Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 102
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Mol Cell ; 81(16): 3262-3274.e3, 2021 08 19.
Article in English | MEDLINE | ID: mdl-34214466

ABSTRACT

N-degron pathways are a set of proteolytic systems that target the N-terminal destabilizing residues of substrates for proteasomal degradation. Recently, the Gly/N-degron pathway has been identified as a new branch of the N-degron pathway. The N-terminal glycine degron (Gly/N-degron) is recognized by ZYG11B and ZER1, the substrate receptors of the Cullin 2-RING E3 ubiquitin ligase (CRL2). Here we present the crystal structures of ZYG11B and ZER1 bound to various Gly/N-degrons. The structures reveal that ZYG11B and ZER1 utilize their armadillo (ARM) repeats forming a deep and narrow cavity to engage mainly the first four residues of Gly/N-degrons. The α-amino group of the Gly/N-degron is accommodated in an acidic pocket by five conserved hydrogen bonds. These structures, together with biochemical studies, decipher the molecular basis for the specific recognition of the Gly/N-degron by ZYG11B and ZER1, providing key information for future structure-based chemical probe design.


Subject(s)
Cell Cycle Proteins/ultrastructure , Glycine/chemistry , Protein Conformation , Receptors, Cytokine/ultrastructure , Amino Acid Sequence/genetics , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/genetics , Crystallography, X-Ray , Glycine/genetics , HEK293 Cells , Humans , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/ultrastructure , Protein Binding/genetics , Protein Domains/genetics , Proteolysis , Receptors, Cytokine/chemistry , Receptors, Cytokine/genetics , Substrate Specificity , Ubiquitin/genetics
2.
Proc Natl Acad Sci U S A ; 119(30): e2203218119, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35867826

ABSTRACT

The exposed N-terminal or C-terminal residues of proteins can act, in cognate sequence contexts, as degradation signals (degrons) that are targeted by specific E3 ubiquitin ligases for proteasome-dependent degradation by N-degron or C-degron pathways. Here, we discovered a distinct C-degron pathway, termed the Gln/C-degron pathway, in which the B30.2 domain of E3 ubiquitin ligase TRIM7 (TRIM7B30.2) mediates the recognition of proteins bearing a C-terminal glutamine. By determining crystal structures of TRIM7B30.2 in complexes with various peptides, we show that TRIM7B30.2 forms a positively charged binding pocket to engage the "U"-shaped Gln/C-degron. The four C-terminal residues of a substrate play an important role in C-degron recognition, with C-terminal glutamine as the principal determinant. In vitro biochemical and cellular experiments were used to further analyze the substrate specificity and selective degradation of the Gln/C-degron by TRIM7.


Subject(s)
Glutamine , Proteolysis , Tripartite Motif Proteins , Ubiquitin-Protein Ligases , Glutamine/metabolism , Humans , Protein Domains , Substrate Specificity , Tripartite Motif Proteins/chemistry , Tripartite Motif Proteins/metabolism , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/metabolism
3.
J Environ Manage ; 352: 120028, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38219668

ABSTRACT

One of the key issues in manure management of livestock production is to reduce greenhouse gas (GHG) and air pollutant emissions, which lead to significant environmental footprint and human/animal health threats. This study provides a review of potentially efficacious technologies and management strategies that reduce GHG and air pollutant emissions during the three key stages of manure management in livestock production, i.e., animal housing, manure storage and treatment, and manure application. Several effective mitigation technologies and practices for each manure management stage are identified and analyzed in detail, including feeding formulation adjustment, frequent manure removal and air scrubber during animal housing stage; solid-liquid separation, manure covers for storage, acidification, anaerobic digestion and composting during manure storage and treatment stage; land application techniques at appropriate timing during manure application stage. The results indicated several promising approaches to reduce multiple gas emissions from the entire manure management. Removing manure 2-3 times per week or every day during animal housing stage is an effective and simple way to reduce GHG and air pollutant emissions. Acidification during manure storage and treatment stage can reduce ammonia and methane emissions by 33%-93% and 67%-87%, respectively and proper acid, such as lactic acid can also reduce nitrous oxide emission by about 90%. Shallow injection of manure for field application has the best performance in reducing ammonia emission by 62%-70% but increase nitrous oxide emission. The possible trade-off brings insight to the prioritization of targeted gas emissions for the researchers, stakeholders and policymakers, and also highlights the importance of assessing the mitigation technologies across the entire manure management chain. Implementing a combination of the management strategies needs comprehensive considerations about mitigation efficiency, technical feasibility, local regulations, climate condition, scalability and cost-effectiveness.


