Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Cell ; 185(5): 777-793.e20, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35196500

ABSTRACT

In development, lineage segregation is coordinated in time and space. An important example is the mammalian inner cell mass, in which the primitive endoderm (PrE, founder of the yolk sac) physically segregates from the epiblast (EPI, founder of the fetus). While the molecular requirements have been well studied, the physical mechanisms determining spatial segregation between EPI and PrE remain elusive. Here, we investigate the mechanical basis of EPI and PrE sorting. We find that rather than the differences in static cell surface mechanical parameters as in classical sorting models, it is the differences in surface fluctuations that robustly ensure physical lineage sorting. These differential surface fluctuations systematically correlate with differential cellular fluidity, which we propose together constitute a non-equilibrium sorting mechanism for EPI and PrE lineages. By combining experiments and modeling, we identify cell surface dynamics as a key factor orchestrating the correct spatial segregation of the founder embryonic lineages.


Subject(s)
Blastocyst , Embryo, Mammalian , Endoderm , Animals , Blastocyst/metabolism , Cell Differentiation/physiology , Cell Lineage/physiology , Cell Membrane/metabolism , Embryo, Mammalian/metabolism , Embryonic Development , Endoderm/metabolism , Mammals , Mice , Protein Transport
3.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Article in English | MEDLINE | ID: mdl-33452132

ABSTRACT

OCT4 is a fundamental component of the molecular circuitry governing pluripotency in vivo and in vitro. To determine how OCT4 establishes and protects the pluripotent lineage in the embryo, we used comparative single-cell transcriptomics and quantitative immunofluorescence on control and OCT4 null blastocyst inner cell masses at two developmental stages. Surprisingly, activation of most pluripotency-associated transcription factors in the early mouse embryo occurs independently of OCT4, with the exception of the JAK/STAT signaling machinery. Concurrently, OCT4 null inner cell masses ectopically activate a subset of trophectoderm-associated genes. Inspection of metabolic pathways implicates the regulation of rate-limiting glycolytic enzymes by OCT4, consistent with a role in sustaining glycolysis. Furthermore, up-regulation of the lysosomal pathway was specifically detected in OCT4 null embryos. This finding implicates a requirement for OCT4 in the production of normal trophectoderm. Collectively, our findings uncover regulation of cellular metabolism and biophysical properties as mechanisms by which OCT4 instructs pluripotency.


Subject(s)
Cell Lineage/genetics , Embryonic Development/immunology , Octamer Transcription Factor-3/genetics , STAT3 Transcription Factor/genetics , Animals , Blastocyst Inner Cell Mass/metabolism , Embryo, Mammalian , Embryonic Development/genetics , Gene Expression Regulation, Developmental/genetics , Glycolysis/genetics , Mice , Pluripotent Stem Cells/metabolism , Signal Transduction/genetics , Single-Cell Analysis
4.
Nature ; 542(7640): 191-196, 2017 02 09.
Article in English | MEDLINE | ID: mdl-28117444

ABSTRACT

Islet transplantation is an established therapy for diabetes. We have previously shown that rat pancreata can be created from rat pluripotent stem cells (PSCs) in mice through interspecies blastocyst complementation. Although they were functional and composed of rat-derived cells, the resulting pancreata were of mouse size, rendering them insufficient for isolating the numbers of islets required to treat diabetes in a rat model. Here, by performing the reverse experiment, injecting mouse PSCs into Pdx-1-deficient rat blastocysts, we generated rat-sized pancreata composed of mouse-PSC-derived cells. Islets subsequently prepared from these mouse-rat chimaeric pancreata were transplanted into mice with streptozotocin-induced diabetes. The transplanted islets successfully normalized and maintained host blood glucose levels for over 370 days in the absence of immunosuppression (excluding the first 5 days after transplant). These data provide proof-of-principle evidence for the therapeutic potential of PSC-derived islets generated by blastocyst complementation in a xenogeneic host.


