Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 244
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nat Immunol ; 14(8): 793-803, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23832071

ABSTRACT

The cell-to-cell transmission of viral resistance is a potential mechanism for amplifying the interferon-induced antiviral response. In this study, we report that interferon-α (IFN-α) induced the transfer of resistance to hepatitis B virus (HBV) from nonpermissive liver nonparenchymal cells (LNPCs) to permissive hepatocytes via exosomes. Exosomes from IFN-α-treated LNPCs were rich in molecules with antiviral activity. Moreover, exosomes from LNPCs were internalized by hepatocytes, which mediated the intercellular transfer of antiviral molecules. Finally, we found that exosomes also contributed to the antiviral response of IFN-α to mouse hepatitis virus A59 and adenovirus in mice. Thus, we propose an antiviral mechanism of IFN-α activity that involves the induction and intercellular transfer of antiviral molecules via exosomes.


Subject(s)
Exosomes/virology , Hepatitis B virus/immunology , Hepatitis B/immunology , Interferon-alpha/pharmacology , Liver/virology , Animals , Exosomes/immunology , Hep G2 Cells , Hepatitis B/drug therapy , Humans , Immunoblotting , Liver/immunology , Mice , Signal Transduction/immunology , Virus Replication/immunology
2.
Lancet Oncol ; 25(8): 1092-1102, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39068945

ABSTRACT

BACKGROUND: Empirical chemotherapy remains the standard of care in patients with unfavourable cancer of unknown primary (CUP). Gene-expression profiling assays have been developed to identify the tissue of origin in patients with CUP; however, their clinical benefit has not yet been demonstrated. We aimed to evaluate the efficacy and safety of site-specific therapy directed by a 90-gene expression assay compared with empirical chemotherapy in patients with CUP. METHODS: This randomised controlled trial was conducted at Fudan University Shanghai Cancer Center (Shanghai, China). We enrolled patients aged 18-75 years, with previously untreated CUP (histologically confirmed metastatic adenocarcinoma, squamous cell carcinoma, poorly differentiated carcinoma, or poorly differentiated neoplasms) and an Eastern Cooperative Oncology Group (ECOG) performance status of 0-2, who were not amenable to local radical treatment. Patients were randomly assigned (1:1) by the Pocock and Simon minimisation method to receive either site-specific therapy or empirical chemotherapy (taxane [175 mg/m2 by intravenous infusion on day 1] plus platinum [cisplatin 75 mg/m2 or carboplatin area under the curve 5 by intravenous infusion on day 1], or gemcitabine [1000 mg/m2 by intravenous infusion on days 1 and 8] plus platinum [same as above]). The minimisation factors were ECOG performance status and the extent of the disease. Clinicians and patients were not masked to interventions. The tumour origin in the site-specific therapy group was predicted by the 90-gene expression assay and treatments were administered accordingly. The primary endpoint was progression-free survival in the intention-to-treat population. The trial has been completed and the analysis is final. This study is registered with ClinicalTrials.gov (NCT03278600). FINDINGS: Between Sept 18, 2017, and March 18, 2021, 182 patients (105 [58%] male, 77 [42%] female) were randomly assigned to receive site-specific therapy (n=91) or empirical chemotherapy (n=91). The five most commonly predicted tissues of origin in the site-specific therapy group were gastro-oesophagus (14 [15%]), lung (12 [13%]), ovary (11 [12%]), cervix (11 [12%]), and breast (nine [10%]). At the data cutoff date (April 30, 2023), median follow-up was 33·3 months (IQR 30·4-51·0) for the site-specific therapy group and 30·9 months (27·6-35·5) for the empirical chemotherapy group. Median progression-free survival was significantly longer with site-specific therapy than with empirical chemotherapy (9·6 months [95% CI 8·4-11·9] vs 6·6 months [5·5-7·9]; unadjusted hazard ratio 0·68 [95% CI 0·49-0·93]; p=0·017). Among the 167 patients who started planned treatment, 46 (56%) of 82 patients in the site-specific therapy group and 52 (61%) of 85 patients in the empirical chemotherapy group had grade 3 or worse treatment-related adverse events; the most frequent of these in the site-specific therapy and empirical chemotherapy groups were decreased neutrophil count (36 [44%] vs 42 [49%]), decreased white blood cell count (17 [21%] vs 26 [31%]), and anaemia (ten [12%] vs nine [11%]). Treatment-related serious adverse events were reported in five (6%) patients in the site-specific therapy group and two (2%) in the empirical chemotherapy group. No treatment-related deaths were observed. INTERPRETATION: This single-centre randomised trial showed that site-specific therapy guided by the 90-gene expression assay could improve progression-free survival compared with empirical chemotherapy among patients with previously untreated CUP. Site-specific prediction by the 90-gene expression assay might provide more disease information and expand the therapeutic armamentarium in these patients. FUNDING: Clinical Research Plan of Shanghai Hospital Development Center, Program for Shanghai Outstanding Academic Leader, and Shanghai Anticancer Association SOAR PROJECT. TRANSLATION: For the Chinese translation of the abstract see Supplementary Materials section.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Neoplasms, Unknown Primary , Humans , Middle Aged , Male , Female , Neoplasms, Unknown Primary/drug therapy , Neoplasms, Unknown Primary/genetics , Neoplasms, Unknown Primary/pathology , Neoplasms, Unknown Primary/mortality , Aged , Adult , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Gemcitabine , Gene Expression Profiling , Deoxycytidine/analogs & derivatives , Deoxycytidine/administration & dosage , Deoxycytidine/therapeutic use , Cisplatin/administration & dosage , Cisplatin/therapeutic use , Carboplatin/administration & dosage , China , Taxoids/administration & dosage , Taxoids/therapeutic use , Young Adult , Adolescent
3.
Br J Cancer ; 130(6): 987-1000, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38253702