Subject(s)
Air Pollutants , Greenhouse Gases , Animals , Humans , Air Pollutants/analysis , Livestock , Ammonia , Manure/analysis , Nitrous Oxide/analysis , Greenhouse Effect , Methane/analysis
4.
Angew Chem Int Ed Engl ; 63(14): e202316323, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38317057

ABSTRACT

We synthesize supramolecular poly(disulfide) (CPS) containing covalently attached cucurbit[7]uril (CB[7]), which is exploited not only as a carrier to deliver plasmid DNA encoding destabilized Cas9 (dsCas9), but also as a host to include trimethoprim (TMP) by CB[7] moieties through the supramolecular complexation to form TMP@CPS/dsCas9. Once the plasmid is transfected into tumor cells by CPS, the presence of polyamines can competitively trigger the decomplexation of TMP@CPS, thereby displacing and releasing TMP from CB[7] to stabilize dsCas9 that can target and edit the genomic locus of PLK1 to inhibit the growth of tumor cells. Following the systemic administration of TMP@CPS/dsCas9 decorated with hyaluronic acid (HA), tumor-specific editing of PLK1 is detected due to the elevated polyamines in tumor microenvironment, greatly minimizing off-target editing in healthy tissues and non-targeted organs. As the metabolism of polyamines is dysregulated in a wide range of disorders, this study offers a supramolecular approach to precisely control CRISPR/Cas9 functions under particular pathological contexts.


Subject(s)
CRISPR-Cas Systems , Gene Editing , CRISPR-Cas Systems/genetics , Plasmids , DNA , Polyamines
5.
J Med Virol ; 95(1): e28294, 2023 01.
Article in English | MEDLINE | ID: mdl-36367155

ABSTRACT

The global monkeypox outbreak in 2022 has severely affected the life and health of people. Currently, partial smallpox vaccines have been approved for monkeypox prevention. Considering the potential occupational health risks of monkeypox infection among healthcare workers (HCWs), this study explored the willingness of Chinese HCWs to receive the monkeypox vaccine and analyzed the factors influencing their decision. We conducted an online cross-sectional survey among HCWs of 10 Chinese hospitals from May 30th, 2022 to August 1st, 2022. Specifically, a self-report questionnaire was administered to evaluate the attitude and acceptance of HCWs toward the monkeypox vaccine, followed by a multivariate logistic regression analysis to determine the independent predictors of vaccination. The survey included 1032 participants, of whom 90.12% expressed their willingness for vaccination (vaccine hesitancy rate = 9.88%). Univariate analysis showed that 11 variables differed significantly between the vaccine acceptance and vaccine hesitancy groups. Multivariate logistic regression analysis demonstrated that the age of 30-40 years (odds ratio [OR] = 0.504, 95% confidence interval [CI]: 0.284-0.893, p = 0.019 vs. age of <30 years old), working in a secondary hospital (OR = 0.449, 95% CI: 0.249-0.808, p = 0.019 vs. working in a tertiary hospital), considering vaccination necessary for controlling monkeypox infection (OR = 4.135, 95% CI: 2.109-8.106, p < 0.001 vs. not considering it necessary), willingness to pay for the monkeypox vaccine (OR = 2.125, 95% CI: 1.206-3.745, p = 0.009 vs. no willingness to pay), considering implementation of mandatory vaccination necessary (OR = 1.990, 95% CI: 1.023-3.869, p = 0.043 vs. not considering it necessary), and recommending family members and friends to take the vaccine (OR = 13.847, 95% CI: 7.487-25.609, p < 0.001 vs. not recommending) were crucial independent predictors of the willingness to receive monkeypox-related vaccination. This study evaluated the acceptance and hesitancy rates of Chinese HCWs toward the monkeypox vaccine and found that the willingness to receive vaccination was mainly correlated to age, hospital level, and attitude toward vaccination. Therefore, to promote vaccine absorption, we recommend expanding publicity, formulating reasonable policies, and improving the recognition of vaccines.


Subject(s)
Mpox (monkeypox) , Smallpox Vaccine , Vaccines , Humans , Adult , Cross-Sectional Studies , Mpox (monkeypox)/prevention & control , Vaccination , Health Personnel , Tertiary Care Centers
6.
Blood ; 138(3): 246-258, 2021 07 22.
Article in English | MEDLINE | ID: mdl-34292322

ABSTRACT

Most cancers become more dangerous by the outgrowth of malignant subclones with additional DNA mutations that favor proliferation or survival. Using chronic lymphocytic leukemia (CLL), a disease that exemplifies this process and is a model for neoplasms in general, we created transgenic mice overexpressing the enzyme activation-induced deaminase (AID), which has a normal function of inducing DNA mutations in B lymphocytes. AID not only allows normal B lymphocytes to develop more effective immunoglobulin-mediated immunity, but is also able to mutate nonimmunoglobulin genes, predisposing to cancer. In CLL, AID expression correlates with poor prognosis, suggesting a role for this enzyme in disease progression. Nevertheless, direct experimental evidence identifying the specific genes that are mutated by AID and indicating that those genes are associated with disease progression is not available. To address this point, we overexpressed Aicda in a murine model of CLL (Eµ-TCL1). Analyses of TCL1/AID mice demonstrate a role for AID in disease kinetics, CLL cell proliferation, and the development of cancer-related target mutations with canonical AID signatures in nonimmunoglobulin genes. Notably, our mouse models can accumulate mutations in the same genes that are mutated in human cancers. Moreover, some of these mutations occur at homologous positions, leading to identical or chemically similar amino acid substitutions as in human CLL and lymphoma. Together, these findings support a direct link between aberrant AID activity and CLL driver mutations that are then selected for their oncogenic effects, whereby AID promotes aggressiveness in CLL and other B-cell neoplasms.


Subject(s)
Cytidine Deaminase/genetics , Gene Expression Regulation, Leukemic , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Up-Regulation , Animals , Disease Models, Animal , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutation
7.
Blood ; 137(10): 1365-1376, 2021 03 11.
Article in English | MEDLINE | ID: mdl-32992344

ABSTRACT

Chronic lymphocytic leukemia (CLL) is characterized by the existence of subsets of patients with (quasi)identical, stereotyped B-cell receptor (BcR) immunoglobulins. Patients in certain major stereotyped subsets often display remarkably consistent clinicobiological profiles, suggesting that the study of BcR immunoglobulin stereotypy in CLL has important implications for understanding disease pathophysiology and refining clinical decision-making. Nevertheless, several issues remain open, especially pertaining to the actual frequency of BcR immunoglobulin stereotypy and major subsets, as well as the existence of higher-order connections between individual subsets. To address these issues, we investigated clonotypic IGHV-IGHD-IGHJ gene rearrangements in a series of 29 856 patients with CLL, by far the largest series worldwide. We report that the stereotyped fraction of CLL peaks at 41% of the entire cohort and that all 19 previously identified major subsets retained their relative size and ranking, while 10 new ones emerged; overall, major stereotyped subsets had a cumulative frequency of 13.5%. Higher-level relationships were evident between subsets, particularly for major stereotyped subsets with unmutated IGHV genes (U-CLL), for which close relations with other subsets, termed "satellites," were identified. Satellite subsets accounted for 3% of the entire cohort. These results confirm our previous notion that major subsets can be robustly identified and are consistent in relative size, hence representing distinct disease variants amenable to compartmentalized research with the potential of overcoming the pronounced heterogeneity of CLL. Furthermore, the existence of satellite subsets reveals a novel aspect of repertoire restriction with implications for refined molecular classification of CLL.


