Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 134
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 121(17): e2320345121, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38630723

ABSTRACT

The TWIK-related acid-sensitive K+ channel 3 (TASK3) belongs to the two-pore domain (K2P) potassium channel family, which regulates cell excitability by mediating a constitutive "leak" potassium efflux in the nervous system. Extracellular acidification inhibits TASK3 channel, but the molecular mechanism by which channel inactivation is coupled to pH decrease remains unclear. Here, we report the cryo-electron microscopy structures of human TASK3 at neutral and acidic pH. Structural comparison revealed selectivity filter (SF) rearrangements upon acidification, characteristic of C-type inactivation, but with a unique structural basis. The extracellular mouth of the SF was prominently dilated and simultaneously blocked by a hydrophobic gate. His98 protonation shifted the conformational equilibrium between the conductive and C-type inactivated SF toward the latter by engaging a cation-π interaction with Trp78, consistent with molecular dynamics simulations and electrophysiological experiments. Our work illustrated how TASK3 is gated in response to extracellular pH change and implies how physiological stimuli might directly modulate the C-type gating of K2P channels.


Subject(s)
Potassium Channels, Tandem Pore Domain , Protons , Humans , Cryoelectron Microscopy , Molecular Dynamics Simulation , Potassium Channels, Tandem Pore Domain/metabolism
2.
Nat Chem Biol ; 20(7): 847-856, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38167918

ABSTRACT

Pharmacological activation of voltage-gated ion channels by ligands serves as the basis for therapy and mainly involves a classic gating mechanism that augments the native voltage-dependent open probability. Through structure-based virtual screening, we identified a new scaffold compound, Ebio1, serving as a potent and subtype-selective activator for the voltage-gated potassium channel KCNQ2 and featuring a new activation mechanism. Single-channel patch-clamp, cryogenic-electron microscopy and molecular dynamic simulations, along with chemical derivatives, reveal that Ebio1 engages the KCNQ2 activation by generating an extended channel gate with a larger conductance at the saturating voltage (+50 mV). This mechanism is different from the previously observed activation mechanism of ligands on voltage-gated ion channels. Ebio1 caused S6 helices from residues S303 and F305 to perform a twist-to-open movement, which was sufficient to open the KCNQ2 gate. Overall, our findings provide mechanistic insights into the activation of KCNQ2 channel by Ebio1 and lend support for KCNQ-related drug development.


Subject(s)
Ion Channel Gating , KCNQ2 Potassium Channel , Molecular Dynamics Simulation , KCNQ2 Potassium Channel/metabolism , KCNQ2 Potassium Channel/chemistry , Humans , Ion Channel Gating/drug effects , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemistry , Animals , Patch-Clamp Techniques , Cryoelectron Microscopy , HEK293 Cells , Structure-Activity Relationship
3.
Circ Res ; 135(7): 722-738, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39166328

ABSTRACT

BACKGROUND: The KCNQ1+KCNE1 (IKs) potassium channel plays a crucial role in cardiac adaptation to stress, in which ß-adrenergic stimulation phosphorylates the IKs channel through the cyclic adenosine monophosphate (cAMP)/PKA (protein kinase A) pathway. Phosphorylation increases the channel current and accelerates repolarization to adapt to an increased heart rate. Variants in KCNQ1 can cause long-QT syndrome type 1 (LQT1), and those with defective cAMP effects predispose patients to the highest risk of cardiac arrest and sudden death. However, the molecular connection between IKs channel phosphorylation and channel function, as well as why high-risk LQT1 mutations lose cAMP sensitivity, remain unclear. METHODS: Regular patch clamp and voltage clamp fluorometry techniques were utilized to record pore opening and voltage sensor movement of wild-type and mutant KCNQ1/IKs channels. The clinical phenotypic penetrance of each LQT1 mutation was analyzed as a metric for assessing their clinical risk. The patient-specific-induced pluripotent stem-cell model was used to test mechanistic findings in physiological conditions. RESULTS: By systematically elucidating mechanisms of a series of LQT1 variants that lack cAMP sensitivity, we identified molecular determinants of IKs channel regulation by phosphorylation. These key residues are distributed across the N-terminus of KCNQ1 extending to the central pore region of IKs. We refer to this pattern as the IKs channel PKA phosphorylation axis. Next, by examining LQT1 variants from clinical databases containing 10 579 LQT1 carriers, we found that the distribution of the most high-penetrance LQT1 variants extends across the IKs channel PKA phosphorylation axis, demonstrating its clinical relevance. Furthermore, we found that a small molecule, ML277, which binds at the center of the phosphorylation axis, rescues the defective cAMP effects of multiple high-risk LQT1 variants. This finding was then tested in high-risk patient-specific induced pluripotent stem cell-derived cardiomyocytes, where ML277 remarkably alleviates the beating abnormalities. CONCLUSIONS: Our findings not only elucidate the molecular mechanism of PKA-dependent IKs channel phosphorylation but also provide an effective antiarrhythmic strategy for patients with high-risk LQT1 variants.


Subject(s)
Cyclic AMP-Dependent Protein Kinases , Induced Pluripotent Stem Cells , KCNQ1 Potassium Channel , Humans , Cyclic AMP-Dependent Protein Kinases/metabolism , Phosphorylation , KCNQ1 Potassium Channel/genetics , KCNQ1 Potassium Channel/metabolism , Induced Pluripotent Stem Cells/metabolism , Romano-Ward Syndrome/genetics , Romano-Ward Syndrome/metabolism , Cyclic AMP/metabolism , Myocytes, Cardiac/metabolism , Mutation , Long QT Syndrome/genetics , Long QT Syndrome/metabolism , HEK293 Cells , Potassium Channels, Voltage-Gated
4.
BMC Infect Dis ; 24(1): 413, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38641791

ABSTRACT

Considering that neutralizing antibody levels induced by two doses of the inactivated vaccine decreased over time and had fallen to low levels by 6 months, and homologous and heterologous booster immunization programs have been implemented in adults in China. The booster immunization of recombinant COVID-19 vaccine (ZF2001) after priming with inactivated vaccine in healthy children and adolescents has not been reported. We performed an open-labeled, single-arm clinical trial to evaluate the safety and immunogenicity of heterologous booster immunization with ZF2001 after priming with inactivated vaccine among 240 population aged 3-17 years in China. The primary outcome was immunogenicity, including geometric mean titers (GMTs), geometric mean ratios (GMRs) and seroconversion rates of SARS-CoV-2 neutralizing antibodies against prototype SARS-CoV-2 and Omicron BA.2 variant at 14 days after vaccination booster. On day 14 post-booster, a third dose booster of the ZF2001 provided a substantial increase in antibody responses in minors, and the overall occurrence rate of adverse reactions after heterologous vaccination was low and all adverse reactions were mild or moderate. The results showed that the ZF2001 heterologous booster had high immunogenicity and good safety profile in children and adolescents, and can elicit a certain level of neutralizing antibodies against Omicron.Trial registration NCT05895110 (Retrospectively registered, First posted in ClinicalTrials.gov date: 08/06/2023).


Subject(s)
COVID-19 Vaccines , COVID-19 , Vaccines, Subunit , Adolescent , Child , Humans , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Immunogenicity, Vaccine , SARS-CoV-2 , Vaccines, Inactivated/adverse effects , Child, Preschool
5.
Nature ; 553(7686): 106-110, 2018 01 03.
Article in English | MEDLINE | ID: mdl-29300013

ABSTRACT

Class B G-protein-coupled receptors (GPCRs), which consist of an extracellular domain (ECD) and a transmembrane domain (TMD), respond to secretin peptides to play a key part in hormonal homeostasis, and are important therapeutic targets for a variety of diseases. Previous work has suggested that peptide ligands bind to class B GPCRs according to a two-domain binding model, in which the C-terminal region of the peptide targets the ECD and the N-terminal region of the peptide binds to the TMD binding pocket. Recently, three structures of class B GPCRs in complex with peptide ligands have been solved. These structures provide essential insights into peptide ligand recognition by class B GPCRs. However, owing to resolution limitations, the specific molecular interactions for peptide binding to class B GPCRs remain ambiguous. Moreover, these previously solved structures have different ECD conformations relative to the TMD, which introduces questions regarding inter-domain conformational flexibility and the changes required for receptor activation. Here we report the 3.0 Å-resolution crystal structure of the full-length human glucagon receptor (GCGR) in complex with a glucagon analogue and partial agonist, NNC1702. This structure provides molecular details of the interactions between GCGR and the peptide ligand. It reveals a marked change in the relative orientation between the ECD and TMD of GCGR compared to the previously solved structure of the inactive GCGR-NNC0640-mAb1 complex. Notably, the stalk region and the first extracellular loop undergo major conformational changes in secondary structure during peptide binding, forming key interactions with the peptide. We further propose a dual-binding-site trigger model for GCGR activation-which requires conformational changes of the stalk, first extracellular loop and TMD-that extends our understanding of the previously established two-domain peptide-binding model of class B GPCRs.


Subject(s)
Glucagon/analogs & derivatives , Receptors, Glucagon/chemistry , Receptors, Glucagon/metabolism , Crystallography, X-Ray , Drug Partial Agonism , Humans , Ligands , Models, Molecular , Protein Binding , Protein Conformation
6.
Nature ; 546(7657): 259-264, 2017 06 08.
Article in English | MEDLINE | ID: mdl-28514451

ABSTRACT

The human glucagon receptor, GCGR, belongs to the class B G-protein-coupled receptor family and plays a key role in glucose homeostasis and the pathophysiology of type 2 diabetes. Here we report the 3.0 Å crystal structure of full-length GCGR containing both the extracellular domain and transmembrane domain in an inactive conformation. The two domains are connected by a 12-residue segment termed the stalk, which adopts a ß-strand conformation, instead of forming an α-helix as observed in the previously solved structure of the GCGR transmembrane domain. The first extracellular loop exhibits a ß-hairpin conformation and interacts with the stalk to form a compact ß-sheet structure. Hydrogen-deuterium exchange, disulfide crosslinking and molecular dynamics studies suggest that the stalk and the first extracellular loop have critical roles in modulating peptide ligand binding and receptor activation. These insights into the full-length GCGR structure deepen our understanding of the signalling mechanisms of class B G-protein-coupled receptors.


Subject(s)
Receptors, Glucagon/chemistry , Receptors, Glucagon/classification , Allosteric Site/drug effects , Benzamides/chemistry , Benzamides/metabolism , Benzamides/pharmacology , Cell Membrane/metabolism , Cross-Linking Reagents/chemistry , Crystallography, X-Ray , Deuterium Exchange Measurement , Disulfides/chemistry , Humans , Ligands , Models, Molecular , Molecular Dynamics Simulation , Phenylurea Compounds/chemistry , Phenylurea Compounds/metabolism , Phenylurea Compounds/pharmacology , Protein Domains , Protein Stability , Receptors, Glucagon/agonists , Receptors, Glucagon/metabolism
7.
Proc Natl Acad Sci U S A ; 117(52): 33426-33435, 2020 12 29.
Article in English | MEDLINE | ID: mdl-33318209

ABSTRACT

Precise genetic engineering in specific cell types within an intact organism is intriguing yet challenging, especially in a spatiotemporal manner without the interference caused by chemical inducers. Here we engineered a photoactivatable Dre recombinase based on the identification of an optimal split site and demonstrated that it efficiently regulated transgene expression in mouse tissues spatiotemporally upon blue light illumination. Moreover, through a double-floxed inverted open reading frame strategy, we developed a Cre-activated light-inducible Dre (CALID) system. Taking advantage of well-defined cell-type-specific promoters or a well-established Cre transgenic mouse strain, we demonstrated that the CALID system was able to activate endogenous reporter expression for either bulk or sparse labeling of CaMKIIα-positive excitatory neurons and parvalbumin interneurons in the brain. This flexible and tunable system could be a powerful tool for the dissection and modulation of developmental and genetic complexity in a wide range of biological systems.


Subject(s)
Escherichia coli Proteins/metabolism , Genetic Engineering , Genome , Light , Recombinases/metabolism , Animals , Brain/metabolism , Dependovirus/metabolism , Gene Expression , Genes, Reporter , Genetic Vectors/metabolism , HEK293 Cells , Humans , Integrases/metabolism , Liver/metabolism , Mice, Inbred C57BL , Mice, Transgenic , Neurons/metabolism , Time Factors
8.
Nat Chem Biol ; 16(7): 766-775, 2020 07.
Article in English | MEDLINE | ID: mdl-32483376

ABSTRACT

Cell surfaces are glycosylated in various ways with high heterogeneity, which usually leads to ambiguous conclusions about glycan-involved biological functions. Here, we describe a two-step chemoenzymatic approach for N-glycan-subtype-selective editing on the surface of living cells that consists of a first 'delete' step to remove heterogeneous N-glycoforms of a certain subclass and a second 'insert' step to assemble a well-defined N-glycan back onto the pretreated glyco-sites. Such glyco-edited cells, carrying more homogeneous oligosaccharide structures, could enable precise understanding of carbohydrate-mediated functions. In particular, N-glycan-subtype-selective remodeling and imaging with different monosaccharide motifs at the non-reducing end were successfully achieved. Using a combination of the expression system of the Lec4 CHO cell line and this two-step glycan-editing approach, opioid receptor delta 1 (OPRD1) was investigated to correlate its glycostructures with the biological functions of receptor dimerization, agonist-induced signaling and internalization.


