively than could P16 and TNF-α. In DU145 xenograft tumor models, SCP exerted much stronger antitumor effects than P16 or estramustine (the clinical drug for prostate cancer) but caused fewer toxic side-effects. In addition, SCP significantly inhibited proliferation and accelerated apoptosis in DU145 xenograft tumors. Further mechanistic studies revealed that SCP exerted antitumor effects via activation of the p38 MAPK/JNK pathway, thus inducing G0/G1 cell-cycle arrest and caspase-dependent apoptosis. These findings suggest that SCP may represent a potential long-lasting therapeutic agent for human prostate cancer with fewer side effects.-Yan, Q., Chen, X., Gong, H., Qiu, P., Xiao, X., Dang, S., Hong, A., Ma, Y. Delivery of a TNF-α-derived peptide by nanoparticles enhances its antitumor activity by inducing cell-cycle arrest and caspase-dependent apoptosis.
ABSTRACT
Despite extensive investigations, urosepsis remains a life-threatening and high-mortality illness. The absence of widely acknowledged animal models for urosepsis prompted this investigation with the objective of formulating a replicable murine model. Eighty-four adult male C57BL/6J mice were arbitrarily distributed into three cohorts based on the concentration of the Escherichia coli (E. coli) solution administered into the renal pelvis: Sham, Low-grade sepsis (1.0 × 108 cfu/mL), and High-grade sepsis (1.0 × 109 cfu/mL). By fabricating a glass needle with a 100 µm outer diameter, bacterial leakage during renal pelvic injection was minimized. After the ureteral ligation, the mice were injected with this needle into the right renal pelvis (normal saline or E. coli solution, 1 ml/kg). Ten days post after E. coli injection, the mortality rates for the Low-grade sepsis and High-grade sepsis groups stood at 30 % and 100 %, respectively. Post-successful modeling, mice in the urosepsis cohort exhibited a noteworthy reduction in activity, body temperature, and white blood cell count within a 2-h timeframe. At the 24-h mark post-modeling, mice afflicted with urosepsis displayed compromised coagulation functionality. Concurrently, multiple organ dysfunction was confirmed as evidenced by markedly elevated levels of inflammatory factors (IL-6 and TNF-α) in four distinct organs (heart, lung, liver, and kidney). This study confirmed the feasibility of establishing a standardized mouse model of urosepsis by ureteral ligation and E. coli injection into the renal pelvis. A primary drawback of this model resides in the mice's diminished blood volume, rendering continuous blood extraction at multiple intervals challenging.
ABSTRACT
BACKGROUND: Dysregulation of RNA guanine-7 methyltransferase (RNMT) plays a crucial role in the tumor progression and immune responses. However, the detailed role of RNMT in pan-cancer is still unknown. METHODS: Bulk transcriptomic data of pan-cancer were obtained from the Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and Cancer Cell Line Encyclopedia (CCLE) databases. Single-cell transcriptomic and proteomics data of lung squamous cell carcinoma (LUSC) were analyzed in the Tumor Immune Single-cell Hub 2 (TISCH2) and Clinical Proteomic Tumor Analysis Consortium (CPTAC) databases, respectively. The correlation between RNMT expression and cancer prognosis was analyzed by Cox proportional hazards regression and Kaplan-Meier analyses. The correlation of RNMT expression with common immunoregulators, tumor mutation burden (TMB), microsatellite instability (MSI), mismatch repair (MMR), and DNA methyltransferase (DNMT) was analyzed. Additionally, the correlation between RNMT expression and immune infiltration level was evaluated. A total of 1287 machine learning combinations were used to construct prognostic models for LUSC. qRT-PCR and Western blot were used to validate the bioinformatics findings of RNMT upregulation in LUSC. RESULTS: RNMT was widely expressed across different cancers, with significant correlation to prognosis in cancers such as kidney chromophobe (KICH) (p = 0.0033, HR = 7.12), liver hepatocellular carcinoma (LIHC) (p = 0.01, HR = 1.41), and others. Notably, RNMT participates in the regulation of the tumor microenvironment. RNMT expression positively correlated with immune cell expression (Spearman's rank correlation, p < 0.05). Moreover, RNMT expression was strongly associated with immunoregulators, TMB, MSI, MMR, and DNMT in most cancer types. Notably, RNMT expression displayed excellent prognostic and immunological performance in LUSC. The expression of RNMT was mainly enriched in B cells of LUSC tissues. qRT-PCR and Western blot verified the high expression of RNMT in LUSC. CONCLUSION: RNMT expression widely correlated with prognosis and immune infiltration in various tumors, especially LUSC. The RNMT detection may provide a new idea for future tumor immune studies and treatment strategies.