ABSTRACT

BACKGROUND: HPV-independent cervical cancers (HPV-ind CCs) are uncommon with worse prognosis and poorly understood. This study investigated the molecular characteristics of HPV-ind CCs, aiming to explore new strategies for HPV-ind CCs. METHODS: HPV status of 1010 cervical cancer patients were detected by RT-PCR, PCR and RNA-sequencing (RNA-seq). Whole exome sequencing (WES) and RNA-seq were performed in identified HPV-ind CCs. The efficacy of PI3Kα inhibitor BYL719 in HPV-ind CCs was evaluated in cell lines, patient-derived organoids (PDOs) and patient-derived xenografts (PDXs). RESULTS: Twenty-five CCs were identified as HPV-ind, which were more common seen in older, adenocarcinoma patients and exhibited poorer prognosis as well as higher tumor mutation burden compared to HPV-associated CCs. HPV-ind CCs were featured with highly activated PI3K/AKT signaling pathway, particularly, PIK3CA being the most predominant genomic alteration (36%). BYL719 demonstrated superior tumor suppression in vitro and in vivo. Furthermore, HPV-ind CCs were classified into two subtypes according to distinct prognosis by gene expression profiles, the metabolism subtype and immune subtype. CONCLUSIONS: This study reveals the prevalence, clinicopathology, and molecular features of HPV-ind CCs and emphasizes the importance of PIK3CA mutations and PI3K pathway activation in tumorigenesis, which suggests the potential significance of PI3Kα inhibitors in HPV-ind CC patients.


Subject(s)
Papillomavirus Infections , Thiazoles , Uterine Cervical Neoplasms , Female , Humans , Aged , Uterine Cervical Neoplasms/pathology , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Papillomavirus Infections/complications , Papillomavirus Infections/genetics , Signal Transduction/genetics , Genomics , Gene Expression Profiling , Mutation
4.
Plant Physiol ; 193(2): 1313-1329, 2023 09 22.
Article in English | MEDLINE | ID: mdl-37403190

ABSTRACT

Subgenome expression dominance plays a crucial role in the environmental adaptation of polyploids. However, the epigenetic molecular mechanism underlying this process has not been thoroughly investigated, particularly in perennial woody plants. Persian walnut (Juglans regia) and its wild relative, Manchurian walnut (Juglans mandshurica), are woody plants of great economic importance and are both paleopolyploids that have undergone whole-genome duplication events. In this study, we explored the characteristics of subgenome expression dominance in these 2 Juglans species and examined its epigenetic basis. We divided their genomes into dominant subgenome (DS) and submissive subgenome (SS) and found that the DS-specific genes might play critical roles in biotic stress response or pathogen defense. We comprehensively elucidated the characteristics of biased gene expression, asymmetric DNA methylation, transposable elements (TEs), and alternative splicing (AS) events of homoeologous gene pairs between subgenomes. The results showed that biased expression genes (BEGs) in 2 Juglans species were mainly related to external stimuli response, while non-BEGs were related to complexes that might be involved in signal transduction. DS genes had higher expression and more AS events while having less DNA methylation and TEs than homoeologous genes from the SS in the 2 Juglans species. Further studies showed that DNA methylation might contribute to the biased expression of gene pairs by modifying LTR/TIR/nonTIR TEs and improving the AS efficiency of corresponding precursor mRNAs in a particular context. Our study contributes to understanding the epigenetic basis of subgenome expression dominance and the environmental adaptation of perennial woody plants.


Subject(s)
DNA Methylation , Juglans , DNA Methylation/genetics , Genome, Plant/genetics , Juglans/genetics , Gene Expression Regulation, Plant , Epigenesis, Genetic
5.
BMC Cancer ; 24(1): 862, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39026198

ABSTRACT

OBJECTIVE: The International Federation of Gynecology and Obstetrics (FIGO) 2023 staging system for endometrial cancer (EC) was released with incorporating histology, lympho-vascular space invasion, and molecular classification together. Our objective is to further explore the clinical utility and prognostic significance of the 2023 FIGO staging system in China. METHODS: A retrospective analysis was conducted for patients who received standard surgeries and underwent genetic testing using multigene next-generation sequencing (NGS) panels between December 2018 and December 2023 at Fudan University Shanghai Cancer Center, Shanghai, China. The genomic and clinical data of all patients were analyzed, and stages were determined by both the 2009 and 2023 FIGO staging systems. Kaplan-Meier estimators and Cox proportional hazards models were used for survival analysis. RESULTS: A total of 547 patients were enrolled in the study. After the restaged by the FIGO 2023 staging system, stage shifts occurred in 147/547 (26.9%) patients. In patients with early stages in FIGO 2009 (stage I-II), 63 cases were rearranged to IAmPOLEmut and 53 cases to IICmp53abn due to the molecular classification of POLEmut and p53abn. Altogether 345 cases were in stage I, 107 cases in stage II, 69 cases in stage III, and 26 cases in stage IV according to the FIGO 2023 staging criteria. For stage I diseases, the 3-year PFS rate was 92.7% and 95.3% in 2009 and 2023 FIGO staging systems, respectively. The 3-year PFS of stage II in 2023 FIGO was lower than that of FIGO 2009 (3-year PFS: 85.0% versus 90.9%), especially in substage IIC and IICmp53abn. Three cases (12%) of stage IIIA in FIGO 2009 were shifted to stage IA3 FIGO 2023, with 3-year PFS rates of 90.9% versus 100%, respectively. In NGS analysis, the most prevalent gene alterations were observed in PTEN and PIK3CA. CONCLUSION: The FIGO 2023 staging system was proved to be a good predictor of survival for EC patients with enhanced precision compared to FIGO 2009. Predominant stage shifts were observed in early-stage diseases. Distinct gene alterations of different subtypes may help to explore more accurate target therapies.


Subject(s)
Endometrial Neoplasms , Neoplasm Staging , Humans , Female , Endometrial Neoplasms/pathology , Endometrial Neoplasms/genetics , Endometrial Neoplasms/mortality , Middle Aged , Retrospective Studies , China/epidemiology , Aged , Adult , High-Throughput Nucleotide Sequencing , Prognosis , Aged, 80 and over , Kaplan-Meier Estimate , Mutation , East Asian People
6.
Phys Chem Chem Phys ; 26(19): 14205-14215, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38689538

ABSTRACT

Graphitic carbon nitride (g-C3N4 or GCN) shows promise in photocatalytic water splitting, despite facing the challenge of rapid electron-hole recombination. In this study, we investigated the influence of boron/oxygen codoping on the photocatalytic performance of GCN systems for hydrogen generation. First-principles calculations and nonadiabatic molecular dynamics (NAMD) simulations were employed to reveal that the recombination time of photogenerated carriers could be increased by 16% to 64% in the codoped systems compared to the pristine GCN. The time-dependent density functional theory (TDDFT) scheme was utilized to select energy windows and initiate dynamics in cluster models of B/O co-doped heptazine with water molecules. Notably, we observed efficient direct photodissociation of hydrogen atoms from water molecules within 60 fs and proton hops within the hydrogen-bonded network within 80 fs in the co-doped system, diverging from the previously proposed mechanism for pristine heptazine in NAMD simulations. This discovery underscores the significant role of faster proton-coupled electron transfer (PCET) reactions and rapid radiationless relaxation in achieving high photocatalytic efficiency in water splitting. Our work enhances the understanding of the internal mechanism of highly efficient photocatalysts for water splitting and provides a new design strategy for doped GCN.

