Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.652
Filter
Add more filters

Publication year range
1.
Nat Immunol ; 25(5): 764-777, 2024 May.
Article in English | MEDLINE | ID: mdl-38609546

ABSTRACT

The linear ubiquitin assembly complex (LUBAC) consists of HOIP, HOIL-1 and SHARPIN and is essential for proper immune responses. Individuals with HOIP and HOIL-1 deficiencies present with severe immunodeficiency, autoinflammation and glycogen storage disease. In mice, the loss of Sharpin leads to severe dermatitis due to excessive keratinocyte cell death. Here, we report two individuals with SHARPIN deficiency who manifest autoinflammatory symptoms but unexpectedly no dermatological problems. Fibroblasts and B cells from these individuals showed attenuated canonical NF-κB responses and a propensity for cell death mediated by TNF superfamily members. Both SHARPIN-deficient and HOIP-deficient individuals showed a substantial reduction of secondary lymphoid germinal center B cell development. Treatment of one SHARPIN-deficient individual with anti-TNF therapies led to complete clinical and transcriptomic resolution of autoinflammation. These findings underscore the critical function of the LUBAC as a gatekeeper for cell death-mediated immune dysregulation in humans.


Subject(s)
Immunologic Deficiency Syndromes , Nerve Tissue Proteins , Ubiquitins , Humans , Immunologic Deficiency Syndromes/genetics , Immunologic Deficiency Syndromes/immunology , Female , Male , NF-kappa B/metabolism , Ubiquitin-Protein Ligases/genetics , Inflammation/immunology , Inflammation/genetics , B-Lymphocytes/immunology , Loss of Function Mutation , Fibroblasts/metabolism , Fibroblasts/immunology , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Animals , Mice , Alleles
2.
Annu Rev Biochem ; 88: 605-633, 2019 06 20.
Article in English | MEDLINE | ID: mdl-31018111

ABSTRACT

Reactive oxygen species (ROS) encompass a collection of intricately linked chemical entities characterized by individually distinct physicochemical properties and biological reactivities. Although excessive ROS generation is well known to underpin disease development, it has become increasingly evident that ROS also play central roles in redox regulation and normal physiology. A major challenge in uncovering the relevant biological mechanisms and deconvoluting the apparently paradoxical roles of distinct ROS in human health and disease lies in the selective and sensitive detection of these transient species in the complex biological milieu. Small-molecule-based fluorescent sensors enable molecular imaging of ROS with great spatial and temporal resolution and have thus been appreciated as excellent tools for aiding discoveries in modern redox biology. We review a selection of state-of-the-art sensors with demonstrated utility in biological systems. By providing a systematic overview based on underlying chemical sensing mechanisms, we wish to highlight the strengths and weaknesses in prior sensor works and propose some guiding principles for the development of future probes.


Subject(s)
Biosensing Techniques/methods , Reactive Oxygen Species/analysis , Fluorescent Dyes , Optical Imaging , Oxidation-Reduction , Oxidative Stress
3.
Immunity ; 57(5): 1087-1104.e7, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38640930

ABSTRACT

Macrophages are critical to turn noninflamed "cold tumors" into inflamed "hot tumors". Emerging evidence indicates abnormal cholesterol metabolites in the tumor microenvironment (TME) with unclear function. Here, we uncovered the inducible expression of cholesterol-25-hydroxylase (Ch25h) by interleukin-4 (IL-4) and interleukin-13 (IL-13) via the transcription factor STAT6, causing 25-hydroxycholesterol (25HC) accumulation. scRNA-seq analysis confirmed that CH25Hhi subsets were enriched in immunosuppressive macrophage subsets and correlated to lower survival rates in pan-cancers. Targeting CH25H abrogated macrophage immunosuppressive function to enhance infiltrating T cell numbers and activation, which synergized with anti-PD-1 to improve anti-tumor efficacy. Mechanically, lysosome-accumulated 25HC competed with cholesterol for GPR155 binding to inhibit the kinase mTORC1, leading to AMPKα activation and metabolic reprogramming. AMPKα also phosphorylated STAT6 Ser564 to enhance STAT6 activation and ARG1 production. Together, we propose CH25H as an immunometabolic checkpoint, which manipulates macrophage fate to reshape CD8+ T cell surveillance and anti-tumor response.


Subject(s)
Hydroxycholesterols , Lysosomes , Macrophages , Tumor Microenvironment , Animals , Hydroxycholesterols/metabolism , Mice , Macrophages/immunology , Macrophages/metabolism , Humans , Lysosomes/metabolism , Tumor Microenvironment/immunology , STAT6 Transcription Factor/metabolism , Adenylate Kinase/metabolism , Mice, Inbred C57BL , Mechanistic Target of Rapamycin Complex 1/metabolism , Signal Transduction , Metabolic Reprogramming
4.
Nat Immunol ; 19(3): 279-290, 2018 03.
Article in English | MEDLINE | ID: mdl-29434353

ABSTRACT

Deletion of master regulators of the B cell lineage reprograms B cells into T cells. Here we found that the transcription factor Hoxb5, which is expressed in uncommitted hematopoietic progenitor cells but is not present in cells committed to the B cell or T cell lineage, was able to reprogram pro-pre-B cells into functional early T cell lineage progenitors. This reprogramming started in the bone marrow and was completed in the thymus and gave rise to T lymphocytes with transcriptomes, hierarchical differentiation, tissue distribution and immunological functions that closely resembled those of their natural counterparts. Hoxb5 repressed B cell 'master genes', activated regulators of T cells and regulated crucial chromatin modifiers in pro-pre-B cells and ultimately drove the B cell fate-to-T cell fate conversion. Our results provide a de novo paradigm for the generation of functional T cells through reprogramming in vivo.


Subject(s)
B-Lymphocytes/cytology , Cell Lineage/immunology , Cellular Reprogramming/immunology , Homeodomain Proteins/immunology , T-Lymphocytes/cytology , Animals , Cell Differentiation , Cell Lineage/genetics , Cellular Reprogramming/genetics , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, SCID , Precursor Cells, B-Lymphoid/cytology
5.
Nat Immunol ; 19(9): 1036, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29915300

ABSTRACT

In the version of this article initially published, some identification of the supplementary information was incorrect. The items originally called Supplementary Tables 1, 2, 3, 4 and 5 should be Source Data Figures 1, 2, 4, 5 and 7, respectively; those originally called Supplementary Tables 6, 7 and 8 should be Supplementary Tables 1, 2 and 3, respectively; and those originally called Source Data Figures 1, 2, 4, 5 and 7 should be Supplementary Tables 4, 5, 6, 7 and 8, respectively. The errors have been corrected in the HTML version of the article.

6.
Nat Immunol ; 19(6): 547-560, 2018 06.
Article in English | MEDLINE | ID: mdl-29777223

ABSTRACT

The adaptor CARD9 functions downstream of C-type lectin receptors (CLRs) for the sensing of microbial infection, which leads to responses by the TH1 and TH17 subsets of helper T cells. The single-nucleotide polymorphism rs4077515 at CARD9 in the human genome, which results in the substitution S12N (CARD9S12N), is associated with several autoimmune diseases. However, the function of CARD9S12N has remained unknown. Here we generated CARD9S12N knock-in mice and found that CARD9S12N facilitated the induction of type 2 immune responses after engagement of CLRs. Mechanistically, CARD9S12N mediated CLR-induced activation of the non-canonical transcription factor NF-κB subunit RelB, which initiated production of the cytokine IL-5 in alveolar macrophages for the recruitment of eosinophils to drive TH2 cell-mediated allergic responses. We identified the homozygous CARD9 mutation encoding S12N in patients with allergic bronchopulmonary aspergillosis and revealed activation of RelB and production of IL-5 in peripheral blood mononuclear cells from these patients. Our study provides genetic and functional evidence demonstrating that CARD9S12N can turn alveolar macrophages into IL-5-producing cells and facilitates TH2 cell-mediated pathologic responses.


Subject(s)
Aspergillosis, Allergic Bronchopulmonary/immunology , CARD Signaling Adaptor Proteins/immunology , Interleukin-5/biosynthesis , Macrophages, Alveolar/immunology , Th2 Cells/immunology , Animals , Aspergillosis, Allergic Bronchopulmonary/genetics , CARD Signaling Adaptor Proteins/genetics , Humans , Interleukin-5/immunology , Macrophages, Alveolar/metabolism , Mice , Polymorphism, Single Nucleotide , Signal Transduction/immunology
7.
Nature ; 615(7954): 830-835, 2023 03.
Article in English | MEDLINE | ID: mdl-36922588

ABSTRACT

Perovskite light-emitting diodes (LEDs) have attracted broad attention due to their rapidly increasing external quantum efficiencies (EQEs)1-15. However, most high EQEs of perovskite LEDs are reported at low current densities (<1 mA cm-2) and low brightness. Decrease in efficiency and rapid degradation at high brightness inhibit their practical applications. Here, we demonstrate perovskite LEDs with exceptional performance at high brightness, achieved by the introduction of a multifunctional molecule that simultaneously removes non-radiative regions in the perovskite films and suppresses luminescence quenching of perovskites at the interface with charge-transport layers. The resulting LEDs emit near-infrared light at 800 nm, show a peak EQE of 23.8% at 33 mA cm-2 and retain EQEs more than 10% at high current densities of up to 1,000 mA cm-2. In pulsed operation, they retain EQE of 16% at an ultrahigh current density of 4,000 mA cm-2, along with a high radiance of more than 3,200 W s-1 m-2. Notably, an operational half-lifetime of 32 h at an initial radiance of 107 W s-1 m-2 has been achieved, representing the best stability for perovskite LEDs having EQEs exceeding 20% at high brightness levels. The demonstration of efficient and stable perovskite LEDs at high brightness is an important step towards commercialization and opens up new opportunities beyond conventional LED technologies, such as perovskite electrically pumped lasers.

8.
Mol Cell ; 81(3): 629-637.e5, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33400924

ABSTRACT

As a master regulator of metabolism, AMP-activated protein kinase (AMPK) is activated upon energy and glucose shortage but suppressed upon overnutrition. Exaggerated negative regulation of AMPK signaling by nutrient overload plays a crucial role in metabolic diseases. However, the mechanism underlying the negative regulation is poorly understood. Here, we demonstrate that high glucose represses AMPK signaling via MG53 (also called TRIM72) E3-ubiquitin-ligase-mediated AMPKα degradation and deactivation. Specifically, high-glucose-stimulated reactive oxygen species (ROS) signals AKT to phosphorylate AMPKα at S485/491, which facilitates the recruitment of MG53 and the subsequent ubiquitination and degradation of AMPKα. In addition, high glucose deactivates AMPK by ROS-dependent suppression of phosphorylation of AMPKα at T172. These findings not only delineate the mechanism underlying the impairment of AMPK signaling in overnutrition-related diseases but also highlight the significance of keeping the yin-yang balance of AMPK signaling in the maintenance of metabolic homeostasis.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Diabetes Mellitus/enzymology , Glucose/pharmacology , Membrane Proteins/metabolism , Muscle, Skeletal/drug effects , Obesity/enzymology , AMP-Activated Protein Kinase Kinases , AMP-Activated Protein Kinases/genetics , Animals , Blood Glucose/metabolism , Diabetes Mellitus/blood , Diabetes Mellitus/genetics , Disease Models, Animal , HEK293 Cells , Humans , Macaca mulatta , Male , Membrane Proteins/genetics , Mice, Inbred C57BL , Muscle, Skeletal/enzymology , Obesity/blood , Obesity/genetics , Phosphorylation , Protein Serine-Threonine Kinases/metabolism , Proteolysis , Reactive Oxygen Species/metabolism , Signal Transduction , Ubiquitination
9.
Nature ; 577(7788): 103-108, 2020 01.
Article in English | MEDLINE | ID: mdl-31827281

ABSTRACT

RIPK1 is a key regulator of innate immune signalling pathways. To ensure an optimal inflammatory response, RIPK1 is regulated post-translationally by well-characterized ubiquitylation and phosphorylation events, as well as by caspase-8-mediated cleavage1-7. The physiological relevance of this cleavage event remains unclear, although it is thought to inhibit activation of RIPK3 and necroptosis8. Here we show that the heterozygous missense mutations D324N, D324H and D324Y prevent caspase cleavage of RIPK1 in humans and result in an early-onset periodic fever syndrome and severe intermittent lymphadenopathy-a condition we term 'cleavage-resistant RIPK1-induced autoinflammatory syndrome'. To define the mechanism for this disease, we generated a cleavage-resistant Ripk1D325A mutant mouse strain. Whereas Ripk1-/- mice died postnatally from systemic inflammation, Ripk1D325A/D325A mice died during embryogenesis. Embryonic lethality was completely prevented by the combined loss of Casp8 and Ripk3, but not by loss of Ripk3 or Mlkl alone. Loss of RIPK1 kinase activity also prevented Ripk1D325A/D325A embryonic lethality, although the mice died before weaning from multi-organ inflammation in a RIPK3-dependent manner. Consistently, Ripk1D325A/D325A and Ripk1D325A/+ cells were hypersensitive to RIPK3-dependent TNF-induced apoptosis and necroptosis. Heterozygous Ripk1D325A/+ mice were viable and grossly normal, but were hyper-responsive to inflammatory stimuli in vivo. Our results demonstrate the importance of caspase-mediated RIPK1 cleavage during embryonic development and show that caspase cleavage of RIPK1 not only inhibits necroptosis but also maintains inflammatory homeostasis throughout life.


Subject(s)
Caspase 8/metabolism , Hereditary Autoinflammatory Diseases/metabolism , Mutation , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Animals , Caspase 3/metabolism , Female , Hereditary Autoinflammatory Diseases/genetics , Hereditary Autoinflammatory Diseases/pathology , Humans , MAP Kinase Kinase Kinases/genetics , MAP Kinase Kinase Kinases/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Pedigree , Receptor-Interacting Protein Serine-Threonine Kinases/deficiency , Receptor-Interacting Protein Serine-Threonine Kinases/genetics
10.
J Biol Chem ; 300(6): 107309, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38657867

ABSTRACT

Novel components in the noncanonical Hippo pathway that mediate the growth, metastasis, and drug resistance of breast cancer (BC) cells need to be identified. Here, we showed that expression of SAM and SH3 domain-containing protein 1 (SASH1) is negatively correlated with expression of mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) in a subpopulation of patients with luminal-subtype BC. Downregulated SASH1 and upregulated MAP4K4 synergistically regulated the proliferation, migration, and invasion of luminal-subtype BC cells. The expression of LATS2, SASH1, and YAP1 and the phosphorylation of YAP1 were negatively regulated by MAP4K4, and LATS2 then phosphorylated SASH1 to form a novel MAP4K4-LATS2-SASH1-YAP1 cascade. Dephosphorylation of Yes1 associated transcriptional regulator (YAP1), YAP1/TAZ nuclear translocation, and downstream transcriptional regulation of YAP1 were promoted by the combined effects of ectopic MAP4K4 expression and SASH1 silencing. Targeted inhibition of MAP4K4 blocked proliferation, cell migration, and ER signaling both in vitro and in vivo. Our findings reveal a novel MAP4K4-LATS2-SASH1-YAP1 phosphorylation cascade, a noncanonical Hippo pathway that mediates ER signaling, tumorigenesis, and metastasis in breast cancer. Targeted intervention with this noncanonical Hippo pathway may constitute a novel alternative therapeutic approach for endocrine-resistant BC.


Subject(s)
Adaptor Proteins, Signal Transducing , Breast Neoplasms , Intracellular Signaling Peptides and Proteins , Protein Serine-Threonine Kinases , Transcription Factors , Tumor Suppressor Proteins , YAP-Signaling Proteins , Humans , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Female , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , YAP-Signaling Proteins/metabolism , YAP-Signaling Proteins/genetics , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Animals , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Phosphoproteins/metabolism , Phosphoproteins/genetics , Mice , Signal Transduction , Neoplasm Metastasis , Cell Movement , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , Neoplasm Proteins/metabolism , Neoplasm Proteins/genetics , Phosphorylation , Mice, Nude , Carcinogenesis/genetics , Carcinogenesis/metabolism
11.
Nucleic Acids Res ; 51(7): 3150-3165, 2023 04 24.
Article in English | MEDLINE | ID: mdl-36869674

ABSTRACT

DNA double-strand breaks (DSBs) are functionally linked to genomic instability in spermatocytes and to male infertility. The heavy metal cadmium (Cd) is known to induce DNA damage in spermatocytes by unknown mechanisms. Here, we showed that Cd ions impaired the canonical non-homologous end-joining (NHEJ) repair pathway, but not the homologous recombination (HR) repair pathway, through stimulation of Ser2056 and Thr2609 phosphorylation of DNA-PKcs at DSB sites. Hyper-phosphorylation of DNA-PKcs led to its premature dissociation from DNA ends and the Ku complex, preventing recruitment of processing enzymes and further ligation of DNA ends. Specifically, this cascade was initiated by the loss of PP5 phosphatase activity, which results from the dissociation of PP5 from its activating ions (Mn), that is antagonized by Cd ions through a competitive mechanism. In accordance, in a mouse model Cd-induced genomic instability and consequential male reproductive dysfunction were effectively reversed by a high dosage of Mn ions. Together, our findings corroborate a protein phosphorylation-mediated genomic instability pathway in spermatocytes that is triggered by exchange of heavy metal ions.


Subject(s)
Cadmium , Genomic Instability , Infertility, Male , Spermatocytes , Animals , Humans , Male , Mice , Cadmium/toxicity , DNA/metabolism , DNA End-Joining Repair , DNA Repair , Genomic Instability/drug effects , Infertility, Male/genetics , Infertility, Male/metabolism , Ions/metabolism , Phosphorylation , Recombinational DNA Repair , Spermatocytes/drug effects
12.
BMC Genomics ; 25(1): 367, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622534

ABSTRACT

The tissue damage caused by transient ischemic injury is an essential component of the pathogenesis of retinal ischemia, which mainly hinges on the degree and duration of interruption of the blood supply and the subsequent damage caused by tissue reperfusion. Some research indicated that the retinal injury induced by ischemia-reperfusion (I/R) was related to reperfusion time.In this study, we screened the differentially expressed circRNAs, lncRNAs, and mRNAs between the control and model group and at different reperfusion time (24h, 72h, and 7d) with the aid of whole transcriptome sequencing technology, and the trend changes in time-varying mRNA, lncRNA, circRNA were obtained by chronological analysis. Then, candidate circRNAs, lncRNAs, and mRNAs were obtained as the intersection of differentially expression genes and trend change genes. Importance scores of the genes selected the key genes whose expression changed with the increase of reperfusion time. Also, the characteristic differentially expressed genes specific to the reperfusion time were analyzed, key genes specific to reperfusion time were selected to show the change in biological process with the increase of reperfusion time.As a result, 316 candidate mRNAs, 137 candidate lncRNAs, and 31 candidate circRNAs were obtained by the intersection of differentially expressed mRNAs, lncRNAs, and circRNAs with trend mRNAs, trend lncRNAs and trend circRNAs, 5 key genes (Cd74, RT1-Da, RT1-CE5, RT1-Bb, RT1-DOa) were selected by importance scores of the genes. The result of GSEA showed that key genes were found to play vital roles in antigen processing and presentation, regulation of the actin cytoskeleton, and the ribosome. A network included 4 key genes (Cd74, RT1-Da, RT1-Bb, RT1-DOa), 34 miRNAs and 48 lncRNAs, and 81 regulatory relationship axes, and a network included 4 key genes (Cd74, RT1-Da, RT1-Bb, RT1-DOa), 9 miRNAs and 3 circRNAs (circRNA_10572, circRNA_03219, circRNA_11359) and 12 regulatory relationship axes were constructed, the subcellular location, transcription factors, signaling network, targeted drugs and relationship to eye diseases of key genes were predicted. 1370 characteristic differentially expressed mRNAs (spec_24h mRNA), 558 characteristic differentially expressed mRNAs (spec_72h mRNA), and 92 characteristic differentially expressed mRNAs (spec_7d mRNA) were found, and their key genes and regulation networks were analyzed.In summary, we screened the differentially expressed circRNAs, lncRNAs, and mRNAs between the control and model groups and at different reperfusion time (24h, 72h, and 7d). 5 key genes, Cd74, RT1-Da, RT1-CE5, RT1-Bb, RT1-DOa, were selected. Key genes specific to reperfusion time were selected to show the change in biological process with the increased reperfusion time. These results provided theoretical support and a reference basis for the clinical treatment.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Reperfusion Injury , Rats , Animals , RNA, Circular/genetics , RNA, Long Noncoding/genetics , MicroRNAs/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcriptome , Reperfusion Injury/genetics , Computational Biology/methods , Ischemia , Gene Regulatory Networks
13.
J Am Chem Soc ; 146(17): 11944-11954, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38622919

ABSTRACT

Protein tyrosine nitration (PTN) by oxidative and nitrative stress is a well-known post-translational modification that plays a role in the initiation and progression of various diseases. Despite being recognized as a stable modification for decades, recent studies have suggested the existence of a reduction in PTN, leading to the formation of 3-aminotyrosine (3AT) and potential denitration processes. However, the vital functions of 3AT-containing proteins are still unclear due to the lack of selective probes that directly target the protein tyrosine amination. Here, we report a novel approach to label and enrich 3AT-containing proteins with synthetic salicylaldehyde (SAL)-based probes: SALc-FL with a fluorophore and SALc-Yn with an alkyne tag. These probes exhibit high selectivity and efficiency in labeling and can be used in cell lysates and live cells. More importantly, SALc-Yn offers versatility when integrated into multiple platforms by enabling proteome-wide quantitative profiling of cell nitration dynamics. Using SALc-Yn, 355 proteins were labeled, enriched, and identified to carry the 3AT modification in oxidatively stressed RAW264.7 cells. These findings provide compelling evidence supporting the involvement of 3AT as a critical intermediate in nitrated protein turnover. Moreover, our probes serve as powerful tools to investigate protein nitration and denitration processes, and the identification of 3AT-containing proteins contributes to our understanding of PTN dynamics and its implications in cellular redox biology.


Subject(s)
Tyrosine , Tyrosine/analogs & derivatives , Tyrosine/chemistry , Tyrosine/metabolism , Amination , Humans , Proteomics/methods , Aldehydes/chemistry , Aldehydes/chemical synthesis , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Proteins/chemistry , Proteins/metabolism , Proteins/analysis , Mice , Animals
14.
Br J Cancer ; 130(4): 660-670, 2024 03.
Article in English | MEDLINE | ID: mdl-38177661

ABSTRACT

BACKGROUND: The clinical value and molecular characteristics of tumor differentiation in oral squamous cell carcinoma (OSCC) remain unclear. There is a lack of a related molecular classification prediction system based on pathological images for precision medicine. METHODS: Integration of epidemiology, genomics, experiments, and deep learning to clarify the clinical value and molecular characteristics, and develop a novel OSCC molecular classification prediction system. RESULTS: Large-scale epidemiology data (n = 118,817) demonstrated OSCC differentiation was a significant prognosis indicator (p < 0.001), and well-differentiated OSCC was more chemo-resistant than poorly differentiated OSCC. These results were confirmed in the TCGA database and in vitro. Furthermore, we found chemo-resistant related pathways and cell cycle-related pathways were up-regulated in well- and poorly differentiated OSCC, respectively. Based on the characteristics of OSCC differentiation, a molecular grade of OSCC was obtained and combined with pathological images to establish a novel prediction system through deep learning, named ShuffleNetV2-based Molecular Grade of OSCC (SMGO). Importantly, our independent multi-center cohort of OSCC (n = 340) confirmed the high accuracy of SMGO. CONCLUSIONS: OSCC differentiation was a significant indicator of prognosis and chemotherapy selection. Importantly, SMGO could be an indispensable reference for OSCC differentiation and assist the decision-making of chemotherapy.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Humans , Carcinoma, Squamous Cell/pathology , Squamous Cell Carcinoma of Head and Neck/genetics , Mouth Neoplasms/pathology , Translational Research, Biomedical , Prognosis
15.
Biochem Biophys Res Commun ; 691: 149243, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38016338

ABSTRACT

Cancer stem cells (CSCs), as parts of tumor initiation cells, play a crucial role to tumorigenesis, development and recurrence. However, the complicated mechanisms of CSCs to adapt to tumor microenvironment and its stemness maintenance remains unclear. Here, we show that oxidized ATM, a hypoxia-activated cytoplasm ATM, acts a novel function to maintain CSC stemness in triple-negative breast cancer cells (BCSCs) via regulating histone H4 acetylation. Mechanistically, oxidized ATM phosphorylates TRIM21 (a E3 ubiquitin ligase) serine 80 and serine 469. Serine 80 phosphorylation of TRIM21 is essential for the ubiquitination activity of TRIM21. TRIM21 binds with SIRT1 (one of deacetylase), resulting in ubiquitylation-mediated degradation of SIRT1. The reduced SIRT1 leads to increase of histone H4 acetylation, thus facilitating CSC-related gene expression. Clinical data verify that high level of ATM in breast tumors is positively correlated with malignant grade, and is closely related with low SIRT1, high p-TRIM21, and high CD44 expression. In conclusion, our study provides a novel mechanism by which oxidized ATM governing BCSCs stemness and reveals an important link among oxidized ATM, histone acetylation, and BCSCs maintenance.


Subject(s)
Breast Neoplasms , Sirtuin 1 , Humans , Female , Sirtuin 1/metabolism , Acetylation , Breast Neoplasms/pathology , Histones/metabolism , Ubiquitination , Neoplastic Stem Cells/pathology , Serine/metabolism , Cell Line, Tumor , Tumor Microenvironment , Ataxia Telangiectasia Mutated Proteins/metabolism
16.
Biochem Biophys Res Commun ; 726: 150235, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-38908345

ABSTRACT

BACKGROUND: Diabetic ulcers (DUs) are characterized by chronic inflammation and delayed re-epithelialization, with a high incidence and weighty economic burden. The primary therapeutic strategies for refractory wounds include surgery, non-invasive wound therapy, and drugs, while the optimum regimen remains controversial. Sirtuin-6 (SIRT6) is a histone deacetylase and a key epigenetic factor that exerts anti-inflammatory and pro-proliferatory effects in wound healing. However, the exact function of SIRT6 in DUs remains unclear. METHODS: We generated tamoxifen-inducible SIRT6 knockout mice by crossing SIRT6flox/flox homozygous mice with UBC-creERT2+ transgenic mice. Systemic SIRT6 null mice, under either normal or diabetic conditions, were utilized to assess the effects of SIRT6 in DUs treatment. Gene and protein expressions of SIRT6 and inflammatory cytokines were measured by Western blotting and RT-qPCR. Histopathological examination confirmed the altered re-epithelialization (PCNA), inflammation (NF-κB p50 and F4/80), and angiogenesis (CD31) markers during DUs restoration. RESULTS: Knockout of SIRT6 inhibited the healing ability of DUs, presenting attenuated re-epithelialization (PCNA), exacerbated inflammation responses (NF-κB p50, F4/80, Il-1ß, Tnf-α, Il-6, Il-10, and Il-4), and hyperplasia vascular (CD31) compared with control mice. CONCLUSIONS: SIRT6 could boost impaired wound healing through improving epidermal proliferation, inflammation, and angiogenesis. Our study highlighted the therapeutic potential of the SIRT6 agonist for DUs treatment.


Subject(s)
Mice, Knockout , Sirtuins , Wound Healing , Animals , Wound Healing/genetics , Sirtuins/genetics , Sirtuins/metabolism , Sirtuins/deficiency , Mice , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Cytokines/metabolism , Mice, Inbred C57BL , Inflammation/genetics , Inflammation/pathology , Inflammation/metabolism , Male
17.
J Neuroinflammation ; 21(1): 70, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38515139

ABSTRACT

Myeloperoxidase (MPO) plays critical role in the pathology of cerebral ischemia-reperfusion (I/R) injury via producing hypochlorous acid (HOCl) and inducing oxidative modification of proteins. High-mobility group box 1 (HMGB1) oxidation, particularly disulfide HMGB1 formation, facilitates the secretion and release of HMGB1 and activates neuroinflammation, aggravating cerebral I/R injury. However, the cellular sources of MPO/HOCl in ischemic brain injury are unclear yet. Whether HOCl could promote HMGB1 secretion and release remains unknown. In the present study, we investigated the roles of microglia-derived MPO/HOCl in mediating HMGB1 translocation and secretion, and aggravating the brain damage and blood-brain barrier (BBB) disruption in cerebral I/R injury. In vitro, under the co-culture conditions with microglia BV cells but not the single culture conditions, oxygen-glucose deprivation/reoxygenation (OGD/R) significantly increased MPO/HOCl expression in PC12 cells. After the cells were exposed to OGD/R, MPO-containing exosomes derived from BV2 cells were released and transferred to PC12 cells, increasing MPO/HOCl in the PC12 cells. The HOCl promoted disulfide HMGB1 translocation and secretion and aggravated OGD/R-induced apoptosis. In vivo, SD rats were subjected to 2 h of middle cerebral artery occlusion (MCAO) plus different periods of reperfusion. Increased MPO/HOCl production was observed at the reperfusion stage, accomplished with enlarged infarct volume, aggravated BBB disruption and neurological dysfunctions. Treatment of MPO inhibitor 4-aminobenzoic acid hydrazide (4-ABAH) and HOCl scavenger taurine reversed those changes. HOCl was colocalized with cytoplasm transferred HMGB1, which was blocked by taurine in rat I/R-injured brain. We finally performed a clinical investigation and found that plasma HOCl concentration was positively correlated with infarct volume and neurological deficit scores in ischemic stroke patients. Taken together, we conclude that ischemia/hypoxia could activate microglia to release MPO-containing exosomes that transfer MPO to adjacent cells for HOCl production; Subsequently, the production of HOCl could mediate the translocation and secretion of disulfide HMGB1 that aggravates cerebral I/R injury. Furthermore, plasma HOCl level could be a novel biomarker for indexing brain damage in ischemic stroke patients.


Subject(s)
Brain Injuries , Brain Ischemia , HMGB1 Protein , Ischemic Stroke , Reperfusion Injury , Humans , Rats , Animals , Hypochlorous Acid , Microglia/metabolism , HMGB1 Protein/metabolism , Rats, Sprague-Dawley , Brain Injuries/metabolism , Brain Ischemia/metabolism , Blood-Brain Barrier/metabolism , Infarction, Middle Cerebral Artery/complications , Infarction, Middle Cerebral Artery/pathology , Neurons/metabolism , Reperfusion Injury/metabolism , Peroxidase/metabolism , Taurine , Disulfides
18.
Small ; : e2401650, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38712474

ABSTRACT

Piezoelectric catalysis is a novel catalytic technology that has developed rapidly in recent years and has attracted extensive interest among researchers in the field of tumor therapy for its acoustic-sensitizing properties. Nevertheless, researchers are still controversial about the key technical difficulties in the modulation of piezoelectric sonosensitizers for tumor therapy applications, which is undoubtedly a major obstacle to the performance modulation of piezoelectric sonosensitizers. Clarification of this challenge will be beneficial to the design and optimization of piezoelectric sonosensitizers in the future. Here, the authors start from the mechanism of piezoelectric catalysis and elaborate the mechanism and methods of defect engineering and phase engineering for the performance modulation of piezoelectric sonosensitizers based on the energy band theory. The combined therapeutic strategy of piezoelectric sonosensitizers with enzyme catalysis and immunotherapy is introduced. Finally, the challenges and prospects of piezoelectric sonosensitizers are highlighted. Hopefully, the explorations can guide researchers toward the optimization of piezoelectric sonosensitizers and can be applied in their own research.

19.
Small ; 20(12): e2307070, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37940630

ABSTRACT

Stretchable triboelectric nanogenerators (TENGs) are widely applied in wearable and implantable electronics, smart medical devices, and soft robots. However, it is still a challenge to produce stretchable TENGs with both exceptional elasticity and output performance, which limits their application scope. In this work, high-performance stretchable TENGs are developed through a thermo-compression (TC) fabrication process. In particular, a poly(vinylidene fluoride) film is compactly bound to the elastic thermoplastic polyurethane substrate, which inherits excellent stretchability with a strain of up to 815%. Furthermore, owing to the large surface area, tight contact, and effective vertical transport of tribo-induced charges between the coupled fibrous tribo-layer and soft substrate, the TC composite film-based TENGs exhibit a greater output (2-4 times) than unlaminated film-based TENGs. Additionally, the broad universality of this method is proven using various tribo- and substrate materials. The proposed technology provides a novel and effective approach to conjointly boost the output and stretchability of TENGs, showing encouraging application prospects in self-powered wearable and flexible electronics.

20.
Small ; 20(5): e2305191, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37752759

ABSTRACT

Metal halide perovskite colloidal quantum wells (CQWs) hold great promise for modern photonics and optoelectronics. However, current studies focus on Ruddlesden-Popper (R-P) phase perovskite CQWs that contain bilayers of monovalent long-chain alkylamomoniums between the separated perovskite octahedra layers. The bilayers are packed back-to-back via weak van der Waals interaction, resulting in inferior charge carrier transport and easier decomposition of perovskite. This report first creates a new type of perovskite colloidal multiple QWs (CMQWs) in the form of Dion-Jacobson (D-J) structure by introducing an asymmetric diammonium cation. Furthermore, the phase distribution is optimized by the synergistic effect of valeric acid and zwitterionic lecithin, finally achieving pure deep-blue emission at 435 nm with narrow full width at half maximum. The diammonium layer in D-J perovskite CMQWs features extremely short width of only ≈0.6 nm, thereby contributing to more effective charge carrier transport and higher stability. Through the continuous photoluminescence (PL) measurement and corresponding theoretical calculation, the higher stability of D-J perovskite CMQWs than that of R-P structural CMQWs is confirmed. This work reveals the inherent superior stability of D-J structural CMQWs, which opens a new direction for fabricating stable perovskite optoelectronics.

SELECTION OF CITATIONS
SEARCH DETAIL