Subject(s)
Biomarkers, Tumor , Carcinoma, Squamous Cell , Gene Expression Regulation, Neoplastic , Lung Neoplasms , Humans , Lung Neoplasms/immunology , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Lung Neoplasms/therapy , Prognosis , Carcinoma, Squamous Cell/immunology , Carcinoma, Squamous Cell/diagnosis , Carcinoma, Squamous Cell/genetics , Immunotherapy/methods , Transcriptome , Computational Biology/methods , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Gene Expression ProfilingABSTRACT
Androgen receptor (AR) antagonists play important roles in the treatment of castration-resistant prostate cancer (CRPC). The glucocorticoid receptor (GR) upregulation leads to drug resistance for clinically used antiandrogens. Therefore, blocking AR/GR signaling simultaneously has become an efficient strategy to overcome the drug resistance of CRPC. Our previous work indicated that Z19 could inhibit the activity of both AR and GR. Herein, we optimized the structure of Z19 and identified GA32 as a potent AR/GR dual inhibitor. GA32 efficiently reduced the mRNA and protein levels of AR/GR downstream genes. GA32 efficiently inhibited the proliferation of enzalutamide resistance CRPC both in vitro and in vivo. GA32 could directly bind to AR and GR, and the predicted binding modes for GA32 with AR/GR suggested that GA32 binds to the AR or GR hormone binding pocket. This work provides a potential lead compound with dual AR/GR inhibitory activity to conquer the drug resistance of CRPC.
Subject(s)
Prostatic Neoplasms, Castration-Resistant , Receptors, Androgen , Male , Humans , Receptors, Androgen/metabolism , Androgen Antagonists/pharmacology , Androgen Antagonists/therapeutic use , Prostatic Neoplasms, Castration-Resistant/metabolism , Receptors, Glucocorticoid/metabolism , Drug Resistance, Neoplasm , Androgen Receptor Antagonists/pharmacology , Androgen Receptor Antagonists/therapeutic use , Nitriles/therapeutic use , Cell Line, TumorABSTRACT
BACKGROUND: Increasing epidemiological studies demonstrated that modifiable risk factors affected the risk of kidney stones. We aimed to systemically assess these causal associations using a bidirectional Mendelian randomization study. METHODS: We obtained instrumental variables related to each exposure at the genome-wide significant threshold (P < 5 × 10-8). Summary level data for outcomes from the FinnGen consortium and UK Biobank were utilized in the discovery and replication stage. The Inverse-variance weighted (IVW) method was used as the primary analysis, with additional sensitivity analyses and fix-effect meta-analysis to verify the robustness of IVW results. RESULTS: Among 46 risk factors, five were significantly associated with nephrolithiasis risk in the FinnGen consortium, UK Biobank, and meta-analyses collectively. The odds ratios (ORs) (95% confidence intervals [95%CIs]) of kidney stones were 1.21 (1.13, 1.29) per standard deviation (SD) increase in serum calcium, 1.55 (1.01, 2.36) per SD increase in serum 25(OH)D, 1.14 (1.00, 1.29) per SD increase in total triglycerides, 2.38 (1.34, 4.22) per SD increase in fasting insulin, and 0.28 (0.23, 0.35) per unit increase in log OR of urine pH. In addition, genetically predicted serum phosphorus, urinary sodium, tea consumption, and income affected the risk of kidney stones (false discovery rate [FDR] P < 0.05) based on the outcome data from the FinnGen consortium, and the significant associations of education and waist-to-hip ratio with nephrolithiasis risks were found after FDR correction (FDR P < 0.05) based on the outcome data from UK Biobank. CONCLUSIONS: Our findings comprehensively provide modifiable risk factors for the prevention of nephrolithiasis. Genome-wide association studies with larger sample sizes are needed to verify these causal associations in the future further.
Subject(s)
Genome-Wide Association Study , Kidney Calculi , Humans , Mendelian Randomization Analysis , Kidney Calculi/epidemiology , Kidney Calculi/genetics , Risk Factors , Educational Status , Polymorphism, Single NucleotideABSTRACT
BACKGROUND: Vascular remodelling is an essential pathophysiological state in many circulatory diseases. Abnormal vascular smooth muscle cell (VSMC) behaviour leads to neointimal formation and may eventually results in major adverse cardiovascular events. The C1q/TNF-related protein (C1QTNF) family is closely associated with cardiovascular disease. Notably, C1QTNF4 has unique two C1q domains. However, the role of C1QTNF4 in vascular diseases remains unclear. METHODS: C1QTNF4 expression was detected in human serum and artery tissues using ELISA and multiplex immunofluorescence (mIF) staining. Scratch assay, transwell assay and confocal microscopy were used to investigate C1QTNF4 effects on VSMC migration. EdU incorporation, MTT assay and cell counting experiment revealed C1QTNF4 effects on VSMC proliferation. C1QTNF4-transgenic, C1QTNF4-/- and AAV9-mediated VSMC-specific C1QTNF4 restoration C1QTNF4-/- mouse and rat disease models were generated. RNA-seq, quantitative real-time PCR, western blot, mIF, proliferation and migration assays were used to investigate the phenotypic characteristics and underlying mechanisms. RESULTS: Serum C1QTNF4 levels were decreased in patients with arterial stenosis. C1QTNF4 shows colocalisation with VSMC in human renal arteries. In vitro, C1QTNF4 inhibits VSMC proliferation and migration and alters VSMC phenotype. In vivo, an adenovirus-infected rat balloon injury model, C1QTNF4-transgenic and C1QTNF4-/- mouse wire-injury models with or without VSMC-specific C1QTNF4 restoration were established to mimic the VSMC repair and remodelling. The results show that C1QTNF4 decreases intimal hyperplasia. Especially, we displayed the rescue effect of C1QTNF4 in vascular remodelling using AAV vectors. Next, transcriptome analysis of artery tissue identified the potential mechanism. In vitro and in vivo experiments confirm that C1QTNF4 ameliorates neointimal formation and maintains vascular morphology by downregulating the FAK/PI3K/AKT pathway. CONCLUSIONS: Our study demonstrated that C1QTNF4 is a novel inhibitor of VSMC proliferation and migration that acts by downregulating the FAK/PI3K/AKT pathway, thus protecting blood vessels from abnormal neointima formation. These results provide new insights into promising potent treatments for vascular stenosis diseases.
Subject(s)
Cardiovascular Diseases , Vascular Remodeling , Humans , Animals , Mice , Rats , Complement C1q , Constriction, Pathologic , Muscle, Smooth, Vascular , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Cell ProliferationABSTRACT
The accumulation of hyaluronan oligosaccharides (oHA) in colorectal cancer (CRC) is closely related to tumor metastasis, but the underlying mechanism remains unclear. In this study, we first described that LAYN, a novel HA receptor, was upregulated in CRC tissue. Aberrant LAYN expression correlated with CRC metastasis and poor prognosis and positively correlated with tumor-associated macrophage (TAM) infiltration and M2 macrophage polarization in the tumor environment. Both in vitro and in vivo studies demonstrated that LAYN is activated by oHA and subsequently induces CRC metastasis and macrophage infiltration. Mechanistic studies demonstrated that oHA activates LAYN by binding to the 60-68th amino acid region of the extracellular segment. oHA-induced LAYN activation promoted metastasis and CCL20 secretion through the NF-kB pathway in CRC cells. Furthermore, targeting LAYN using a blocking antibody prevented oHA-mediated tumor metastasis, TAM infiltration and M2 polarization. This study revealed the LAYN activation mechanism and identified a potential target for the treatment of CRC tumor exhibiting high oHA levels.