Subject(s)
Cell Membrane/chemistry , Epithelial Cells/chemistry , Glycoconjugates/chemistry , Oligosaccharides/chemistry , Receptors, Opioid, delta/chemistry , Animals , CHO Cells , Cell Line, Tumor , Cell Membrane/metabolism , Colforsin/pharmacology , Cricetulus , Enkephalin, Leucine/pharmacology , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Gene Expression , Glycoconjugates/metabolism , Glycosylation , HEK293 Cells , Humans , Mice , Oligosaccharides/metabolism , Protein Multimerization/drug effects , Protein Transport/drug effects , Receptors, Opioid, delta/genetics , Receptors, Opioid, delta/metabolism , Transgenes
9.
Mol Pharm ; 19(8): 2854-2867, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35801946

ABSTRACT

This paper treats the drug release process as a phase-field problem and a phase-field model capable of simulating the dynamics of multiple moving fronts, transient drug fluxes, and fractional drug release from swellable polymeric systems is proposed and validated experimentally. The model can not only capture accurately the positions and movements of the distinct fronts without tracking the locations of fronts explicitly but also predict well the release profile to the completion of the release process. The parametric study has shown that parameters including water diffusion coefficient, drug saturation solubility, drug diffusion coefficient, initial drug loading ratio, and initial porosity are critical in regulating the drug release kinetics. It has been also demonstrated that the model can be applied to the study of swellable filaments and has wide applicability for different materials. Due to explicit boundary position tracking being eliminated, the model paves the way for practical use and can be extended for dealing with geometrically complex drug delivery systems. It is a useful tool to guide the design of new controlled delivery systems fabricated by fused filament fabrication.


Subject(s)
Polymers , Water , Drug Liberation , Kinetics , Pharmaceutical Preparations , Solubility , Tablets
10.
Langmuir ; 37(17): 5290-5298, 2021 May 04.
Article in English | MEDLINE | ID: mdl-33891427

ABSTRACT

In this work, we investigate the crystallization of droplets formed on micropatterned surfaces. By solvent exchange in a microchamber, a ternary solution consisting of a model compound ß-alanine, water, and isopropanol was displaced by a flow of isopropanol. In the process, oiling-out droplets formed and crystallized. Our results showed that the shape and size of the crystals on surfaces with chemical micropatterns could be simply mediated by the flow conditions of solvent exchange. More uniform crystals formed on hydrophilic microdomains compared to hydrophobic microdomains or homogeneous surfaces. Varying flow rates or channel heights led to the formation of thin films with microholes, connected networks of crystals, or small diamond-shaped crystals. Physical microstructures (represented by microlenses) on the surface allowed the easy detachment of crystals from the surface. Beyond oiling-out crystallization, we demonstrated that the crystal formation of another solute dissolved in the droplets could be triggered by solvent exchange. The length of crystal fibers after the solvent-exchange process was shorter at a faster flow rate. This study may provide further understanding to effectively obtain the crystallization of surface droplets through the solvent-exchange approach.

11.
J Comput Aided Mol Des ; 35(1): 117-129, 2021 01.
Article in English | MEDLINE | ID: mdl-33037549

ABSTRACT

The prediction of host-guest binding affinities with computational modelling is still a challenging task. In the 7th statistical assessment of the modeling of proteins and ligands (SAMPL) challenge, a new host named TrimerTrip was synthesized and the thermodynamic parameters of 16 structurally diverse guests binding to the host were characterized. In the TrimerTrip-guest challenge, only structures of the host and the guests are provided, which indicates that the predictions of both the binding poses and the binding affinities are under assessment. In this work, starting from the binding poses obtained from our previous enhanced sampling simulations in the configurational space, we perform extensive alchemical and end-point free energy calculations to calculate the host-guest binding affinities retrospectively. The alchemical predictions with two widely accepted charge schemes (i.e. AM1-BCC and RESP) are in good agreement with the experimental reference, while the end-point estimates perform poorly in reproducing the experimental binding affinities. Aside from the absolute value of the binding affinity, the rank of binding free energies is also crucial in drug design. Surprisingly, the end-point MM/PBSA method seems very powerful in reproducing the experimental rank of binding affinities. Although the length of our simulations is long and the intermediate spacing is dense, the convergence behavior is not very good, which may arise from the flexibility of the host molecule. Enhanced sampling techniques in the configurational space may be required to obtain fully converged sampling. Further, as the length of sampling in alchemical free energy calculations already achieves several hundred ns, performing direct simulations of the binding/unbinding event in the physical space could be more useful and insightful. More details about the binding pathway and mechanism could be obtained in this way. The nonequilibrium method could also be a nice choice if one insists to use the alchemical method, as the intermediate sampling is avoided to some extent.