Subject(s)
Immunoglobulin Heavy Chains/genetics , Immunoglobulin Variable Region/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Gene Frequency , Gene Rearrangement , Humans , Somatic Hypermutation, Immunoglobulin
8.
Nat Chem Biol ; 17(3): 263-271, 2021 03.
Article in English | MEDLINE | ID: mdl-33398170

ABSTRACT

Proteome integrity depends on the ubiquitin-proteasome system to degrade unwanted or abnormal proteins. In addition to the N-degrons, C-terminal residues of proteins can also serve as degradation signals (C-degrons) that are recognized by specific cullin-RING ubiquitin ligases (CRLs) for proteasomal degradation. FEM1C is a CRL2 substrate receptor that targets the C-terminal arginine degron (Arg/C-degron), but the molecular mechanism of substrate recognition remains largely elusive. Here, we present crystal structures of FEM1C in complex with Arg/C-degron and show that FEM1C utilizes a semi-open binding pocket to capture the C-terminal arginine and that the extreme C-terminal arginine is the major structural determinant in recognition by FEM1C. Together with biochemical and mutagenesis studies, we provide a framework for understanding molecular recognition of the Arg/C-degron by the FEM family of proteins.


Subject(s)
Arginine/chemistry , Carrier Proteins/chemistry , Cell Cycle Proteins/chemistry , Proteasome Endopeptidase Complex/metabolism , Ubiquitin-Protein Ligase Complexes/chemistry , Amino Acid Sequence , Arginine/metabolism , Binding Sites , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cloning, Molecular , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , HEK293 Cells , Humans , Models, Molecular , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Proteolysis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Substrate Specificity , Ubiquitin-Protein Ligase Complexes/genetics , Ubiquitin-Protein Ligase Complexes/metabolism
9.
J Sep Sci ; 46(3): e2200708, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36494714

ABSTRACT

Solvent system selection is a crucial and the most time-consuming step for successful countercurrent chromatography separation. A thin-layer chromatography-based generally useful estimate of solvent systems method has been developed to simplify the solvent system selection. We herein utilized the method to select a solvent system for off-line two-dimensional countercurrent chromatography to separate chemical compositions from a complex fraction of the Siraitia grosvenorii root extract. The first-dimensional countercurrent separation using chloroform/methanol/water (10:5.5:4.5, v/v/v) yielded four compounds with high purity and three mixture fractions (Fr I, III, and VII). The second-dimensional countercurrent separation conducted on Fr I, III, and VII using the hexane/ethyl acetate/methanol/water (4:6:6:4, 3:7:3:7, v/v/v) and chloroform/methanol/water (10:9:6, v/v/v) solvent systems, respectively, produced another four compounds. Four triterpenoids and four lignans were finally isolated, including two novel compounds. Hence, the generally useful estimate of solvent systems method is a feasible and efficient approach for selecting an applicable solvent system for separating complex samples. In addition, the off-line two-dimensional countercurrent chromatography method can improve both the peak resolution and the capacity of countercurrent chromatography.


Subject(s)
Countercurrent Distribution , Plant Extracts , Solvents/chemistry , Countercurrent Distribution/methods , Plant Extracts/chemistry , Methanol , Chloroform/chemistry , Water/chemistry , Chromatography, High Pressure Liquid/methods
10.
J Sep Sci ; 46(14): e2300059, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37269052

ABSTRACT

Premna fulva Craib, rich in iridoid glycosides, is widely used to treat periarthritis, osteoproliferation, pain, and other diseases. However, no studies have reported effective purification methods for obtaining iridoid glycosides as active materials. This paper describes an efficient strategy for separating iridoid glycosides from Premna fulva leaves using high-speed counter-current chromatography and preparative high-performance liquid chromatography. A two-phase solvent system, ethyl acetate/n-butanol/water (7.5:2.5:10, v/v), was selected for high-speed counter-current chromatography separation. The proposed method effectively separated and purified four iridoid glycosides and four lignans, including three new iridoid glycosides (4-6) and five known compounds (1-3, 7, 8), from Premna fulva leaves, indicating that high-speed counter-current chromatography combined with prep-HPLC can efficiently isolate catalpol derivatives from the genus Premna. Additionally, the in vitro anti-inflammatory activities of all isolated compounds were analyzed using lipopolysaccharide-stimulated RAW 264.7 cells, and the results indicated that six compounds (1 and 3-7) exhibited potential anti-inflammatory activities.


Subject(s)
Glycosides , Iridoids , Glycosides/analysis , Iridoids/analysis , Plant Extracts/chemistry , Countercurrent Distribution/methods , Iridoid Glycosides/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/analysis , Plant Leaves/chemistry , Chromatography, High Pressure Liquid/methods
11.
Chem Biodivers ; 20(4): e202300025, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36898972

ABSTRACT

Toll-like receptors (TLRs) recognize pathogen-associated molecular patterns and trigger an inflammatory response via the myeloid differential factor 88 (MyD88)-dependent and toll-interleukin-1 receptor domain-containing adapter-inducing interferon-ß (TRIF)-dependent pathways. Lindenane type sesquiterpene dimers (LSDs) are characteristic metabolites of plants belonging to the genus Sarcandra (Chloranthaceae). The aim of this study was to evaluate the potential anti-inflammatory effects of the LSDs shizukaol D (1) and sarcandrolide E (2) on lipopolysaccharides (LPS)-stimulated RAW264.7 macrophages in vitro, and explore the underlying mechanisms. Both LSDs neutralized the LPS-induced morphological changes and production of nitric oxide (NO), as determined by CCK-8 assay and Griess assay, respectively. Furthermore, shizukaol D (1) and sarcandrolide E (2) downregulated interferon ß (IFNß), tumor necrosis factor α (TNFα) and interleukin-1ß (IL-1ß) mRNA levels as measured by reverse transcription polymerase chain reaction (RT-PCR), and inhibited the phosphorylation of nuclear factor kappa B p65 (p65), nuclear factor kappa-Bα (IκBα), Jun N-terminal kinase (JNK), extracellular regulated kinase (ERK), mitogen-activated protein kinase p38 (p38), MyD88, IL-1RI-associated protein kinase 1 (IRAK1), and transforming growth factor-ß-activated kinase 1 (TAK1) proteins in the Western blotting assay. In conclusion, LSDs can alleviate the inflammatory response by inhibiting the TLR/MyD88 signalling pathway.


Subject(s)
Inflammation , Sesquiterpenes , Toll-Like Receptors , Humans , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism , Lipopolysaccharides/pharmacology , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Sesquiterpenes/pharmacology , Toll-Like Receptors/antagonists & inhibitors , Toll-Like Receptors/metabolism
12.
Int J Mol Sci ; 24(12)2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37373326

ABSTRACT

The discovery of bioactive compounds from medicinal plants has played a crucial role in drug discovery. In this study, a simple and efficient method utilizing affinity-based ultrafiltration (UF) coupled with high-performance liquid chromatography (HPLC) was developed for the rapid screening and targeted separation of α-glucosidase inhibitors from Siraitia grosvenorii roots. First, an active fraction of S. grosvenorii roots (SGR2) was prepared, and 17 potential α-glucosidase inhibitors were identified based on UF-HPLC analysis. Second, guided by UF-HPLC, a combination of MCI gel CHP-20P column chromatography, high-speed counter-current countercurrent chromatography, and preparative HPLC were conducted to isolate the compounds producing active peaks. Sixteen compounds were successfully isolated from SGR2, including two lignans and fourteen cucurbitane-type triterpenoids. The structures of the novel compounds (4, 6, 7, 8, 9, and 11) were elucidated using spectroscopic methods, including one- and two-dimensional nuclear magnetic resonance spectroscopy and high-resolution electrospray ionization mass spectrometry. Finally, the α-glucosidase inhibitory activities of the isolated compounds were verified via enzyme inhibition assays and molecular docking analysis, all of which were found to exhibit certain inhibitory activity. Compound 14 exhibited the strongest inhibitory activity, with an IC50 value of 430.13 ± 13.33 µM, which was superior to that of acarbose (1332.50 ± 58.53 µM). The relationships between the structures of the compounds and their inhibitory activities were also investigated. Molecular docking showed that the highly active inhibitors interacted with α-glucosidase through hydrogen bonds and hydrophobic interactions. Our results demonstrate the beneficial effects of S. grosvenorii roots and their constituents on α-glucosidase inhibition.


Subject(s)
Glycoside Hydrolase Inhibitors , Plant Extracts , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Plant Extracts/chemistry , Ultrafiltration/methods , alpha-Glucosidases , Molecular Docking Simulation , Chromatography, High Pressure Liquid/methods
13.
Molecules ; 28(19)2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37836681

ABSTRACT

Six new tirucallane-type triterpenoids, named munropenes A-F (1-6), were extracted from the whole plants of Munronia pinnata using a water extraction method. Their chemical structures were determined based on detailed spectroscopic data. The relative configurations of the acyclic structures at C-17 of munropenes A-F (1-6) were established using carbon-proton spin-coupling constants (2,3JC,H) and inter-proton spin-coupling constants (3JH,H). Furthermore, the absolute configurations of munropenes A-F (1-6) were determined through high-performance liquid chromatography (HPLC), single-crystal X-ray diffraction, and electronic circular dichroism (ECD) analyses. The antiproliferative effects of munropenes A-F were evaluated in five tumor cell lines: HCT116, A549, HepG2, MCF7, and MDAMB. Munropenes A, B, D, and F (1, 2, 4, and 6) inhibited proliferation in the HCT116 cell line with IC50 values of 40.90, 19.13, 17.66, and 32.62 µM, respectively.


Subject(s)
Protons , Triterpenes , Humans , Triterpenes/pharmacology , Triterpenes/chemistry , Cell Line, Tumor , Crystallography, X-Ray , HCT116 Cells , Molecular Structure
14.
Biochem Biophys Res Commun ; 616: 14-18, 2022 08 06.
Article in English | MEDLINE | ID: mdl-35636250

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a major threat to human health. As a unique putative protein of SARS-CoV-2, the N-terminus of ORF10 can be recognized by ZYG11B, a substrate receptor of the Cullin 2-RING E3 ubiquitin ligase (CRL2). Here we elucidated recognition mechanism of ORF10 N-terminus by ZYG11B through presenting the crystal structure of ZYG11B bound to ORF10 N-terminal peptide. Our work expands the current understanding of ORF10 interaction with ZYG11B, and may also inspire the development of novel therapies for COVID-19.


Subject(s)
COVID-19 , Cell Cycle Proteins , Open Reading Frames , Ubiquitin-Protein Ligases , COVID-19/metabolism , COVID-19/virology , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/metabolism , Cullin Proteins , Humans , SARS-CoV-2/chemistry , SARS-CoV-2/metabolism , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/metabolism
15.
Biochem Biophys Res Commun ; 612: 84-90, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35512461

ABSTRACT

Phages and non-phage derived bacteria have evolved many anti-CRISPR proteins (Acrs) to escape the adaptive immune system of prokaryotes. Thus Acrs can be applied as a regulatory tool for gene edition by CRISPR system. Recently, a non-phage derived AcrVIA2 has been identified as an inhibitor that blocks the editing activity of Cas13a in vitro by binding to Cas13a. Here, we solved the crystal structure of AcrVIA2 at a resolution of 2.59 Å and confirmed that AcrVIA2 can bind to Helical-I domain in LshCas13a. Structural analysis show that the V-shaped acidic groove formed by ß3-ß3 hairpin of AcrVIA2 dimer is the key region that mediates the interaction between AcrVIA2 and Helical-I domain. In addition, we also reveal that Asp37 of AcrVIA2 plays an essential role in the functioning of the V-shaped acidic groove, and the functional dimer conformation of AcrVIA2 is stabilized by hydrogen bonds formed between Tyr41 of one monomer with Glu35 and Asp37 of the other monomer. These data expand the current understanding of the diverse interaction mechanisms between Acrs and Cas proteins, and also provide new ideas for the development of CRISPR-Cas13a regulatory tool.


Subject(s)
Bacteriophages , RNA, Guide, Kinetoplastida , Bacteria/metabolism , Bacteriophages/genetics , CRISPR-Cas Systems , RNA, Guide, Kinetoplastida/genetics
16.
J Sep Sci ; 45(9): 1570-1579, 2022 May.
Article in English | MEDLINE | ID: mdl-35184379

ABSTRACT

The root of Salvia bowleyana Dunn (Lamiaceae) is used as a traditional Chinese medicine that has multiple therapeutic effects. In this study, an efficient strategy was developed to separate diterpenoid compounds, which are the main active ingredients in Salvia bowleyana Dunn roots, from complex crude extracts by high-speed countercurrent chromatography combined with preparative high-performance liquid chromatography. A two-phase solvent system comprising n-hexane-ethyl acetate-methanol-water (7:3:7:3, v/v/v/v) was selected for high-speed countercurrent chromatographic separation. Three major diterpenoids, 6α-hydroxysugiol (7), sugiol (8), and 6, 12-dihydroxyabieta-5,8,11,13-tetraen-7-one (9) were obtained at purities of 98.9, 95.4, and 96.2%, respectively, and minor diterpenoids were enriched via one-step separation. The enriched minor diterpenoids were further purified by continuous preparative high-performance liquid chromatography to yield two new norabietanoids (1, 6) and four known compounds (2-5). The structures of these new compounds were determined using NMR spectroscopy, high-resolution electrospray ionization mass spectrometry, and electronic circular dichroism spectroscopy. The results suggest that high-speed countercurrent chromatography combined with preparative high-performance liquid chromatography efficiently isolates diterpenoids, including minor components, from complex natural products.


Subject(s)
Diterpenes , Salvia , Chromatography, High Pressure Liquid/methods , Countercurrent Distribution/methods , Salvia/chemistry , Spectrometry, Mass, Electrospray Ionization
17.
J Asian Nat Prod Res ; 24(11): 1025-1032, 2022 Nov.
Article in English | MEDLINE | ID: mdl-34937451

ABSTRACT

Two new glycosides of methyl everninate, rhodomollosides A (1) and B (2), were isolated from the aerial parts of a medicinal plant Rhododendron molle. The structures of 1 and 2 were elucidated on the basis of detailed spectroscopic analyses as well as HPLC analyses for thiazolidine derivatives of their sugar moieties. The sugar moiety of rhodomolloside A (1) was elucidated to be a rare monosaccharide, D-allose, while rhodomolloside B (2) was assigned as a D-glucoside of methyl everninate. Furthermore, they were evaluated for their cytotoxicity against RAW264.7 cells, and for their inhibitory effects with a lipopolysaccharide (LPS)-stimulated murine macrophages RAW 264.7 cells model.


Subject(s)
Diterpenes , Rhododendron , Mice , Animals , Rhododendron/chemistry , Glycosides/pharmacology , Diterpenes/chemistry , Molecular Structure , Sugars , Plant Components, Aerial
18.
Nano Lett ; 21(22): 9761-9771, 2021 11 24.
Article in English | MEDLINE | ID: mdl-34767372

ABSTRACT

Based on the high frequency of concurrent adenomatous polyposis coli (APC) and KRAS mutations and their strong cooperative interaction in human colorectal cancer (CRC) promotion, we herein develop a CRISPR-Cas9-based genome-editing nanomedicine to target both APC and KRAS mutations for the treatment of CRC. To this end, a hyaluronic acid (HA)-decorated phenylboronic dendrimer (HAPD) was designed for the targeted delivery of Cas9 ribonucleoprotein (RNP), by which both APC and KRAS genetic mutations harboring in CRC cells can be synergistically disrupted. Systemic administration of Cas9 RNP targeting APC and KRAS enabled by HAPD significantly inhibits tumor growth on xenografted and orthotopic CRC mouse models and also greatly prevents CRC-induced liver metastasis and lung metastasis. Thus, this duplex genome-editing system provides a promising gene therapy strategy for the treatment of human CRC and can be extended to other types of cancers with activated Wnt/ß-catenin and RAS/extracellular signal-regulated kinase (ERK) pathways.


Subject(s)
CRISPR-Cas Systems , Colorectal Neoplasms , Animals , CRISPR-Cas Systems/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/therapy , Genetic Therapy , Mice , Nanomedicine , Ribonucleoproteins/genetics , Ribonucleoproteins/metabolism , Wnt Signaling Pathway
19.
Int J Mol Sci ; 22(16)2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34445681

ABSTRACT

Parthenogenetic embryos have been widely studied as an effective tool related to paternal and maternal imprinting genes and reproductive problems for a long time. In this study, we established a parthenogenetic epiblast-like stem cell line through culturing parthenogenetic diploid blastocysts in a chemically defined medium containing activin A and bFGF named paAFSCs. The paAFSCs expressed pluripotent marker genes and germ-layer-related genes, as well as being alkaline-phosphatase-positive, which is similar to epiblast stem cells (EpiSCs). We previously showed that advanced embryonic stem cells (ASCs) represent hypermethylated naive pluripotent embryonic stem cells (ESCs). Here, we converted paAFSCs to ASCs by replacing bFGF with bone morphogenetic protein 4 (BMP4), CHIR99021, and leukemia inhibitory factor (LIF) in a culture medium, and we obtained parthenogenetic advanced stem cells (paASCs). The paASCs showed similar morphology with ESCs and also displayed a stronger developmental potential than paAFSCs in vivo by producing chimaeras. Our study demonstrates that maternal genes could support parthenogenetic EpiSCs derived from blastocysts and also have the potential to convert primed state paAFSCs to naive state paASCs.


Subject(s)
Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Parthenogenesis/physiology , Activins/metabolism , Animals , Blastocyst/metabolism , Bone Morphogenetic Protein 4/pharmacology , Cell Culture Techniques/methods , Cell Differentiation/drug effects , DNA Methylation/drug effects , Embryo Culture Techniques/methods , Female , Fibroblast Growth Factors/pharmacology , Germ Layers/metabolism , Germ Layers/physiology , Leukemia Inhibitory Factor/pharmacology , Mice , Mice, 129 Strain , Mice, Inbred ICR , Mouse Embryonic Stem Cells/cytology , Parthenogenesis/genetics , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/pathology
20.
Clin Infect Dis ; 71(16): 2174-2179, 2020 11 19.
Article in English | MEDLINE | ID: mdl-32445579

ABSTRACT

BACKGROUND: An elevated serum C-reactive protein (CRP) level was observed in most patients with coronavirus disease 2019 (COVID-19). METHODS: Data for COVID-19 patients with clinical outcome in a designated hospital in Wuhan, China, were retrospectively collected and analyzed from 30 January 2020 to 20 February 2020. The prognostic value of admission CRP was evaluated in patients with COVID-19. RESULTS: Of 298 patients enrolled, 84 died and 214 recovered. Most nonsurvivors were male, older, or with chronic diseases. Compared with survivors, nonsurvivors showed significantly elevated white blood cell and neutrophil counts, neutrophil to lymphocyte ratio (NLR), systemic immune inflammation index (defined by platelet count multiplied by NLR), CRP, procalcitonin, and D-dimer and showed decreased red blood cell, lymphocyte, and platelet counts. Age, neutrophil count, platelet count, and CRP were identified as independent predictors of adverse outcome. The area under the receiver operating characteristic (ROC) curve (AUC) of CRP (0.896) was significantly higher than that of age (0.833), neutrophil count (0.820), and platelet count (0.678) in outcome prediction (all P < .05). With a cutoff value of 41.4, CRP exhibited sensitivity of 90.5%, specificity of 77.6%, positive predictive value of 61.3%, and negative predictive value of 95.4%. CRP was also an independent discriminator of severe/critical illness on admission with an AUC (0.783) comparable to age (0.828) and neutrophil count (0.729) (both P > .05). CONCLUSIONS: In patients with COVID-19, admission CRP correlated with disease severity and tended to be a good predictor of adverse outcome.


Subject(s)
COVID-19/metabolism , C-Reactive Protein/metabolism , COVID-19/pathology , Female , Humans , Male , Pandemics , Prognosis , ROC Curve , SARS-CoV-2/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL