ABSTRACT
Long-distance transmission between spatially separated microwave cavities is a crucial area of quantum information science and technology. In this work, we present a method for achieving long-distance transmission of arbitrary quantum states between two microwave cavities, by using a hybrid system that comprises two microwave cavities, two nitrogen-vacancy center ensembles (NV ensembles), two optical cavities, and an optical fiber. Each NV ensemble serves as a quantum transducer, dispersively coupling with a microwave cavity and an optical cavity, which enables the conversion of quantum states between a microwave cavity and an optical cavity. The optical fiber acts as a connector between the two optical cavities. Numerical simulations demonstrate that our method allows for the transfer of an arbitrary photonic qubit state between two spatially separated microwave cavities with high fidelity. Furthermore, the method exhibits robustness against environmental decay, parameter fluctuations, and additive white Gaussian noise. Our approach offers a promising way for achieving long-distance transmission of quantum states between two spatially separated microwave cavities, which may have practical applications in networked large-scale quantum information processing and quantum communication.
ABSTRACT
We propose a scheme for chirality discrimination via a topological invariant. The physical model is based on a three-level subspace of a molecule. By modulating the components of the control field with proper frequencies, two different two-level effective Hamiltonians are derived for the left-handed and the right-handed molecules. We parameterize the effective Hamiltonians with two angles and demonstrate that a topological quantum phase transition can be induced by tuning the effective Rabi frequency if the molecule is right-handed. This phenomenon provides a method to discriminate the chirality of the molecule by measuring a topological invariant, i.e., the Chern number, of the parametric manifold. Since the Chern number is robust against perturbations to the system, the scheme is insensitive to the systematic errors of the control fields, the deviations of the modulation frequencies, and decoherence of the molecule. Therefore, the scheme may provide useful perspectives to construct a robust discriminator of chiral molecules.
ABSTRACT
Grover's search algorithm is a well-known quantum algorithm that has been extensively studied and improved to increase its success rate and enhance its flexibility. However, most improved search algorithms require an adjustment of the oracle, which may not be feasible in practical problem-solving scenarios. In this work, we report an experimental demonstration of a deterministic quantum search for multiple marked states without adjusting the oracle. A linear optical setup is designed to search for two marked states, one in a 16-state database with an initial equal-superposition state and the other in an 8-state database with different initial nonequal-superposition states. The evolution of the probability of finding each state in the database is also measured and displayed. Our experimental results agree well with the theoretical predictions, thereby proving the feasibility of the search protocol and the implementation scheme. This work is a pioneering experimental demonstration of deterministic quantum search for multiple marked states without adjusting the oracle.
ABSTRACT
Certifying quantum measurements is increasingly important for foundational insights in quantum information science. Here, we report an experimental certification of unknown quantum measurements in a semi-device-independent setting. For the first time, we experimentally demonstrate that genuine three-outcome positive operator-valued measures (POVMs) can be certified under the assumption of a limited overlap between the prepared quantum states. The generalized quantum measurements are realized through discrete-time quantum walk and our experimental results clearly show that three-outcome POVMs can be certified even in the presence of noise. Finally, we experimentally investigate that optimal POVMs for performing unambiguous state discrimination can be self-tested. Our work opens new avenues for robust certification of quantum systems in the prepare-and-measure scenario.
ABSTRACT
W-type optical entangled coherent states have important applications in quantum communication. Previous works require performing measurement in the preparation of such W states. We here propose an efficient scheme for creating a W-type optical entangled coherent state without measurement. This scheme employs a setup composed of three microwave cavities and a superconducting flux coupler qutrit. Because no measurement is required, the W state can be generated deterministically. In addition, the system complexity is greatly reduced because of using only one qutrit to couple the three cavities. Numerical analysis shows that within current experimental technology, the W state can be prepared with high fidelity. This scheme is universal and can be extended to create the W-type optical entangled coherent state, by using three microwave or optical cavities coupled via a three-level natural or artificial atom.
ABSTRACT
We note that most of the studies of the single photon scattering inside a one-dimensional coupled resonator waveguide are based on the waveguide coupling with the atom systems. In this paper, we will study the single photon scattering enabled by another system, i.e., the second-order nonlinearity, which can act as a single photon switch to control the single photon transmission and reflection inside the one-dimensional coupled resonator waveguide. The transmission rate is calculated to analyze the single-photon scattering properties. In addition, a more complicated second-order nonlinear form, i.e., three-wave mixing, is discussed to control single photon transmission inside the one-dimensional coupled resonator waveguide.