Subject(s)
Diabetes Mellitus, Experimental/therapy , Heterografts/physiology , Islets of Langerhans Transplantation , Islets of Langerhans/physiology , Organogenesis , Animals , Blastocyst/cytology , Blastocyst/metabolism , Blood Glucose/metabolism , Chimera , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Female , Heterografts/immunology , Homeodomain Proteins , Islets of Langerhans/cytology , Islets of Langerhans/immunology , Islets of Langerhans Transplantation/immunology , Male , Mice , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/transplantation , Rats , Time Factors , Trans-Activators/deficiency
5.
Dev Biol ; 407(2): 331-43, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26165599

ABSTRACT

Fetal hepatic stem/progenitor cells, hepatoblasts, are highly proliferative cells and the source of both hepatocytes and cholangiocytes. In contrast, mature hepatocytes have a low proliferative potency and high metabolic functions. Cell proliferation is regulated by cell cycle-related molecules. However, the correlation between cell cycle regulation and hepatic maturation are still unknown. To address this issue, we revealed that the cell cycle inhibitor p57(Kip2) was expressed in the hepatoblasts and mesenchymal cells of fetal liver in a spatiotemporal manner. In addition, we found that hepatoblasts in p57(Kip2)-/- mice were highly proliferative and had deficient maturation compared with those in wild-type (WT) mice. However, there were no remarkable differences in the expression levels of cell cycle- and bipotency-related genes except for Ccnd2. Furthermore, p57(Kip2)-/- hepatoblasts could differentiate into mature hepatocytes in p57(Kip2)-/- and WT chimeric mice, suggesting that the intrinsic activity of p57(Kip2) does not simply regulate hepatoblast maturation.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p57/metabolism , Hepatocytes/metabolism , Liver/embryology , Liver/metabolism , Animals , Cell Cycle/genetics , Cell Differentiation/genetics , Cell Proliferation , Chimera , Cyclin-Dependent Kinase Inhibitor p57/deficiency , Epithelium/embryology , Epithelium/metabolism , Extracellular Space/metabolism , Gene Expression Regulation, Developmental , Hepatocytes/cytology , Liver/cytology , Mice, Inbred C57BL , Transcription Factors/metabolism
6.
Hepatol Res ; 46(8): 816-28, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26584962

ABSTRACT

AIM: Hepatic progenitor cells, called hepatoblasts, are highly proliferative and exhibit bipotential differentiation into hepatocytes and cholangiocytes in the fetal liver. Thus, they are the ideal source for transplantation therapy. Although several studies have been performed in vitro, the molecular mechanisms regulating hepatoblast differentiation in vivo following transplantation remain poorly understood. The aim of this study was to investigate an in vivo model to analyze hepatoblast bipotency and proliferative ability. METHODS: Hepatic transplantation model using Cre-inducible diphtheria toxin receptor-transgenic mice (iDTR), and albafpCre mice expressing Cre under the control of albumin and α-fetoprotein (AFP) regulatory elements were established. Fresh hepatoblasts were transplanted into diphtheria toxin (DT)-injected iDTRalbafpCre mice and we analyzed their differentiation and proliferation abilities by immunostaining and gene expression profiles. RESULTS: Fresh hepatoblasts transplanted into DT-injected iDTRalbafpCre mice engrafted and differentiated into both hepatocytes and cholangiocytes. Additionally, the number of engrafted hepatoblast-derived hepatocytes increased following partial hepatectomy and serial DT injections. Expression levels of hepatic functional genes in transplanted hepatoblast-derived hepatocytes were similar to that of normal hepatocytes. CONCLUSION: In our iDTRalbafpCre transplantation model, fresh hepatoblasts could differentiate into hepatocytes and cholangiocytes. In addition, these donor cells were induced to proliferate by the following liver injury stimulation. This result suggests that this model is valuable for investigating hepatoblast differentiation pathways in vivo.

7.
J Biol Chem ; 289(43): 29892-911, 2014 Oct 24.
Article in English | MEDLINE | ID: mdl-25143383

ABSTRACT

Identification of genes specifically expressed in stem/progenitor cells is an important issue in developmental and stem cell biology. Genome-wide gene expression analyses in liver cells performed in this study have revealed a strong expression of X-linked genes that include members of the brain-expressed X-linked (Bex) gene family in stem/progenitor cells. Bex family genes are expressed abundantly in the neural cells and have been suggested to play important roles in the development of nervous tissues. However, the physiological role of its individual members and the precise expression pattern outside the nervous system remain largely unknown. Here, we focused on Bex2 and examined its role and expression pattern by generating knock-in mice; the enhanced green fluorescence protein (EGFP) was inserted into the Bex2 locus. Bex2-deficient mice were viable and fertile under laboratory growth conditions showing no obvious phenotypic abnormalities. Through an immunohistochemical analysis and flow cytometry-based approach, we observed unique EGFP reporter expression patterns in endocrine and stem/progenitor cells of the liver, pyloric stomach, and hematopoietic system. Although Bex2 seems to play redundant roles in vivo, these results suggest the significance and potential applications of Bex2 in studies of endocrine and stem/progenitor cells.


Subject(s)
Endocrine Cells/metabolism , Gene Targeting , Nerve Tissue Proteins/metabolism , Stem Cells/metabolism , Animals , Biomarkers/metabolism , Cell Differentiation , Cell Lineage/genetics , Cell Proliferation , Endocrine Cells/cytology , Endoderm/cytology , Female , Fetus/metabolism , Gene Expression Profiling , Gene Expression Regulation, Developmental , Genes, Reporter , Genetic Loci , Green Fluorescent Proteins/metabolism , Hematopoiesis/genetics , Liver/embryology , Liver/metabolism , Male , Mice, Knockout , Nerve Tissue Proteins/genetics , Neurons/metabolism , Organ Specificity , Phenotype , Promoter Regions, Genetic/genetics , Stem Cells/cytology , Transcription, Genetic
8.
Biol Reprod ; 91(4): 89, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25165118

ABSTRACT

Primordial germ cells (PGCs) are germ cell progenitors in the fetal genital ridge; female PGCs give rise to definitive oocytes that contribute to the next generation. Artificial PGCs have been induced in vitro from pluripotent stem cells and gonad-like tissue has been induced in vivo by cotransplantation of PGCs with PGC-free gonadal cells. To apply these technologies to human infertility treatment or conservation of rare species, PGC transplantation must be established in xenogenic animals. Here, we established a xenogeneic transplantation model by inducing ovary-like tissue from PGCs in xenogenic animals. We transplanted enzymatically dispersed PGCs with PGC-free gonadal cells under the kidney capsule of xenogenic immunodeficient animals. The transplanted cells formed ovary-like tissues under the kidney capsule. These tissues were histologically similar to the normal gonad and expressed the oocyte markers Vasa and Stella. In addition, mouse germinal vesicle-stage oocyte-like cells collected from ovary-like tissue in rats matured to metaphase II via in vitro maturation and gave rise to offspring by intracytoplasmic sperm injection. Our studies show that rat/mouse female PGCs and PGC-free gonadal cells can develop and reconstruct ovary-like tissue containing functional oocytes in an ectopic xenogenic microenvironment.


Subject(s)
Embryonic Stem Cells/cytology , Embryonic Stem Cells/transplantation , Oocytes/physiology , Animals , Benzofurans , Female , Germ Cells , Heterografts , Kidney/cytology , Male , Mice , Mice, Inbred ICR , Mice, SCID , Oogenesis/physiology , Quinolines , Rats , Rats, Inbred Strains , Stem Cell Transplantation
9.
Liver Int ; 34(9): 1378-90, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24238062

ABSTRACT

BACKGROUND & AIMS: Hepatoblasts are somatic progenitor cells of the foetal liver that possess high proliferative capacity and bi-potency for differentiation into both hepatocytes and cholangiocytes. Although mesenchymal cells are known to be important for liver ontogeny, current understanding of their interaction with hepatoblasts remains obscure. Mesenchymal cell populations in the developing liver were purified and their potential to support proliferation and differentiation of hepatoblasts was examined. METHODS: Foetal liver cells were fractionated with a flow cytometer using antibodies against cell surface markers. Gene expression of mesenchymal-specific transcripts and morphological characteristics were analysed. The ability of the mesenchymal cells to support hepatoblast function was analysed using a transwell and direct coculture system. RESULTS: CD45(-) Ter119(-) CD71(-) Dlk1(mid) PDGFRα(+) cells from the mid-foetal stage liver expressed the mesenchymal cell-specific transcription factors H2.0-like homeobox 1 and LIM homeobox 2 at high levels. Foetal mesenchymal cells make contact with hepatoblasts in vivo and possess the potential to differentiate into chondrocytes, osteocytes and adipocytes under appropriate cell culture conditions, indicating that these cells are possible candidates for mesenchymal stem/progenitor cells. Foetal mesenchymal cells expressed pleiotrophin, hepatocyte growth factor and midkine 1, which are involved in the growth of hepatoblasts. Using the coculture system with hepatoblasts and foetal mesenchymal cells, these cells were shown to support proliferation and maturation of hepatoblasts through indirect and direct interactions respectively. CONCLUSIONS: Dlk1(mid) PDGFRα(+) cells in non-haematopoetic fraction derived from the foetal liver exhibit mesenchymal stem/progenitor cell characteristics and have abilities to support proliferation and differentiation of hepatoblasts.


Subject(s)
Cell Differentiation/physiology , Fetus/cytology , Gene Expression Regulation, Developmental/physiology , Hepatocytes/physiology , Liver/cytology , Mesenchymal Stem Cells/physiology , Animals , Cell Culture Techniques , Cell Proliferation , Colony-Forming Units Assay , Flow Cytometry , Green Fluorescent Proteins , Mice , Mice, Inbred C57BL , Mice, Transgenic , Reverse Transcriptase Polymerase Chain Reaction
10.
Dev Cell ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38889726

ABSTRACT

To implant in the uterus, mammalian embryos form blastocysts comprising trophectoderm (TE) surrounding an inner cell mass (ICM), confined to the polar region by the expanding blastocoel. The mode of implantation varies between species. Murine embryos maintain a single layered TE until they implant in the characteristic thick deciduum, whereas human blastocysts attach via polar TE directly to the uterine wall. Using immunofluorescence (IF) of rapidly isolated ICMs, blockade of RNA and protein synthesis in whole embryos, or 3D visualization of immunostained embryos, we provide evidence of multi-layering in human polar TE before implantation. This may be required for rapid uterine invasion to secure the developing human embryo and initiate formation of the placenta. Using sequential fluorescent labeling, we demonstrate that the majority of inner TE in human blastocysts arises from existing outer cells, with no evidence of conversion from the ICM in the context of the intact embryo.

11.
Nat Commun ; 15(1): 3366, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684678

ABSTRACT

Autologous skin grafting is a standard treatment for skin defects such as burns. No artificial skin substitutes are functionally equivalent to autologous skin grafts. The cultured epidermis lacks the dermis and does not engraft deep wounds. Although reconstituted skin, which consists of cultured epidermal cells on a synthetic dermal substitute, can engraft deep wounds, it requires the wound bed to be well-vascularized and lacks skin appendages. In this study, we successfully generate complete skin grafts with pluripotent stem cell-derived epidermis with appendages on p63 knockout embryos' dermis. Donor pluripotent stem cell-derived keratinocytes encroach the embryos' dermis by eliminating p63 knockout keratinocytes based on cell-extracellular matrix adhesion mediated cell competition. Although the chimeric skin contains allogenic dermis, it is engraftable as long as autologous grafts. Furthermore, we could generate semi-humanized skin segments by human keratinocytes injection into the amnionic cavity of p63 knockout mice embryos. Niche encroachment opens the possibility of human skin graft production in livestock animals.


Subject(s)
Dermis , Keratinocytes , Mice, Knockout , Skin Transplantation , Animals , Skin Transplantation/methods , Keratinocytes/cytology , Keratinocytes/transplantation , Humans , Dermis/cytology , Dermis/transplantation , Mice , Epidermis/metabolism , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/transplantation , Skin, Artificial , Epidermal Cells/transplantation , Epidermal Cells/cytology , Extracellular Matrix/metabolism , Skin/cytology
12.
Commun Med (Lond) ; 4(1): 111, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862768

ABSTRACT

BACKGROUND: Biliary atresia (BA) is an intractable disease of unknown cause that develops in the neonatal period. It causes jaundice and liver damage due to the destruction of extrahepatic biliary tracts,. We have found that heterozygous knockout mice of the SRY related HMG-box 17 (Sox17) gene, a master regulator of stem/progenitor cells in the gallbladder wall, exhibit a condition like BA. However, the precise contribution of hypoplastic gallbladder wall to the pathogenesis of hepatobiliary disease in Sox17 heterozygous embryos and human BA remains unclear. METHODS: We employed cholangiography and histological analyses in the mouse BA model. Furthermore, we conducted a retrospective analysis of human BA. RESULTS: We show that gallbladder wall hypoplasia causes abnormal multiple connections between the hilar hepatic bile ducts and the gallbladder-cystic duct in Sox17 heterozygous embryos. These multiple hilar extrahepatic ducts fuse with the developing intrahepatic duct walls and pull them out of the liver parenchyma, resulting in abnormal intrahepatic duct network and severe cholestasis. In human BA with gallbladder wall hypoplasia (i.e., abnormally reduced expression of SOX17), we also identify a strong association between reduced gallbladder width (a morphometric parameter indicating gallbladder wall hypoplasia) and severe liver injury at the time of the Kasai surgery, like the Sox17-mutant mouse model. CONCLUSIONS: Together with the close correlation between gallbladder wall hypoplasia and liver damage in both mouse and human cases, these findings provide an insight into the critical role of SOX17-positive gallbladder walls in establishing functional bile duct networks in the hepatic hilus of neonates.