7.
Nature ; 563(7733): 701-704, 2018 11.
Article in English | MEDLINE | ID: mdl-30429614

ABSTRACT

Human pluripotent cell lines hold enormous promise for the development of cell-based therapies. Safety, however, is a crucial prerequisite condition for clinical applications. Numerous groups have attempted to eliminate potentially harmful cells through the use of suicide genes1, but none has quantitatively defined the safety level of transplant therapies. Here, using genome-engineering strategies, we demonstrate the protection of a suicide system from inactivation in dividing cells. We created a transcriptional link between the suicide gene herpes simplex virus thymidine kinase (HSV-TK) and a cell-division gene (CDK1); this combination is designated the safe-cell system. Furthermore, we used a mathematical model to quantify the safety level of the cell therapy as a function of the number of cells that is needed for the therapy and the type of genome editing that is performed. Even with the highly conservative estimates described here, we anticipate that our solution will rapidly accelerate the entry of cell-based medicine into the clinic.


Subject(s)
CDC2 Protein Kinase/genetics , Cell Division/genetics , Cell- and Tissue-Based Therapy/methods , Genes, Transgenic, Suicide/genetics , Patient Safety , Animals , Cell Proliferation , Cell- and Tissue-Based Therapy/standards , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Female , Ganciclovir/pharmacology , Humans , Male , Mice , Mice, Inbred C57BL , Simplexvirus/enzymology , Simplexvirus/genetics , Thymidine Kinase/genetics , Thymidine Kinase/metabolism
8.
Article in English | MEDLINE | ID: mdl-39038327

ABSTRACT

Objective: To systematically comparison of the relative effects of different types and times of physical activity on cognitive function among children with obesity or overweight. Methods: From the establishment of the database to September 2023, the relative effects of different types and times of physical activity on cognitive function among children with obesity or overweight published in Embase, PubMed, Cochrane Library, Web of Science, China Wanfang, HowNet, Chinese Biomedical Literature, and VIP were retrieved. A study of marker correlations. Literature were screened according to the inclusion and exclusion criteria, and relevant data were extracted for meta-analysis using Review Manager 5.3 software. Results: A total of 352 articles were obtained from the preliminary search, and 16 articles were finally included in the study. Meta-analysis revealed that physical activity improved executive function (SMD =-0.12; 95% CI = -0.46-0.22; I2=80.5%, P < .001), inhibition control (SMD =0.54; 95% CI =0.12-0.97, P < .0001, I2=89.9%), attention (SMD =0.04; 95% CI =-0.17, -0.26, P = .006, I2=59.4%), and cognitive function (SMD =-0.08; 95% CI =-0.79, 0.63, P < .0001, I2=96.4%). Conclusion: Physical activity can improve several domains of executive function, inhibition control, attention, and cognitive function. Moreover, the effects are affected by physical activity characteristics among overweight and obese children.

9.
J Dairy Sci ; 107(6): 3400-3412, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38135045

ABSTRACT

Hypothyroidism has been found to have an effect on the nutritional composition of human milk during pregnancy. This study aims to explore the combined influence of rheological properties, macronutrient content, particle size, and the zeta potential of milk fat globules, as well as the composition of milk fat globule membrane (MFGM) proteins on the quality of human milk in gestational hypothyroidism. The study revealed that human milk from the group with hypothyroidism during pregnancy (AHM) was less viscoelastic and stable when compared with normal pregnancy group human milk (NHM). Furthermore, the particle size and macronutrient content of NHM were found to be larger than that of AHM. In contrast, the zeta potential of AHM was greater than that of NHM. The sodium dodecyl sulfate-PAGE results disclosed that the composition of MFGM proteins in these 2 groups were generally the same, but the content of AHM was lower than that of NHM. In conclusion, this study confirms that hypothyroidism during pregnancy can have a significant effect on the quality of human milk.


Subject(s)
Hypothyroidism , Milk, Human , Rheology , Female , Humans , Pregnancy , Milk, Human/chemistry , Hypothyroidism/veterinary , Glycolipids
10.
Compr Rev Food Sci Food Saf ; 23(1): e13264, 2024 01.
Article in English | MEDLINE | ID: mdl-38284582

ABSTRACT

Staphylococcal enterotoxins (SEs), the major virulence factors of Staphylococcus aureus, cause a wide range of food poisoning and seriously threaten human health by infiltrating the food supply chain at different phases of manufacture, processes, distribution, and market. The significant prevalence of Staphylococcus aureus calls for efficient, fast, and sensitive methods for the early detection of SEs. Here, we provide a comprehensive review of the hazards of SEs in contaminated food, the characteristic and worldwide regulations of SEs, and various detection methods for SEs with extensive comparison and discussion of benefits and drawbacks, mainly including biological detection, genetic detection, and mass spectrometry detection and biosensors. We highlight the biosensors for the screening purpose of SEs, which are classified according to different recognition elements such as antibodies, aptamers, molecularly imprinted polymers, T-cell receptors, and transducers such as optical, electrochemical, and piezoelectric biosensors. We analyzed challenges of biosensors for the monitoring of SEs and conclude the trends for the development of novel biosensors should pay attention to improve samples pretreatment efficiency, employ innovative nanomaterials, and develop portable instruments. This review provides new information and insightful commentary, important to the development and innovation of further detection methods for SEs in food samples.


Subject(s)
Foodborne Diseases , Staphylococcal Food Poisoning , Humans , Staphylococcus aureus/genetics , Staphylococcal Food Poisoning/diagnosis , Staphylococcal Food Poisoning/epidemiology , Enterotoxins/analysis , Mass Spectrometry
11.
Immunology ; 170(3): 419-438, 2023 11.
Article in English | MEDLINE | ID: mdl-37469254

ABSTRACT

Targeting programmed death 1(PD-1) has been approved for relapsed cervical cancer with unsatisfactory clinical efficacy. This study aims to analyse the impact of PI3K pathway activation on tumour immune microenvironment and evaluates the immune sensitization effect by PI3K inhibition in cervical cancer. The effect of PIK3CA mutation on PD-L1 expression and CD8+ T cells differentiation was determined in cervical cancer tissues. Luciferase and ChIP-qPCR/PCR assays were used to determine the transcriptional regulation of PD-L1 by PIK3CA-E545K. The effects of PI3K inhibitor treatment on immune environment in vitro and in vivo were evaluated by RNA sequencing (RNA-seq) and flow cytometry. The efficacy of PI3K inhibitor and anti-PD-1 therapy was assessed in cell-derived xenografts (CDX) and patients-derived xenografts (PDX). PD-L1 overexpression is more frequently observed in elder women with squamous cervical carcinoma. It predicts longer progress-free survival and overall survival. PIK3CA mutation results in increased mRNA and protein levels of PD-L1, the repression of CD8+ T cell differentiation in cervical cancer. Here, we report a case that continuous pembrolizumab monotherapy treatment induced complete remission of a recurrent cervical cancer patient with systemic metastasis and PIK3CA-E545K mutation, implying that PIK3CA mutation is potentially a biomarker for pembrolizumab treatment in cervical cancer. Specifically, this mutation promotes the expression of PD-L1 by upregulating the transcription factor IRF1. PI3Kα-specific inhibitor markedly activates immune microenvironment by regulating the PD-1/L1-related pathways and promoting CD8+ T cell differentiation and proliferation in Caski-CDXs with PIK3CA-E545K mutation. PI3Kα inhibitor significantly enhances the anti-tumour efficacy of PD-1 blockade in CDXs and PDXs. PIK3CA mutations may predict the response of cervical cancer to PD-1 blockade. The efficacy of PI3Kα inhibitors combined with PD-1 antibodies is promising in cervical cancer and warrants additional clinical and mechanistic investigations.


Subject(s)
Uterine Cervical Neoplasms , Humans , Female , Aged , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/genetics , B7-H1 Antigen , Programmed Cell Death 1 Receptor/metabolism , Phosphatidylinositol 3-Kinases , Class I Phosphatidylinositol 3-Kinases/genetics , Class I Phosphatidylinositol 3-Kinases/metabolism , Tumor Microenvironment
12.
Parasitology ; 150(2): 195-205, 2023 02.
Article in English | MEDLINE | ID: mdl-36482713

ABSTRACT

Ticks are a group of blood-sucking ectoparasites that play an important role in human health and livestock production development as vectors of zoonotic diseases. The phylogenetic tree of single genes cannot accurately reflect the true kinship between species. Based on the complete mitochondrial genome analysis one can help to elucidate the phylogenetic relationships among species. In this study, the complete mitochondrial genome of Dermacentor steini (isolate Longyan) was sequenced and compared with the mitochondrial genes of 3 other Chinese isolates (Nanchang, Jinhua and Yingtan). In Dermacentor steini 4 isolates had identical or similar mitochondrial genome lengths and an overall variation of 0.76% between sequences. All nucleotide compositions showed a distinct AT preference. The most common initiation and stop codons were ATG and TAA, respectively. Fewer base mismatches were found in the tRNA gene of D. steini (isolate Longyan), and the vicinity of the control region and tRNA gene was a hot rearrangement region of the genus Dermacentor. Maximum likelihood trees and Bayesian trees indicate that D. steini is most closely related to Dermacentor auratus. The results enrich the mitochondrial genomic data of species in the genus Dermacentor and provide novel insights for further studies on the phylogeographic classification and molecular evolution of ticks.