Subject(s)
Colorectal Neoplasms , Tumor-Associated Macrophages , Humans , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/pathology , Hyaluronic Acid/metabolism , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Macrophages , Oligosaccharides/pharmacology , Oligosaccharides/metabolism , Cell Line, Tumor , Lectins, C-Type/metabolismABSTRACT
BACKGROUND: Experiments were designed to identify the developmental expression and function of the Dickkopf-Like1 (DKKL1/Dkkl1) gene in humans and mice. METHODS: Mouse testes cDNA samples were collected at multiple postnatal times (days 4, 9, 18, 35, and 54, as well as at 6 months) and hybridized to Affymetrix mouse whole genome Genechips. To further characterize the homologous gene DKKL1 in human beings, the expression profiles between human adult testis and foetal testis were compared using Affymetrix human Genechips. The characteristics of DKKL1/Dkkl1 were analysed using various cellular and molecular biotechnologies. RESULTS: The expression of Dkkl1 was not detected in mouse testes on days 4 or 9, but was present on days 18, 35, and 54, as well as at 6 months, which was confirmed by RT-PCR and Western blot results. Examination of the tissue distribution of Dkkl1 demonstrated that while Dkkl1 mRNA was abundantly expressed in testes, little to no expression of Dkkl1 was observed in the epididymis or other tissues. In an in vitro fertilization assay, a Dkkl1 antibody was found to significantly reduce fertilization. Human Genechips results showed that the hybridization signal intensity of DKKL1 was 405.56-fold higher in adult testis than in foetal testis. RT-PCR analysis of multiple human tissues indicated that DKKL1 mRNA was exclusively expressed in the testis. Western blot analysis also demonstrated that DKKL1 was mainly expressed in human testis with a molecular weight of approximately 34 kDa. Additionally, immunohistochemical staining showed that the DKKL1 protein was predominantly located in spermatocytes and round spermatids in human testes. An examination of the expression levels of DKKL1 in infertile male patients revealed that while no DKKL1 appeared in the testes of patients with Sertoli cell only syndrome (SCOS) or cryptorchidism, DKKL1 was observed with variable expression in patients with spermatogenic arrest. CONCLUSIONS: These results, together with previous studies, suggest that DKKL1/Dkkl1 may play an important role in testicular development and spermatogenesis and may be an important factor in male infertility.
Subject(s)
Nuclear Proteins/biosynthesis , Nuclear Proteins/physiology , RNA-Binding Proteins/biosynthesis , RNA-Binding Proteins/physiology , Adult , Animals , Cryptorchidism/genetics , Female , Gene Expression Regulation, Developmental , Humans , Infertility, Male/physiopathology , Intercellular Signaling Peptides and Proteins , Male , Mice , Mice, Inbred BALB C , RNA, Messenger/metabolism , Sertoli Cell-Only Syndrome/genetics , Spermatogenesis/genetics , Testis/metabolismABSTRACT
Copper oxide nanoparticles (nano-CuO) are recognized as an emerging pollutant. Arbuscular mycorrhizal fungi (AMF) can mitigate the adverse impacts of various pollutants on host plants. However, AMF's mechanism for alleviating nano-CuO phytotoxicity remains unclear. The goal of this study was to evaluate how AMF inoculations affect the physiological features of Canna indica seedlings exposed to nano-CuO stress. Compared with the non-AMF inoculated treatment, AMF inoculations noticeably improved plant biomass, mycorrhizal colonization, leaf chlorophyll contents, and the photosynthetic parameters of C. indica under nano-CuO treatments. Moreover, AMF inoculation was able to significantly mitigate nano-CuO stress by enhancing antioxidant enzyme activities and decreasing ROS levels in the leaves and roots of C. indica, thus increasing the expression of genes involved in the antioxidant response. In addition, AMF inoculation reduced the level of Cu in seedlings and was associated with an increased expression of Cu transport genes and metallothionein genes. Furthermore, AMF inoculations increased the expression levels of organic acid metabolism-associated genes while facilitating organic acid secretion, thus reducing the accumulation of Cu. The data demonstrate that AMF-plant symbiosis is a feasible biocontrol approach to remediate nano-CuO pollution.