Biliary atresia (BA) is a disease in newborns that causes a serious liver condition due to damage to the bile ducts (the pathways that carry bile juice). Although reduced function of a key gene called Sox17, which is essential for forming the gallbladder wall, has been observed in some BA cases, the link between gallbladder issues and liver damage is unknown. This study has shown how damage spreads through the bile ducts in the liver around the time of birth when there are problems in the gallbladder wall due to reduced SOX17 function. The findings indicate that proper growth of the gallbladder wall during this critical period is essential for forming a normal network of bile ducts in the developing liver. This discovery is promising for early diagnosis and better treatment of BA in newborns.

13.
Nat Commun ; 14(1): 4022, 2023 07 07.
Article in English | MEDLINE | ID: mdl-37419903

ABSTRACT

Biomechanical cues are instrumental in guiding embryonic development and cell differentiation. Understanding how these physical stimuli translate into transcriptional programs will provide insight into mechanisms underlying mammalian pre-implantation development. Here, we explore this type of regulation by exerting microenvironmental control over mouse embryonic stem cells. Microfluidic encapsulation of mouse embryonic stem cells in agarose microgels stabilizes the naive pluripotency network and specifically induces expression of Plakoglobin (Jup), a vertebrate homolog of ß-catenin. Overexpression of Plakoglobin is sufficient to fully re-establish the naive pluripotency gene regulatory network under metastable pluripotency conditions, as confirmed by single-cell transcriptome profiling. Finally, we find that, in the epiblast, Plakoglobin was exclusively expressed at the blastocyst stage in human and mouse embryos - further strengthening the link between Plakoglobin and naive pluripotency in vivo. Our work reveals Plakoglobin as a mechanosensitive regulator of naive pluripotency and provides a paradigm to interrogate the effects of volumetric confinement on cell-fate transitions.


Subject(s)
Embryonic Development , Germ Layers , Animals , Mice , Humans , gamma Catenin/genetics , gamma Catenin/metabolism , Cell Differentiation/genetics , Germ Layers/metabolism , Embryonic Development/genetics , Gene Expression Profiling , Blastocyst/metabolism , Mammals/genetics
14.
Liver Int ; 32(4): 592-601, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22222094

ABSTRACT

BACKGROUND: Mature hepatocytes retain the ability to regenerate the liver lobule fully in vivo following injury. Several cytokines and soluble factors (hepatocyte growth factors, epidermal growth factors, insulin and nicotinamide) are known to be important for proliferation of mature hepatocytes in vitro. However, hepatocytes monolayer-cultured on extracellular matrices have gradually lost their specific functions, particularly those in drug metabolism. AIM: We have explored and established a new culture system for expansion of functional hepatocytes. METHODS: We evaluated two approaches for efficient expansion of mature hepatocytes: (i) Co-culture with mouse embryonic fibroblasts (MEF); (ii) Addition to culture of inhibitors of cell signals involved in liver regeneration. After expansion steps, 3-dimensional spheroid-forming culture was used to re-induce mature hepatocellular function. RESULTS: The addition of inhibitors for tumour growth factor (TGF) ß and glycogen synthase kinase (GSK) 3ß efficiently induced in vitro expansion of mature hepatocytes. Although expression of hepatocellular functional genes decreased after expansion in monolayer culture, their expression and the activity of cytochrome P450 enzymes significantly increased with spheroid formation. Furthermore, when hepatocytes were co-cultured with MEF, addition of a MAPK/ERK kinase (MEK) inhibitor at the spheroid formation step enhanced drug-metabolism-related gene expression. CONCLUSION: Combination of the MEF co-culture system with the addition of inhibitors of TGFß and GSK3ß induced in vitro expansion of hepatocytes. Moreover, expression of mature hepatocellular genes and the activity of drug-metabolism enzymes in expanded hepatocytes were re-induced after spheroid culture.