Subject(s)
Dermacentor , Genome, Mitochondrial , Animals , Humans , Phylogeny , DNA, Mitochondrial/genetics , Dermacentor/genetics , Bayes Theorem , RNA, Transfer/genetics
13.
Parasitology ; 150(7): 623-630, 2023 06.
Article in English | MEDLINE | ID: mdl-36971298

ABSTRACT

In recent years, bat-associated pathogens, such as 2019 novel coronavirus, have been ravaging the world, and ectoparasites of bats have received increasing attention. Penicillidia jenynsii is a member of the family Nycteribiidae which is a group of specialized ectoparasites of bats. In this study, the complete mitochondrial genome of P. jenynsii was sequenced for the first time and a comprehensive phylogenetic analysis of the superfamily Hippoboscoidea was conducted. The complete mitochondrial genome of P. jenynsii is 16 165 base pairs (bp) in size, including 13 protein-coding genes (PCGs), 22 transfer RNA genes, 2 ribosomal RNA genes and 1 control region. The phylogenetic analysis based on 13 PCGs of the superfamily Hippoboscoidea known from the NCBI supported the monophyly of the family Nycteribiidae, and the family Nycteribiidae was a sister group with the family Streblidae. This study not only provided molecular data for the identification of P. jenynsii, but also provided a reference for the phylogenetic analysis of the superfamily Hippoboscoidea.


Subject(s)
COVID-19 , Chiroptera , Diptera , Genome, Mitochondrial , Animals , Diptera/genetics , Phylogeny , Chiroptera/parasitology
14.
Parasitology ; 150(9): 821-830, 2023 08.
Article in English | MEDLINE | ID: mdl-37395062

ABSTRACT

In this study, the mitochondrial genome of Eulaelaps silvestris, which parasitizes Apodemus chevrieri, was sequenced and assembled to fill the gap in understanding the molecular evolution of the genus Eulaelaps. The E. silvestris mitochondrial genome is a double-stranded DNA molecule with a length of 14 882 bp, with a distinct AT preference for base composition and a notably higher AT content than GC content. The arrangement between genes is relatively compact, with a total of 10 gene intergenic regions and 12 gene overlap regions. All protein-coding genes had a typical ATN initiation codon, and only 2 protein-coding genes had an incomplete termination codon T. Out of the 13 protein-coding genes, the 5 most frequently used codons ended in A/U, with only 1 codon ending in G/C had an relative synonymous codon usage value >1. Except for trnS1 and trnS2, which lacked the D arm, all other tRNAs were able to form a typical cloverleaf structure; and there were a total of 38 mismatches in the folding process of tRNA genes. Unlike the gene arrangement order of the arthropod hypothetical ancestor, the E. silvestris mitochondrial genome underwent fewer rearrangements, mainly near tRNA genes and control regions. Both the maximum likelihood tree and the Bayesian tree showed that the family Haemogamasidae is most closely related to the family Dermanyssidae. The results not only provide a theoretical basis for studying the phylogenetic relationships of the genus Eulaelaps, but also provide molecular evidence that the family Haemogamasidae does not belong to the subfamily Laelapidae.


Subject(s)
Genome, Mitochondrial , Animals , Phylogeny , Bayes Theorem , Base Sequence , RNA, Transfer/genetics , Codon/genetics , RNA, Ribosomal/genetics
15.
Phys Chem Chem Phys ; 25(32): 21612-21630, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37551434