ABSTRACT
Prostate cancer is one of the most common malignant tumors in men. Pyroptosis is related to tumor immune infiltration and tumor microenvironment (TME) and has been confirmed to be related to the progression of a variety of tumors. However, the relationship between prostate cancer and pyroptosis, as well as TME and tumor immune infiltration, has not been discussed yet. We obtained and combined the RNA-seq data of prostate cancer from TCGA and GEO databases, analyzed the differential expression of pyroptosis-related genes (PRGs), and divided them into two groups according to the PRG expression level. The relationship between pyroptosis subtypes and the TME of prostate cancer was further verified, and the differential expression genes (DEGs) in the two subtypes were identified. The relationship between the DEGs and clinicopathology was explored and KEGG and GO enrichment analysis was conducted; it was found that most DEGs were enriched in immune-related pathways. Then, we randomly divided datasets into training and testing sets, performed the LASSO and multicox progression analysis, selected eight genes as prognostic signatures and used the eight genes, calculated the risk score, and then separated the entire cohort into high- and low-risk groups. The prognosis between two groups and the 1-, 3-, and 5-year ROC curves of biochemical relapse (BCR) were verified in training, testing, and the entire cohort, respectively. The TME, CSC index, mutation, and drug susceptibility were also discussed.
ABSTRACT
Background: The effect of the adenoviral early region 2 binding factors (E2Fs) target pathway on prostate cancer is not clear. It is necessary to establish an E2F target-related gene signature to predict prognosis and facilitate clinical decision-making. Methods: An E2F target-related gene signature was established by univariate and LASSO Cox regression analyses, and its predictive ability was verified in multiple cohorts. Moreover, the enrichment pathway, immune microenvironment, and drug sensitivity of the activated E2F target pathway were also explored. Results: The E2F target-related gene signature consisted of MXD3, PLK1, EPHA10, and KIF4A. The patients with high-risk scores showed poor prognosis, therapeutic resistance, and immunosuppression, along with abnormal growth characteristics of cells. Tinib drugs showed high sensitivity to the expression of MXD3 and EPHA10 genes. Conclusion: Our research established an E2F target-related signature for predicting the prognosis of prostate cancer. This study provides insights into formulating individualized detection and treatment as well as provides a theoretical basis for future research.
ABSTRACT
BACKGROUND: Identifying cellular and functional heterogeneity within aged prostate is critical for understanding the spatial distribution of prostate diseases. METHODS: Aged human prostate peripheral zone (PZ) and transitional zone (TZ) tissues were used for single-cell RNA-sequencing. Results were validated by immunofluorescence staining. RESULTS: We found that club/hillock epithelial cells, compared with other epithelial cells, had significantly higher NOTCH signaling activity and expressed higher levels of neuro-stems but lower androgen-related genes. These cells were primarily found in the TZ and provided a stem-like niche around the proximal prostate ducts. Significant heterogeneity was observed in the aged luminal population. A novel TFF3+ luminal subtype with elevated MYC and E2F pathway activities was observed, primarily in the PZ. Further analysis revealed that epithelial cells in the TZ had higher levels of stem- and inflammation-related pathway activities but lower androgen/lineage-related pathway activities than those in the PZ. Notably, the activation of MYC, E2F and DNA repair pathways significantly increased in PZ luminal cells. In the immune landscape, we found that the immune microenvironment in the TZ is more complex and disordered with more infiltration of NK and Treg cells. CD8 T cell and macrophage in the TZ exhibit both inflammation activation and suppression phenotypes. In the stroma, the TZ had a higher fibroblast density, and fibroblasts in the TZ exhibited stronger transcriptome activity in immunity and proliferation. Ligand-receptor interaction analysis revealed that fibroblasts could contribute to a NOTCH signaling niche for club/hillock cells in the TZ and balance the prostate immune microenvironment. The activation of stem properties, inflammatory infiltration and loss of androgen/lineage activity are prominent features distinguishing the TZ from PZ. CONCLUSIONS: Our study explains the heterogeneity between the TZ and PZ of aged prostate, which may help understand the spatial distribution of prostate diseases and establish a foundation for novel target discovery.
Subject(s)
Androgens , Prostate , Aged , Androgens/metabolism , Humans , Inflammation/metabolism , Ligands , Male , Prostate/metabolism , RNA/metabolism , TechnologyABSTRACT
Background: Systemic metastasis is the main cause of death in patients with prostate cancer. It is necessary to establish a more accurate model to distinguish and predict patients with a high risk of metastasis to optimize individualized treatment. Methods: In this study, it was determined that hypoxia could affect the metastasis-free survival of patients with prostate cancer, and a hypoxia-related gene signature composed of seven genes for predicting metastasis was established and verified in different cohorts. The study further evaluated the effects of ALDOB expression on the proliferation and invasion of the LNCaP and DU145 cell lines under hypoxia and finally constructed a nomogram containing specific clinical characteristics of prostate cancer combined with the hypoxia gene signature to quantify the metastasis risk of individual patients. Results: The hypoxia-related gene signature was identified as an independent risk factor for metastasis-free survival in patients with prostate cancer. The expression of ALDOB increased under hypoxia and promoted the proliferation and invasion of LNCaP and DU145 cells. In addition, patients with a high risk score showed therapeutic resistance and immunosuppression. Compared with other parameters, the nomogram had the strongest predictive power and net clinical benefit. Conclusion: The study established a hypoxia-related gene signature and a nomogram to distinguish and predict patients with a high risk of prostate cancer metastasis, which may help to optimize individualized treatment and explore possible therapeutic targets.
ABSTRACT
The prognosis for patients with metastatic bladder cancer (BCa) is poor, and it is not improved by current treatments. RNA-binding motif protein X-linked (RBMX) are involved in the regulation of the malignant progression of various tumors. However, the role of RBMX in BCa tumorigenicity and progression remains unclear. In this study, we found that RBMX was significantly downregulated in BCa tissues, especially in muscle-invasive BCa tissues. RBMX expression was negatively correlated with tumor stage, histological grade and poor patient prognosis. Functional assays demonstrated that RBMX inhibited BCa cell proliferation, colony formation, migration, and invasion in vitro and suppressed tumor growth and metastasis in vivo. Mechanistic investigations revealed that hnRNP A1 was an RBMX-binding protein. RBMX competitively inhibited the combination of the RGG motif in hnRNP A1 and the sequences flanking PKM exon 9, leading to the formation of lower PKM2 and higher PKM1 levels, which attenuated the tumorigenicity and progression of BCa. Moreover, RBMX inhibited aerobic glycolysis through hnRNP A1-dependent PKM alternative splicing and counteracted the PKM2 overexpression-induced aggressive phenotype of the BCa cells. In conclusion, our findings indicate that RBMX suppresses BCa tumorigenicity and progression via an hnRNP A1-mediated PKM alternative splicing mechanism. RBMX may serve as a novel prognostic biomarker for clinical intervention in BCa.
Subject(s)
Heterogeneous Nuclear Ribonucleoprotein A1/metabolism , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Pyruvate Kinase/metabolism , Urinary Bladder Neoplasms/metabolism , Alternative Splicing , Animals , Disease Progression , Female , Heterogeneous Nuclear Ribonucleoprotein A1/genetics , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Heterografts , Humans , Male , Mice , Mice, Inbred NOD , Middle Aged , Prognosis , Pyruvate Kinase/genetics , Survival Analysis , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathologyABSTRACT
Several studies suggest that organochlorine exposure can affect male reproductive functions, causing poor semen quality, endocrine disruption, or dysregulation of thyroid hormones. This study uses multiple linear regression (MLR) models to analyze the correlation between male reproductive functions and polychlorinated biphenyl (PCBs) congeners or p,p'-DDE levels in serum, semen, and indoor dust samples. Multiple comparisons were all adjusted using the false discovery rate (FDR). The results revealed that the PCB congener levels in seminal plasma were significantly associated with the quality parameters of human semen (i.e., sperm count, morphology, and motility) and thyroid hormones after adjusting for covariates, e.g., associations of the sperm concentration with levels of CB105 (ß = -0.323, 95% CI: -0.561, -0.085, p = 0.009), CB44 (ß = 0.585, 95% CI: 0.290, 0.880, p < 0.001), and CB66 (ß = -0.435, 95% CI: -0.728, -0.143, p = 0.004) in the seminal plasma were observed. Correlations between serum pollutants levels and the semen quality, reproductive hormones, or thyroid hormones were also observed. Moreover, our results demonstrate that the quantification of PCBs in seminal plasma can better describe male reproductive disorders than that in serum or dust. Organochlorine exposure measured in serum or dust, especially in seminal plasma, was associated with semen quality, as well as reproductive and thyroid hormones, thus suggesting that the impacts of persistent pollutants on male reproductive health require further investigation.