ABSTRACT
We present a novel method to realize a multi-target-qubit controlled phase gate with one microwave photonic qubit simultaneously controlling n - 1 target microwave photonic qubits. This gate is implemented with n microwave cavities coupled to a superconducting flux qutrit. Each cavity hosts a microwave photonic qubit, whose two logic states are represented by the vacuum state and the single photon state of a single cavity mode, respectively. During the gate operation, the qutrit remains in the ground state and thus decoherence from the qutrit is greatly suppressed. This proposal requires only a single-step operation and thus the gate implementation is quite simple. The gate operation time is independent of the number of the qubits. In addition, this proposal does not need applying classical pulse or any measurement. Numerical simulations demonstrate that high-fidelity realization of a controlled phase gate with one microwave photonic qubit simultaneously controlling two target microwave photonic qubits is feasible with current circuit QED technology. The proposal is quite general and can be applied to implement the proposed gate in a wide range of physical systems, such as multiple microwave or optical cavities coupled to a natural or artificial Λ-type three-level atom.
ABSTRACT
Spin ensembles are promising candidates for quantum memory units because they have long coherence time. Controlling the coupling between spin ensembles is necessary and important in quantum information processing. In this Letter, we propose a method to realize tunable coupling between spin ensembles by a superconducting flux qubit acting as a coupler. The resulting coupling can be used to high-fidelity speed up the adiabatic transfer of quantum information.
ABSTRACT
We present an efficient method to generate a Greenberger-Horne-Zeilinger (GHZ) entangled state of three cat-state qubits via circuit QED. The GHZ state is prepared with three microwave cavities coupled to a superconducting transmon qutrit. Because the qutrit remains in the ground state during the operation, decoherence caused by the energy relaxation and dephasing of the qutrit is greatly suppressed. The GHZ state is created deterministically, because no measurement is involved. Numerical simulations show that the high-fidelity generation of a three-cqubit GHZ state is feasible with the present circuit QED technology. This proposal can be easily extended to create a N-cqubit GHZ state (N≥3), with N microwave or optical cavities coupled to a natural or artificial three-level atom.
ABSTRACT
Hybrid qubits have recently drawn intense attention in quantum computing. We here propose a method to implement a universal controlled-phase gate of two hybrid qubits via two three-dimensional (3D) microwave cavities coupled to a superconducting flux qutrit. For the gate considered here, the control qubit is a microwave photonic qubit (particle-like qubit), whose two logic states are encoded by the vacuum state and the single-photon state of a cavity, while the target qubit is a cat-state qubit (wave-like qubit), whose two logic states are encoded by the two orthogonal cat states of the other cavity. During the gate operation, the qutrit remains in the ground state; therefore, decoherence from the qutrit is greatly suppressed. The gate realization is quite simple, because only a single basic operation is employed and neither classical pulse nor measurement is used. Our numerical simulations demonstrate that with current circuit quantum electrodynamics technology, this gate can be realized with a high fidelity. The generality of this proposal allows implementing the proposed gate in a wide range of physical systems, such as two 1D or 3D microwave or optical cavities coupled to a natural or artificial three-level atom. Finally, this proposal can be applied to create a novel entangled state between a particle-like photonic qubit and a wave-like cat-state qubit.
ABSTRACT
Here we report on the production and tomography of genuinely entangled Greenberger-Horne-Zeilinger states with up to ten qubits connecting to a bus resonator in a superconducting circuit, where the resonator-mediated qubit-qubit interactions are used to controllably entangle multiple qubits and to operate on different pairs of qubits in parallel. The resulting 10-qubit density matrix is probed by quantum state tomography, with a fidelity of 0.668±0.025. Our results demonstrate the largest entanglement created so far in solid-state architectures and pave the way to large-scale quantum computation.
ABSTRACT
We propose an efficient scheme for generating photonic NOON states of two resonators coupled to a four-level superconducting flux device (coupler). This proposal operates essentially by employing a technique of a coupler resonantly interacting with two resonators simultaneously. As a consequence, the NOON-state preparation requires only N+1 operational steps and thus is much faster when compared with a recent proposal [Su et al, Sci. Rep.4, 3898 (2014)] requiring 2N steps of operation. Moreover, due to the use of only two resonators and a coupler, the experimental setup is much simplified when compared with previous proposals requiring three resonators and two superconducting qubits/qutrits.
ABSTRACT
Compared with a qubit, a qutrit (i.e., three-level quantum system) has a larger Hilbert space and thus can be used to encode more information in quantum information processing and communication. Here, we propose a method to transfer an arbitrary quantum state between two flux qutrits coupled to two resonators. This scheme is simple because it only requires two basic operations. The state-transfer operation can be performed fast because only resonant interactions are used. Numerical simulations show that the high-fidelity transfer of quantum states between the two qutrits is feasible with current circuit-QED technology. This scheme is quite general and can be applied to accomplish the same task for other solid-state qutrits coupled to resonators.
ABSTRACT
A quantum system can behave as a wave or as a particle, depending on the experimental arrangement. When, for example, measuring a photon using a Mach-Zehnder interferometer, the photon acts as a wave if the second beam splitter is inserted, but as a particle if this beam splitter is omitted. The decision of whether or not to insert this beam splitter can be made after the photon has entered the interferometer, as in Wheeler's famous delayed-choice thought experiment. In recent quantum versions of this experiment, this decision is controlled by a quantum ancilla, while the beam splitter is itself still a classical object. Here, we propose and realize a variant of the quantum delayed-choice experiment. We configure a superconducting quantum circuit as a Ramsey interferometer, where the element that acts as the first beam splitter can be put in a quantum superposition of its active and inactive states, as verified by the negative values of its Wigner function. We show that this enables the wave and particle aspects of the system to be observed with a single setup, without involving an ancilla that is not itself a part of the interferometer. We also study the transition of this quantum beam splitter from a quantum to a classical object due to decoherence, as observed by monitoring the interferometer output.
ABSTRACT
We propose a simple method for achieving a multiqubit phase gate of one qubit simultaneously controlling n target qubits, by using three-level quantum systems (i.e., qutrits) coupled to a cavity or resonator. The gate can be realized via one operational step, without need of classical pulses, and by a virtual photon process. Thus, the gate operation is greatly simplified and decoherence from the cavity decay is much reduced, when compared with previous proposals. In addition, the operation time is independent of the number of qubits and no adjustment of the qutrit level spacings or the cavity frequency is needed during the operation.
ABSTRACT
A qudit (d-level quantum system) has a large Hilbert space and thus can be used to achieve many quantum information and communication tasks. Here, we propose a method to transfer arbitrary d-dimensional quantum states (known or unknown) between two superconducting transmon qudits coupled to a single cavity. The state transfer can be performed by employing resonant interactions only. In addition, quantum states can be deterministically transferred without measurement. Numerical simulations show that high-fidelity transfer of quantum states between two superconducting transmon qudits (d ≤ 5) is feasible with current circuit QED technology. This proposal is quite general and can be applied to accomplish the same task with natural or artificial atoms of a ladder-type level structure coupled to a cavity or resonator.
ABSTRACT
W-type entangled states can be used as quantum channels for, e.g., quantum teleportation, quantum dense coding, and quantum key distribution. In this work, we propose a way to generate a macroscopic W-type entangled coherent state using quantum memories in circuit QED. The memories considered here are nitrogen-vacancy center ensembles (NVEs), each located in a different cavity. This proposal does not require initially preparing each NVE in a coherent state instead of a ground state, which should significantly reduce its experimental difficulty. For most of the operation time, each cavity remains in a vacuum state, thus decoherence caused by the cavity decay and the unwanted inter-cavity crosstalk are greatly suppressed. Moreover, only one external-cavity coupler qubit is needed, which simplifies the circuit.
ABSTRACT
Cavity-based large scale quantum information processing (QIP) may involve multiple cavities and require performing various quantum logic operations on qubits distributed in different cavities. Geometric-phase-based quantum computing has drawn much attention recently, which offers advantages against inaccuracies and local fluctuations. In addition, multiqubit gates are particularly appealing and play important roles in QIP. We here present a simple and efficient scheme for realizing a multi-target-qubit unconventional geometric phase gate in a multi-cavity system. This multiqubit phase gate has a common control qubit but different target qubits distributed in different cavities, which can be achieved using a single-step operation. The gate operation time is independent of the number of qubits and only two levels for each qubit are needed. This multiqubit gate is generic, e.g., by performing single-qubit operations, it can be converted into two types of significant multi-target-qubit phase gates useful in QIP. The proposal is quite general, which can be used to accomplish the same task for a general type of qubits such as atoms, NV centers, quantum dots, and superconducting qubits.
ABSTRACT
The generation, manipulation and fundamental understanding of entanglement lies at very heart of quantum mechanics. Among various types of entangled states, the NOON states are a kind of special quantum entangled states with two orthogonal component states in maximal superposition, which have a wide range of potential applications in quantum communication and quantum information processing. Here, we propose a fast and simple scheme for generating NOON states of photons in two superconducting resonators by using a single superconducting transmon qutrit. Because only one superconducting qutrit and two resonators are used, the experimental setup for this scheme is much simplified when compared with the previous proposals requiring a setup of two superconducting qutrits and three cavities. In addition, this scheme is easier and faster to implement than the previous proposals, which require using a complex microwave pulse, or a small pulse Rabi frequency in order to avoid nonresonant transitions.
ABSTRACT
We present a method for implementing an n-qubit controlled-rotation gate with three-level superconducting qubit systems in cavity quantum electrodynamics. The two logical states of a qubit are represented by the two lowest levels of each system while a higher energy level is used for the gate implementation. The method operates essentially by preparing a W state conditioned on the states of the control qubits, creating a single photon in the cavity mode, and then performing an arbitrary rotation on the states of the target qubit with the assistance of the cavity photon. It is interesting to note that the basic operational steps for implementing the proposed gate do not increase with the number of qubits n, and the gate operation time decreases as the number of qubits increases. This proposal is quite general, and can be applied to various types of superconducting devices in a cavity or coupled to a resonator.