ABSTRACT

Fibrous aggregates of beta-amyloid (Aß) is a hallmark of Alzheimer's disease (AD). Several major strategies of drugs or inhibitors, including neutral molecules, positive or negative ions, and dual-inhibitor, are used to inhibit the misfolding or aggregation of Aß42, among which a kind of dual-inhibitor composed of a pair of positive and negative ions is emerging as the most powerful candidate. This knowledge lacks the origin of the strong inhibitory effect and synergy mechanisms blocking the development and application of such inhibitors. To this end, we employed 1 : 1 ionic pairs (IP) of oppositely charged benzothiazole molecules (+)BAM1-EG6 (Pos) and (-)BAM1-EG6 (Neg) as well as equimolar neutral BAM1-EG6 (Neu) counterpart at two pH conditions (5.5 and 7.0) to bind Aß42 targets, Aß42 monomer (AßM), soluble pentamer (AßP), and pentameric protofibril (AßF) models, respectively, corresponding to the products of three toxic Aß42 development pathways, lag, exponential and fibrillation phases. Simulated results illustrated the details of the inhibitory mechanisms of IP and Neu for the AßY (Y = M, P, or F) in the three different phases, characterizing the roles of Pos and Neg of IP as well as their charged, hydrophobic groups and linker playing in the synergistic interaction, and elucidated a previously unknown molecular mechanism governing the IP-Aß42 interaction. Most importantly, we first revealed the origin of the stronger binding of IP inhibitors to Aß42 than that of the equimolar neutral counterparts, observing a perplexing phenomenon that the physiological condition (pH = 7.0) than the acidic one (pH = 5.5) is more favorable to the enhancement of IP binding, and finally disclosed that solvation is responsible to the enhancement because at pH 7.0, AßP and AßF act as anionic membranes, where solvation plays a critical role in the chemoelectromechanics. The result not only provides a new dimension in dual-inhibitor/drug design and development but also a new perspective for uncovering charged protein disaggregation under IP-like inhibitors.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Humans , Amyloid beta-Peptides/chemistry , Peptide Fragments/chemistry , Alzheimer Disease/metabolism , Hydrogen-Ion Concentration , Molecular Dynamics Simulation
16.
Curr Microbiol ; 80(7): 218, 2023 May 19.
Article in English | MEDLINE | ID: mdl-37204530

ABSTRACT

Tobacco mildew and tobacco-specific nitrosamines (TSNAs) affect the quality of tobacco products during fermentation. Microbes are thought to play key roles in the development of specific properties of fermented tobacco; however, little is known about the bacteria involved in the fermentation process. This study aims to identify key microbes related to mildew and TSNA formation. Tobacco was fermented at 25 °C, 35 °C, and 45 °C for 2, 4, and 6 weeks, with unfermented samples used as controls. Our preliminary exploration found that TSNAs content elevated with the increase of temperature and period, and mildew was easy to occur at low temperature with short period. Hence, samples were divided into three groups: the temperature gradient group (25 °C, 35 °C, and 45 °C for 6 weeks); the low-temperature group (control, 25 °C for 2, 4, and 6 weeks); and the high-temperature group (control, 45 °C for 2, 4, and 6 weeks). After collecting fermented tobacco leaves, 16S rRNA gene sequencing was used to explore the structure and dynamic changes of bacterial community during fermentation. Methylobacterium and Deinococcus were shared between the temperature gradient and high-temperature groups and showed a linear downward trend; these might play a role in the production of TSNAs. Massilia, Ruminiclostridium, and Cellulosilyticum species increased with prolonged fermentation time in the low-temperature group; this might be associated with tobacco mildew. In summary, the microbial diversity of fermented tobacco was explored under different conditions. These findings might provide data and material support to improve the quality of fermented tobacco products; however, further omics based studies are warranted to analysis the gene and protein expression patter in the identified bacteria.


Subject(s)
Nitrosamines , Nitrosamines/analysis , Nicotiana/chemistry , Fermentation , RNA, Ribosomal, 16S/genetics , Bacteria/genetics
17.
Mikrochim Acta ; 190(5): 186, 2023 04 18.
Article in English | MEDLINE | ID: mdl-37071204

ABSTRACT

To meet high-throughput screening of the residues of sulfonamides (SAs) with high sensitivity toward sulfamethazine (SM2) in milk samples, a new highly sensitive lateral flow immunoassay (LFA) based on amorphous carbon nanoparticles (ACNs) was developed. First, a group-specific monoclonal antibody 10H7 (mAb 10H7) that could recognize 25 SAs with high sensitivity toward SM2 (IC50 value of 0.18 ng/mL) was prepared based on H1 as an immune hapten and H4 as a heterologous coating hapten. Then, mAb 10H7 was conjugated to ACNs as an immune probe for LFA development. Under the optimized conditions, the LFA could detect 25 SAs with the cut-off value toward SM2 of 2 ng/mL, which could meet the requirement for detection of SAs. In addition, the LFA developed was also used for screening SAs' residues in real milk samples, with results being consistent with HPLC-MS/MS. Thus, this LFA can be used as a high-throughput screening tool for detection of SAs.