Subject(s)
Cell Culture Techniques/methods , Cell Separation/methods , Hepatocytes/cytology , Hepatocytes/physiology , Liver/physiology , Regeneration/physiology , Tissue Expansion/methods , Animals , Cell Count , DNA Primers/genetics , Glycogen Synthase Kinase 3/antagonists & inhibitors , Glycogen Synthase Kinase 3 beta , Green Fluorescent Proteins , Immunohistochemistry , Liver/cytology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Reverse Transcriptase Polymerase Chain Reaction , Transforming Growth Factor beta/antagonists & inhibitors
15.
Nat Biotechnol ; 40(12): 1780-1793, 2022 12.
Article in English | MEDLINE | ID: mdl-35760914

ABSTRACT

Most methods for single-cell transcriptome sequencing amplify the termini of polyadenylated transcripts, capturing only a small fraction of the total cellular transcriptome. This precludes the detection of many long non-coding, short non-coding and non-polyadenylated protein-coding transcripts and hinders alternative splicing analysis. We, therefore, developed VASA-seq to detect the total transcriptome in single cells, which is enabled by fragmenting and tailing all RNA molecules subsequent to cell lysis. The method is compatible with both plate-based formats and droplet microfluidics. We applied VASA-seq to more than 30,000 single cells in the developing mouse embryo during gastrulation and early organogenesis. Analyzing the dynamics of the total single-cell transcriptome, we discovered cell type markers, many based on non-coding RNA, and performed in vivo cell cycle analysis via detection of non-polyadenylated histone genes. RNA velocity characterization was improved, accurately retracing blood maturation trajectories. Moreover, our VASA-seq data provide a comprehensive analysis of alternative splicing during mammalian development, which highlighted substantial rearrangements during blood development and heart morphogenesis.


Subject(s)
High-Throughput Nucleotide Sequencing , Transcriptome , Mice , Animals , Sequence Analysis, RNA/methods , High-Throughput Nucleotide Sequencing/methods , Alternative Splicing/genetics , RNA/metabolism , Gene Expression Profiling/methods , Mammals/genetics
16.
Cell Stem Cell ; 28(6): 1016-1022.e4, 2021 06 03.
Article in English | MEDLINE | ID: mdl-33957081

ABSTRACT

Human naive pluripotent cells can differentiate into extraembryonic trophectoderm and hypoblast. Here we describe a human embryo model (blastoid) generated by self-organization. Brief induction of trophectoderm leads to formation of blastocyst-like structures within 3 days. Blastoids are composed of three tissue layers displaying exclusive lineage markers, mimicking the natural blastocyst. Single-cell transcriptome analyses confirm segregation of trophectoderm, hypoblast, and epiblast with high fidelity to the human embryo. This versatile and scalable system provides a robust experimental model for human embryo research.


Subject(s)
Blastocyst , Embryo, Mammalian , Cell Differentiation , Cell Lineage , Germ Layers , Humans , Stem Cells
17.
Cell Stem Cell ; 28(2): 273-284.e6, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33217323

ABSTRACT

Cell fate transitions are frequently accompanied by changes in cell shape and mechanics. However, how cellular mechanics affects the instructive signaling pathways controlling cell fate is poorly understood. To probe the interplay between shape, mechanics, and fate, we use mouse embryonic stem cells (ESCs), which change shape as they undergo early differentiation. We find that shape change is regulated by a ß-catenin-mediated decrease in RhoA activity and subsequent decrease in the plasma membrane tension. Strikingly, preventing a decrease in membrane tension results in early differentiation defects in ESCs and gastruloids. Decreased membrane tension facilitates the endocytosis of FGF signaling components, which activate ERK signaling and direct the exit from the ESC state. Increasing Rab5a-facilitated endocytosis rescues defective early differentiation. Thus, we show that a mechanically triggered increase in endocytosis regulates early differentiation. Our findings are of fundamental importance for understanding how cell mechanics regulates biochemical signaling and therefore cell fate.


Subject(s)
Embryonic Stem Cells , Mouse Embryonic Stem Cells , Animals , Cell Differentiation , Endocytosis , Mice , Signal Transduction
18.
Cell Stem Cell ; 28(6): 1040-1056.e6, 2021 06 03.
Article in English | MEDLINE | ID: mdl-33831366

ABSTRACT

Classic embryological experiments have established that the early mouse embryo develops via sequential lineage bifurcations. The first segregated lineage is the trophectoderm, essential for blastocyst formation. Mouse naive epiblast and derivative embryonic stem cells are restricted accordingly from producing trophectoderm. Here we show, in contrast, that human naive embryonic stem cells readily make blastocyst trophectoderm and descendant trophoblast cell types. Trophectoderm was induced rapidly and efficiently by inhibition of ERK/mitogen-activated protein kinase (MAPK) and Nodal signaling. Transcriptome comparison with the human embryo substantiated direct formation of trophectoderm with subsequent differentiation into syncytiotrophoblast, cytotrophoblast, and downstream trophoblast stem cells. During pluripotency progression lineage potential switches from trophectoderm to amnion. Live-cell tracking revealed that epiblast cells in the human blastocyst are also able to produce trophectoderm. Thus, the paradigm of developmental specification coupled to lineage restriction does not apply to humans. Instead, epiblast plasticity and the potential for blastocyst regeneration are retained until implantation.


Subject(s)
Blastocyst , Germ Layers , Animals , Cell Differentiation , Cell Lineage , Embryonic Development , Embryonic Stem Cells , Gene Expression Regulation, Developmental , Humans , Mice
19.
Stem Cell Reports ; 11(4): 988-997, 2018 10 09.
Article in English | MEDLINE | ID: mdl-30245211

ABSTRACT

In the case of organ transplantation accompanied by vascular anastomosis, major histocompatibility complex mismatched vascular endothelial cells become a target for graft rejection. Production of a rejection-free, transplantable organ, therefore, requires simultaneous generation of vascular endothelial cells within the organ. To generate pluripotent stem cell (PSC)-derived vascular endothelial cells, we performed blastocyst complementation with a vascular endothelial growth factor receptor-2 homozygous mutant blastocyst. This mutation is embryonic lethal at embryonic (E) day 8.5-9.5 due to an early defect in endothelial and hematopoietic cells. The Flk-1 homozygous knockout chimeric mice survived to adulthood for over 1 year without any abnormality, and all vascular endothelial cells and hematopoietic cells were derived from the injected PSCs. This approach could be used in conjunction with other gene knockouts which induce organ deficiency to produce a rejection-free, transplantable organ in which all the organ's cells and vasculature are PSC derived.


Subject(s)
Blastocyst/cytology , Endothelial Cells/cytology , Hematopoietic Stem Cells/cytology , Aging/metabolism , Animals , Blastocyst/metabolism , Chimera , Endothelial Cells/metabolism , Hematopoietic Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Mice, Inbred C57BL , Mice, Knockout , Neovascularization, Physiologic , Pericytes/cytology , Pericytes/metabolism , Phenotype , Platelet Endothelial Cell Adhesion Molecule-1 , Vascular Endothelial Growth Factor Receptor-2/metabolism
20.
Sci Rep ; 8(1): 15289, 2018 10 16.
Article in English | MEDLINE | ID: mdl-30327488

ABSTRACT

To study development of the conceptus in xenogeneic environments, we assessed interspecies chimera formation as well as tetraploid complementation between mouse and rat. Overall contribution of donor PSC-derived cells was lower in interspecies chimeras than in intraspecies chimeras, and high donor chimerism was associated with anomalies or embryonic death. Organ to organ variation in donor chimerism was greater in interspecies chimeras than in intraspecies chimeras, suggesting species-specific affinity differences among interacting molecules necessary for organogenesis. In interspecies tetraploid complementation, embryo development was near normal until the stage of placental formation, after which no embryos survived.


Subject(s)
Complement System Proteins/immunology , Embryonic Development , Organogenesis , Tetraploidy , Transplantation Chimera , Animals , Blastocyst/cytology , Female , Mice , Mice, Inbred C57BL , Pluripotent Stem Cells/cytology , Pregnancy , Rats , Rats, Wistar , Species Specificity , Transplantation Chimera/growth & development , Transplantation Chimera/immunology
SELECTION OF CITATIONS
SEARCH DETAIL