Subject(s)
Anthracenes/metabolism , Imidazoles/metabolism , Proteins/metabolism , Thermodynamics , Anthracenes/chemistry , Drug Design , Entropy , Humans , Imidazoles/chemistry , Ligands , Molecular Dynamics Simulation , Protein Binding , Proteins/chemistry , Retrospective Studies
12.
J Comput Aided Mol Des ; 35(5): 643-656, 2021 05.
Article in English | MEDLINE | ID: mdl-33759016

ABSTRACT

Human purine nucleoside phosphorylase (hPNP) plays a significant role in the catabolism of deoxyguanosine. The trimeric protein is an important target in the treatment of T-cell cancers and autoimmune disorders. Experimental studies on the inhibition of the hPNP observe that the first ligand bound to one of three subunits effectively inhibits the protein, while the binding of more ligands to the subsequent sites shows negative cooperativities. In this work, we performed extensive end-point and alchemical free energy calculations to determine the binding thermodynamics of the trimeric protein-ligand system. 13 Immucillin inhibitors with experimental results are under calculation. Two widely accepted charge schemes for small molecules including AM1-BCC and RESP are adopted for ligands. The results of RESP are in better agreement with the experimental reference. Further investigations of the interaction networks in the protein-ligand complexes reveal that several residues play significant roles in stabilizing the complex structure. The most commonly observed ones include PHE200, GLU201, MET219, and ASN243. The conformations of the protein in different protein-ligand complexes are observed to be similar. We expect these insights to aid the development of potent drugs targeting hPNP.


Subject(s)
Enzyme Inhibitors/pharmacology , Purine-Nucleoside Phosphorylase/antagonists & inhibitors , Binding Sites , Enzyme Inhibitors/chemistry , Humans , Ligands , Molecular Docking Simulation , Purine-Nucleoside Phosphorylase/chemistry , Purine-Nucleoside Phosphorylase/metabolism , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Thermodynamics
13.
Nature ; 523(7562): 561-7, 2015 Jul 30.
Article in English | MEDLINE | ID: mdl-26200343

ABSTRACT

G-protein-coupled receptors (GPCRs) signal primarily through G proteins or arrestins. Arrestin binding to GPCRs blocks G protein interaction and redirects signalling to numerous G-protein-independent pathways. Here we report the crystal structure of a constitutively active form of human rhodopsin bound to a pre-activated form of the mouse visual arrestin, determined by serial femtosecond X-ray laser crystallography. Together with extensive biochemical and mutagenesis data, the structure reveals an overall architecture of the rhodopsin-arrestin assembly in which rhodopsin uses distinct structural elements, including transmembrane helix 7 and helix 8, to recruit arrestin. Correspondingly, arrestin adopts the pre-activated conformation, with a ∼20° rotation between the amino and carboxy domains, which opens up a cleft in arrestin to accommodate a short helix formed by the second intracellular loop of rhodopsin. This structure provides a basis for understanding GPCR-mediated arrestin-biased signalling and demonstrates the power of X-ray lasers for advancing the frontiers of structural biology.


Subject(s)
Arrestin/chemistry , Arrestin/metabolism , Rhodopsin/chemistry , Rhodopsin/metabolism , Animals , Binding Sites , Crystallography, X-Ray , Disulfides/chemistry , Disulfides/metabolism , Humans , Lasers , Mice , Models, Molecular , Multiprotein Complexes/biosynthesis , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Protein Binding , Reproducibility of Results , Signal Transduction , X-Rays
14.
Anaesthesist ; 70(10): 854-862, 2021 10.
Article in English | MEDLINE | ID: mdl-34003302

ABSTRACT

PURPOSE: Only few studies have analyzed the global distribution of anesthesia research. This study was designed to reveal the current global research status of anesthesiology. METHODS: Articles published between 1999 and 2018 in international journals in the field of anesthesiology were retrieved from the PubMed database. The top 20 ranked countries were identified. The gross domestic product (GDP) of each country was also retrieved to reveal the correlation between research outputs and the economy. The total outputs and outputs per 10 million inhabitants in each country were calculated and compared. To analyze the quality of publications among the top 10 ranked countries, the impact factor (IF), article influence score (AIS), and immediacy index (ImI) were calculated and analyzed. In addition, the keywords of publications were retrieved to conduct co-occurrence analysis in order to determine the research focus in anesthesiology. RESULTS: A total of 112,918 articles were published in 30 selected journals from 1999 to 2018. There was a positive correlation between research outputs and GDP of 10 countries (p < 0.001, r = 0.825). The USA ranked 1st with 21,703 articles, followed by the UK (8393 articles) and Germany (6504 articles). Canada had the highest number of publications per 10 million inhabitants in 2018. The UK had the highest average IF (4.70), average AIS (1.16), and average ImI (1.64) among the 10 countries. The research highlights in the field of anesthesiology included "mechanism and management of pain", "cardiac anesthesia", "pediatric anesthesia and airway management", "analgesia" and "anesthetic agents". CONCLUSION: Regarding quantity trend, the output of global production in anesthesiology increased continuously as the number of articles from the high-output countries showed an increasing trend; however, there was still a gap between developing and developed countries in research quality. High-quality research should be encouraged in developing countries.


Subject(s)
Anesthesia , Anesthesiology , Bibliometrics , Child , Germany , Humans
15.
J Gastroenterol Hepatol ; 35(2): 343-352, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31318997

ABSTRACT

BACKGROUND AND AIM: Diabetes mellitus (DM) is a common complication of idiopathic chronic pancreatitis (ICP), which impairs the quality of life for patients. This study aimed to identify risk factors and develop nomogram for DM in ICP to help early diagnosis. METHODS: Idiopathic chronic pancreatitis patients admitted to our center from January 2000 to December 2013 were included. Cumulative rates of DM were calculated by Kaplan-Meier method. Patients were randomly assigned, in a 2:1 ratio, to the training and validation cohort. Based on training cohort, risk factors for DM were identified through Cox proportional hazards regression model, and nomogram was developed. Internal and external validations were performed based on the training and validation cohort, respectively. RESULTS: Totally, 1633 patients with ICP were finally enrolled. The median follow-up duration was 9.8 years. DM was found in 26.3% (430/1633) of patients after the onset of CP. Adult at onset of ICP, biliary stricture at/before diagnosis of CP, steatorrhea at/before diagnosis of CP, and complex pathologic changes in main pancreatic duct were identified risk factors for DM development. The nomogram achieved good concordance indexes in the training and validation cohorts, respectively, with well-fitted calibration curves. CONCLUSIONS: Risk factors were identified, and nomogram was developed to determine the risk of DM in ICP patients. Patients with one or more of the risk factors including adult at onset of ICP, biliary stricture at/before diagnosis of CP, steatorrhea at/before diagnosis of CP, and complex pathologic changes in main pancreatic duct have higher incidence of DM.


Subject(s)
Diabetes Mellitus/etiology , Nomograms , Pancreatitis, Chronic/complications , Age of Onset , Bile Ducts/pathology , Constriction, Pathologic , Humans , Pancreatic Ducts/pathology , Risk Factors , Steatorrhea
16.
Nature ; 509(7498): 119-22, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24784220

ABSTRACT

The P2Y12 receptor (P2Y12R), one of eight members of the P2YR family expressed in humans, is one of the most prominent clinical drug targets for inhibition of platelet aggregation. Although mutagenesis and modelling studies of the P2Y12R provided useful insights into ligand binding, the agonist and antagonist recognition and function at the P2Y12R remain poorly understood at the molecular level. Here we report the structures of the human P2Y12R in complex with the full agonist 2-methylthio-adenosine-5'-diphosphate (2MeSADP, a close analogue of endogenous agonist ADP) at 2.5 Šresolution, and the corresponding ATP derivative 2-methylthio-adenosine-5'-triphosphate (2MeSATP) at 3.1 Šresolution. These structures, together with the structure of the P2Y12R with antagonist ethyl 6-(4-((benzylsulfonyl)carbamoyl)piperidin-1-yl)-5-cyano-2-methylnicotinate (AZD1283), reveal striking conformational changes between nucleotide and non-nucleotide ligand complexes in the extracellular regions. Further analysis of these changes provides insight into a distinct ligand binding landscape in the δ-group of class A G-protein-coupled receptors (GPCRs). Agonist and non-nucleotide antagonist adopt different orientations in the P2Y12R, with only partially overlapped binding pockets. The agonist-bound P2Y12R structure answers long-standing questions surrounding P2Y12R-agonist recognition, and reveals interactions with several residues that had not been reported to be involved in agonist binding. As a first example, to our knowledge, of a GPCR in which agonist access to the binding pocket requires large-scale rearrangements in the highly malleable extracellular region, the structural and docking studies will therefore provide invaluable insight into the pharmacology and mechanisms of action of agonists and different classes of antagonists for the P2Y12R and potentially for other closely related P2YRs.


Subject(s)
Adenosine Diphosphate/analogs & derivatives , Adenosine Triphosphate/analogs & derivatives , Purinergic P2Y Receptor Agonists/chemistry , Receptors, Purinergic P2Y12/chemistry , Thionucleotides/chemistry , Adenosine Diphosphate/chemistry , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Binding Sites , Crystallography, X-Ray , Humans , Ligands , Models, Molecular , Niacin/analogs & derivatives , Niacin/chemistry , Niacin/metabolism , Protein Conformation , Purinergic P2Y Receptor Agonists/metabolism , Purinergic P2Y Receptor Antagonists/chemistry , Purinergic P2Y Receptor Antagonists/metabolism , Receptors, Purinergic P2Y12/metabolism , Substrate Specificity , Sulfonamides/chemistry , Sulfonamides/metabolism , Thionucleotides/metabolism
17.
Nature ; 509(7498): 115-8, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24670650

ABSTRACT

P2Y receptors (P2YRs), a family of purinergic G-protein-coupled receptors (GPCRs), are activated by extracellular nucleotides. There are a total of eight distinct functional P2YRs expressed in human, which are subdivided into P2Y1-like receptors and P2Y12-like receptors. Their ligands are generally charged molecules with relatively low bioavailability and stability in vivo, which limits our understanding of this receptor family. P2Y12R regulates platelet activation and thrombus formation, and several antithrombotic drugs targeting P2Y12R--including the prodrugs clopidogrel (Plavix) and prasugrel (Effient) that are metabolized and bind covalently, and the nucleoside analogue ticagrelor (Brilinta) that acts directly on the receptor--have been approved for the prevention of stroke and myocardial infarction. However, limitations of these drugs (for example, a very long half-life of clopidogrel action and a characteristic adverse effect profile of ticagrelor) suggest that there is an unfulfilled medical need for developing a new generation of P2Y12R inhibitors. Here we report the 2.6 Å resolution crystal structure of human P2Y12R in complex with a non-nucleotide reversible antagonist, AZD1283. The structure reveals a distinct straight conformation of helix V, which sets P2Y12R apart from all other known class A GPCR structures. With AZD1283 bound, the highly conserved disulphide bridge in GPCRs between helix III and extracellular loop 2 is not observed and appears to be dynamic. Along with the details of the AZD1283-binding site, analysis of the extracellular interface reveals an adjacent ligand-binding region and suggests that both pockets could be required for dinucleotide binding. The structure provides essential insights for the development of improved P2Y12R ligands and allosteric modulators as drug candidates.


Subject(s)
Fibrinolytic Agents/chemistry , Niacin/analogs & derivatives , Receptors, Purinergic P2Y12/chemistry , Sulfonamides/chemistry , Binding Sites , Crystallography, X-Ray , Disulfides/metabolism , Humans , Ligands , Models, Molecular , Molecular Docking Simulation , Niacin/chemistry , Niacin/metabolism , Protein Conformation , Purinergic P2Y Receptor Antagonists/chemistry , Purinergic P2Y Receptor Antagonists/metabolism , Receptors, Purinergic P2Y12/metabolism , Sulfonamides/metabolism
18.
Mol Pharmacol ; 96(1): 26-35, 2019 07.
Article in English | MEDLINE | ID: mdl-31015283

ABSTRACT

The TASK-3 channel is a member of the K2P family that is important for the maintenance of the resting membrane potential. Previous studies have demonstrated that the TASK-3 channel is involved in several physiologic and pathologic processes, including sleep/wake control, cognition, and epilepsy. However, there is still a lack of selective pharmacological tools for TASK-3, which limits further research on channel function. In this work, using a high-throughput screen, we discovered that N-(2-((4-nitro-2-(trifluoromethyl)phenyl)amino)ethyl)benzamide (NPBA) showed excellent potency and selectivity as a novel TASK-3 activator. The molecular determinants of NPBA activation were then investigated by combining chimera and mutagenesis analysis. Two distant clusters of residues located at the extracellular end of the second transmembrane domain (A105 and A108) and the intracellular end of the third transmembrane domain (E157) were found to be critical for NPBA activation. We then compared the essentials of the actions of NPBA with inhalation anesthetics that nonselectively activate TASK-3 and found that they may activate TASK-3 channels through different mechanisms. Finally, we transplanted the three residues A105, A108, and E157 into the TASK-1 channel, which resists NPBA activation, and the constructed mutant TASK-1(G105A, V108A, A157E) showed dramatically increased activation by NPBA, confirming the importance of these two distant clusters of residues. SIGNIFICANCE STATEMENT: TASK-3 channels conduct potassium and are involved in various physiological and pathological processes. However, the lack of selective modulators has hindered efforts to increase our understanding of the physiological roles of TASK-3 channels. By using a high-throughput screen, we identified NPBA as a potent and selective TASK-3 activator, and we show that NPBA is a more potent activator than terbinafine, the only reported TASK-3 selective activator to date. We also show here that NPBA has outstanding selectivity for TAS-3 channels. These characteristics make NPBA a promising pharmacological probe for research focused on defining TASK-3 channel function(s). In addition, we identified two distant clusters of residues as determinants of NPBA activation providing new molecular clues for the understanding of the gating mechanism of K2P channels.


Subject(s)
Benzamides/pharmacology , Potassium Channels, Tandem Pore Domain/chemistry , Potassium Channels, Tandem Pore Domain/metabolism , Small Molecule Libraries/pharmacology , Amino Acid Motifs , Anesthetics, Inhalation/pharmacology , Animals , Benzamides/chemistry , Binding Sites , CHO Cells , Cricetulus , Drug Evaluation, Preclinical , High-Throughput Screening Assays , Humans , Membrane Potentials/drug effects , Models, Molecular , Patch-Clamp Techniques , Point Mutation , Potassium Channels, Tandem Pore Domain/genetics , Small Molecule Libraries/chemistry
19.
Ann Bot ; 124(6): 1053-1066, 2019 11 27.
Article in English | MEDLINE | ID: mdl-31181150

ABSTRACT

BACKGROUND AND AIMS: Adventitious root (AR) formation in Petunia hybrida is inhibited by low nitrogen fertilization of stock plants but promoted by dark incubation of cuttings before planting. We investigated whether the plant hormone auxin is involved in nitrogen- and dark-mediated AR formation. METHODS: Concentrations of indole-3-acetic acid (IAA) and RNA accumulation of genes controlling auxin homeostasis and function were monitored in the stem base in response to high versus low nitrogen supply to stock plants and to temporal dark vs. light exposure of cuttings by use of GC-MS/MS, a petunia-specific microarray and quantitative RT-PCR. Auxin source capacity, polar auxin transport in cuttings and auxin concentration in the rooting zone were manipulated to investigate the functional contribution of auxin homeostasis and response to the effects of nitrogen fertilization and dark exposure on rooting. KEY RESULTS: The nitrogen content of cuttings had only a marginal effect on IAA concentration in the stem base. Dark incubation enhanced the accumulation of IAA in the stem base during AR induction independent of nitrogen level. Early IAA accumulation in the dark depended on the upper shoot as an auxin source and was enhanced after apical IAA supply. Dark exposure stimulated RNA accumulation of auxin-related genes. In particular, expression of Ph-PIN1 and of genes controlling auxin signalling, including Ph-IAA14, Ph-ARF8, Ph-ARF10 and Ph-SAUR14, was enhanced, while the latter four were repressed in nitrogen-limited cuttings, particularly in the dark. Dark stimulation of rooting depended on polar auxin transport. Basal auxin application partially substituted the effect of dark exposure on rooting, whereas the auxin response of AR formation was strongly depressed by nitrogen limitation. CONCLUSIONS: Increased auxin delivery from the upper shoot and enhanced auxin signalling in the stem base contribute to dark-stimulated AR formation, while nitrogen limitation inhibits AR formation downstream of the auxin signal.


Subject(s)
Petunia , Homeostasis , Indoleacetic Acids , Nitrogen , Plant Roots , Tandem Mass Spectrometry
20.
Biochemistry ; 57(32): 4767-4775, 2018 08 14.
Article in English | MEDLINE | ID: mdl-29999306

ABSTRACT

G protein-coupled receptors (GPCRs) make up the largest family of drug targets. The second extracellular loop (ECL2) and extracellular end of the third transmembrane helix (TM3) are basic structural elements of the GPCR ligand binding site. Currently, the disulfide bond between the two conserved cysteines in the ECL2 and TM3 is considered to be a basic GPCR structural feature. This disulfide bond has a significant effect on receptor dynamics and ligand binding. Here, molecular dynamics simulations and experimental results show that the two cysteines are distant from one another in the highest-population conformational state of ligand-free class A GPCRs and do not form a disulfide bond, indicating that the dynamics of the GPCR extracellular side are different from our conventional understanding. These surprising dynamics should have important effects on the drug binding process. On the basis of the two distinct ligand-free states, we suggest two kinetic processes for binding of ligands to GPCRs. These results challenge our commonly held beliefs regarding both GPCR structural features and ligand binding.


Subject(s)
Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism , Disulfides/chemistry , Humans , Molecular Dynamics Simulation , Protein Binding , Protein Structure, Secondary
SELECTION OF CITATIONS
SEARCH DETAIL