Subject(s)
Antibodies, Monoclonal , Nanoparticles , Animals , Milk/chemistry , Sulfonamides/analysis , Tandem Mass Spectrometry , Immunoassay/methods , Sulfanilamide/analysis , Haptens , Carbon
18.
Int J Mol Sci ; 24(6)2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36982170

ABSTRACT

Peritoneal implantation and lymph node metastasis have different driving mechanisms in ovarian cancer. Elucidating the underlying mechanism of lymph node metastasis is important for treatment outcomes. A new cell line, FDOVL, was established from a metastatic lymph node of a patient with primary platinum-resistant ovarian cancer and was then characterized. The effect of NOTCH1-p.C702fs mutation and NOTCH1 inhibitor on migration was evaluated in vitro and in vivo. Ten paired primary sites and metastatic lymph nodes were analyzed by RNA sequencing. The FDOVL cell line with serious karyotype abnormalities could be stably passaged and could be used to generated xenografts. NOTCH1-p.C702fs mutation was found exclusively in the FDOVL cell line and the metastatic lymph node. The mutation promoted migration and invasion in cell and animal models, and these effects were markedly repressed by the NOTCH inhibitor LY3039478. RNA sequencing confirmed CSF3 as the downstream effector of NOTCH1 mutation. Furthermore, the mutation was significantly more common in metastatic lymph nodes than in other peritoneal metastases in 10 paired samples (60% vs. 20%). The study revealed that NOTCH1 mutation is probably a driver of lymph node metastasis in ovarian cancer, which offers new ideas for the treatment of ovarian cancer lymph node metastasis with NOTCH inhibitors.


Subject(s)
Ovarian Neoplasms , Female , Animals , Humans , Lymphatic Metastasis/pathology , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Carcinoma, Ovarian Epithelial/pathology , Lymph Nodes/pathology , Cell Line , Mutation , Receptor, Notch1/genetics , Receptor, Notch1/metabolism
19.
Exp Appl Acarol ; 90(3-4): 301-316, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37349609

ABSTRACT

Some mites of the family Haemogamasidae can transmit a variety of zoonotic diseases and have important public health and safety implications. Currently, however, little attention has been paid to molecular data of Haemogamasidae species, limiting our understanding of their evolutionary and phylogenetic relationships. In this study, the complete mitochondrial genome of Eulaelaps huzhuensis was determined for the first time, and its genomic information was analyzed in detail. The mitochondrial genome of E. huzhuensis is 14,872 bp in length with 37 genes and two control regions. The base composition showed a distinct AT preference. Twelve protein-coding genes have a typical ATN as the start codon, and three protein-coding genes have incomplete stop codons. During the folding of tRNA genes, a total of 30 mismatches occurred, and three tRNA genes had an atypical cloverleaf secondary structure. The order of the E. huzhuensis mitochondrial genome arrangement is a new type of rearrangement in Mesostigmata. The phylogenetic analysis confirmed that the family Haemogamasidae is a monophyletic branch and does not belong to a subfamily of the Laelapidae. Our results lay the foundation for subsequent studies on the phylogeny and evolutionary history of the family Haemogamasidae.


Subject(s)
Genome, Mitochondrial , Mites , Animals , RNA, Ribosomal/genetics , Phylogeny , Mites/genetics , RNA, Transfer/genetics
20.
J Sci Food Agric ; 103(5): 2473-2482, 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-36658470

ABSTRACT

BACKGROUND: Myosin is the most important component of myofibrillar protein, with excellent gelling properties. To date, heating treatment remains the mainstream method for forming gel in meat products, and it has the most extensive application in the field of meat industry. However, at present, there are few reports on the effects of heating rates on myosin self-assembly and aggregation behavior during heating treatment. RESULTS: The present study aimed to investigate the effects of different heating rates (1, 2, 3 and 5 °C min-1 ) on the self-assembly behavior, physicochemical, structural and gelling properties of myosin. At the lowest heating rate of 1 °C min-1 , the myosin gel had a dense microstructure, the highest elastic modulus (G') and water holding capacity compared to higher heating rates (2, 3 and 5 °C min-1 ). At higher temperatures (40, 45 °C), the surface hydrophobicity, turbidity, particle size distribution and self-assembly behavior of myosin in pre-gelling solutions showed that myosin had sufficient time to denature, underwent full structure unfolding before aggregation at the heating rate of 1°C min-1 , and formed regular and homogeneous spherical aggregates. Therefore, the myosin gel also had a better three-dimensional network. CONCLUSION: The heating rates had an important effect on the quality of myosin gels, and had theoretical implications for improving the quality of meat gel products. © 2023 Society of Chemical Industry.


Subject(s)
Heating , Myosins , Animals , Cattle , Myosins/chemistry , Hot Temperature , Hydrophobic and Hydrophilic Interactions , Gels/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL