Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
Small ; 20(12): e2307446, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37941471

ABSTRACT

The zinc dendrite growth generally relies upon a "positive-feedback" mode, where the fast-grown tips receive higher current densities and ion fluxes. In this study, a self-limiting polyacrylamide (PAM) hydrogel that presents negative feedback to dendrite growth is developed. The monomers are purposefully polymerized at the dendrite tips, then the hydrogel reduces the local current density and ion flux by limiting zinc ion diffusion with abundant functional groups. As a consequence, the accumulation at the dendrite tips is restricted, and the (002) facets-oriented deposition is achieved. Moreover, the refined porous structure of the gel enhances Coulombic Efficiency by reducing water activity. Due to the synergistic effects, the zinc anodes perform an ultralong lifetime of 5100 h at 0.5 mA cm-2 and 1500 h at 5 mA cm-2, which are among the best records for PAM-based gel electrolytes. Further, the hydrogel significantly prolongs the lifespan of zinc-ion batteries and capacitors by dozens of times. The developed in situ hydrogel presents a feasible and cost-effective way to commercialize zinc anodes and provides inspiration for future research on dendrite suppression using the negative-feedback mechanism.

2.
Nano Lett ; 23(17): 7914-7920, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37642561

ABSTRACT

Metal halide perovskites make up a promising class of materials for semiconductor spintronics. Here we report a systematic investigation of coherent spin precession, spin dephasing and spin relaxation of electrons and holes in two hybrid organic-inorganic perovskites MA0.3FA0.7PbI3 and MA0.3FA0.7Pb0.5Sn0.5I3 using time-resolved Faraday rotation spectroscopy. With applied in-plane magnetic fields, we observe robust Larmor spin precession of electrons and holes that persists for hundreds of picoseconds. The spin dephasing and relaxation processes are likely to be sensitive to the defect levels. Temperature-dependent measurements give further insights into the spin relaxation channels. The extracted electron Landé g-factors (3.75 and 4.36) are the biggest among the reported values in inorganic or hybrid perovskites. Both the electron and hole g-factors shift dramatically with temperature, which we propose to originate from thermal lattice vibration effects on the band structure. These results lay the foundation for further design and use of lead- and tin-based perovskites for spintronic applications.

3.
Small ; 19(46): e2305326, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37501332

ABSTRACT

Composite solid electrolytes (CSEs) consisting of polyethylene oxide (PEO) matrix and active inorganic fillers have shown great potential for practical applications. However, mechanisms of how different active fillers enhance ion transport in CSEs still remain inconclusive. In this work, the component dependencies of ionic conductivity of PEO-based CSEs are investigated by comparing two widely investigated active fillers: NASICON-type (LATP) and garnet-type (LLZTO). In terms of ionic conductivity, the optimum ratios are strikingly different for LLZTO (10 wt%) and LATP (50 wt%). Through experimental and computational studies, it is demonstrated that the high affinity between LATP and PEO facilitates unhindered interfacial Li+ transfer so that LATP functions as a bulk-active filler to provide additional inorganic ion pathways. By contrast, Li+ transfer between LLZTO and PEO is found to be sluggish. Instead, LLZTO mainly improves ionic conductivity by dissociating lithium salt, making it a surface-active filler. Through categorizing active fillers based on their Li+ conductive mechanisms, this work provides new understanding and guidelines for componential design and optimization of solid composite electrolytes.

4.
Acc Chem Res ; 55(15): 2088-2102, 2022 Aug 02.
Article in English | MEDLINE | ID: mdl-35866547

ABSTRACT

ConspectusSilicon-based anode materials have become a research hot spot as the most promising candidates for next-generation high-capacity lithium-ion batteries. However, the irreversible degradation of the conductive network in the anode and the resultant dramatic capacity loss have become two ultimate challenges that stem from inherent characteristics of the Si-based materials, including poor conductivity and massive volume changes (up to 300%) during cycling. Apart from optimization of the active materials, one effective way to stabilize high-capacity Si-based anodes is by designing polymeric binders to reinforce the conductive networks during repeated charge and discharge processes. As an inactive component in the electrode, the binder not only holds other components (e.g., active materials, conductive agents, and current collectors) together to maintain the mechanical integrity of the electrode but also serves as a thickener to facilitate the homogeneous distribution of particles. Therefore, binders play a key role in Si-based anodes by maintaining the integrity of conductive networks in the electrode.In this Account, on the basis of the extensive binder-related work on Si-based anodes since the 2000s, efforts made on maintaining the conductive network can be categorized into two main strategies: (1) stabilization of the primary conductive network (which generally refers to conductive agents) by enhancing the binding strength and resilience of the binding between electrode components (i.e., Si particles, conducting agents, and current collectors) via various interactions (e.g., dipolar interactions and covalent bonds) and (2) construction of the secondary conductive network by employing conductive binders, which serve as a molecular-level conductive layer on active materials. In this sense, functional groups in binders can be divided into two categories: mechanical structural units and conductive structural units. On the one hand, functional groups with strong polarities (e.g., -OH, -COOH, -NH2, and -CONH-) generally serve as binding structural units because of their bonding tendencies; on the other hand, exhibiting high electronic conductivity, conjugated functional groups (e.g., -C4H4O2S-, -C16H9, -C13H8-, and -C12H8N-) are commonly found in conductive binders. Through establishing the correlation between structural units and their corresponding properties, we systematically summarize the optimization strategies and design principles of binders to achieve a robust conductive network in Si-based anodes. In addition, integration of desirable mechanical properties and high conductivity into the binder in order to achieve a multidimensionally stable conductive network is proposed. Through an insightful retrospective and prospective on binders, a key electrode component, we hope to provide a fresh perspective on performance optimization of Si-based anodes.

5.
Chem Soc Rev ; 50(19): 10743-10763, 2021 Oct 04.
Article in English | MEDLINE | ID: mdl-34605826

ABSTRACT

Understanding the bulk and interfacial behaviors during the operation of batteries (e.g., Li-ion, Na-ion, Li-O2 batteries, etc.) is of great significance for the continuing improvement of the performance. Electrochemical quartz crystal microbalance (EQCM) is a powerful tool to this end, as it enables in situ investigation into various phenomena, including ion insertion/deinsertion within electrodes, solid nucleation from the electrolyte, interphasial formation/evolution and solid-liquid coordination. As such, EQCM analysis helps to decipher the underlying mechanisms both in the bulk and at the interface. This tutorial review will present the recent progress in mechanistic studies of batteries achieved by the EQCM technology. The fundamentals and unique capability of EQCM are first discussed and compared with other techniques, and then the combination of EQCM with other in situ techniques is also covered. In addition, the recent studies utilizing EQCM technologies in revealing phenomena and mechanisms of various batteries are reviewed. Perspectives regarding the future application of EQCM in battery studies are given at the end.

6.
Small ; 17(42): e2102039, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34528374

ABSTRACT

Despite their promised safety and mechanical flexibility, solvent-free polymer electrolytes suffer from low Li-ion conductivities due to poor dissociation of conducting salts and low Li+ -transference numbers due to Li+ -trapping by ether-linkages. In this work, the authors found that oxygen vacancies carried by nanosized Al2 O3 fillers preferentially promotes Li+ -conduction in poly(ethylene oxide) (PEO). These vacancies and free electrons therein, whose concentration can be tuned, effectively break up the ion pairs by weakening the Coulombic attraction within them, while simultaneously interacting with the anions, thus preferentially constraining the movement of anions. This synergistic dissociation-and-trapping effect leads to the significant and selective improvement in Li-ion conductivity. Solid state batteries built on such PEO-based electrolytes exhibits superior performance at high current density. This discovery reveals a molecular-level rationale for the long-observed phenomenon that certain inorganic nano-fillers improve ion conduction in PEO, and provides a universal approach to tailor superior polymer-based electrolytes for the next generation solid-state batteries.

7.
Small ; 17(42): e2102256, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34528381

ABSTRACT

Despite exhibiting high specific capacities, Si-based anode materials suffer from poor cycle life as their volume change leads to the collapse of conductive network within the electrode. For this reason, the challenge lies in retaining the conductive network during electrochemical processes. Herein, to address this prominent issue, a cross-linked conductive binder (CCB) is designed for commercially available silicon oxides (SiOx ) anode to construct a resilient hierarchical conductive network from two aspects: on the one hand, exhibiting high electronic conductivity, CCB serves as an adaptive secondary conductive network in addition to the stiff primary conductive network (e.g., conductive carbon), facilitating faster interfacial charge transfer processes for SiOx in molecular level; on the other hand, the cross-linked structure of CCB shows resilient mechanical properties, which maintains the integrity of the primary conductive network by preventing electrode deformation during prolonged cycling. With the aid of CCB, untreated micro-sized SiOx anode material delivers an areal capacity of 2.1 mAh cm-2 after 250 cycles at 0.8 A g-1 . The binder design strategy, as well as, the relevant concepts proposed herein, provide a new perspective toward promoting the cycling stability of high-capacity Si-based anodes.

8.
Chem Soc Rev ; 49(14): 4667-4680, 2020 Jul 21.
Article in English | MEDLINE | ID: mdl-32567623

ABSTRACT

The ever-increasing demand for high-performance batteries has been driving the fundamental understanding of the crystal/surface structural and electrochemical properties of intercalation cathode materials, among which the olivine-type, spinel, and layered lithium transition metal oxide materials have received particular attention in the past decade due to their successful commercialization. While the most current studies focus on the macroscopic and bulk crystal structure of these materials, our previous work suggests that, as a confined region wherein charge transfer takes place, the electrochemical performances of the interfacial structures of cathode materials are largely dictated by the break in the structural symmetry from 3D (bulk) to 2D (surface), which leads to reconstructions under different chemical/electrochemical conditions. By summarizing various works in this subject and offering our perspectives, this tutorial review will reveal for the first time the correlation between the surface structure and interface reconstruction at atomic/molecular scales and their direct impact on the corresponding electrochemical performances. More importantly, by extending the knowledge obtained from these three well-studied system, we believe that the same established principles could universally apply to other cathode materials that have been the frontiers of new battery chemistries.

9.
Asia Pac J Clin Nutr ; 30(3): 401-414, 2021 09.
Article in English | MEDLINE | ID: mdl-34587700

ABSTRACT

BACKGROUND AND OBJECTIVES: Human milk fat globule membrane (MFGM) has multifunctional health benefits. We evaluated neurodevelopment and growth of healthy term infants fed bovine milk-derived MFGM-enriched formula (MF) over 12 months. METHODS AND STUDY DESIGN: A prospective, multi-center, double-blind, randomized trial was conducted in Fuzhou, China. Healthy term infants (n=212), aged <14 days, were assigned randomly to be fed MF or a standard formula (SF) for 6 months and then switched to stage 2 MF and SF formula until 12 months. A reference group (n=206) contained healthy breastfed infants (BFR). Neurodevelopment was assessed with Bayley-III Scales. RESULTS: At 12 months, the composite social emotional (+3.5) and general adaptive behaviour (+5.62) scores were significantly higher in MF than SF (95% CIs 0.03 to 6.79 and 1.78 to 9.38; p=0.048 and 0.004, respectively). Mean cognitive (+2.86, 95% CIs -1.10 to 6.80, p=0.08), language (+0.39, 95% CIs -2.53 to 3.30, p=0.87) and motor (+0.90, 95% CIs -2.32 to 4.13, p=0.49) scores tended to be higher in MF than SF, but the differences between the two groups were not significant. BFR scored higher on Bayley-III than either MF or SF at 6 and 12 months. Cognitive scores were significantly higher in BFR than SF (95% CI 0.05 to 7.20; p=0.045), but not MF (p=0.74) at 6 months. Short-term memory was significantly higher in MF than SF at 12 months (95% CI 1.40 to 12.33; p=0.002). At 4 months, serum gangliosides were significantly higher in MF and BFR than SF (95% CI 0.64 to 13.02; p=0.025). Milk intake, linear growth, body mass and head circumference were not significantly different between formula-fed groups. CONCLUSIONS: MFGM supplementation in early life supports adequate growth, increased serum gangliosides concentration and improves some measures of cognitive development in Chinese infants.


Subject(s)
Infant Formula , Language , China , Female , Glycolipids , Glycoproteins , Humans , Infant , Lipid Droplets , Milk, Human , Prospective Studies
10.
Angew Chem Int Ed Engl ; 60(8): 4169-4174, 2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33124115

ABSTRACT

The recent developments in rechargeable aqueous batteries have witnessed a burgeoning interest in the mechanism of proton transport in the cathode materials. Herein, for the first time, we report the Grotthuss proton transport mechanism in α-MnO2 which features wide [2×2] tunnels. Exemplified by the substitution doping of Ni (≈5 at.%) in α-MnO2 that increases the energy density of the electrode by ≈25 %, we reveal a close link between the tetragonal-orthorhombic (TO) distortion of the lattice and the diffusion kinetics of protons in the tunnels. Experimental and theoretical results verify that Ni dopants can exacerbate the TO distortion during discharge, thereby facilitating the hydrogen bond formation in bulk α-MnO2 . The isolated direct hopping mode of proton transport is switched to a facile concerted mode, which involves the formation and concomitant cleavage of O-H bonds in a proton array, namely via Grotthuss proton transport mechanism. Our study provides important insight towards the understanding of proton transport in MnO2 and can serve as a model for the compositional design of cathode materials for rechargeable aqueous batteries.

11.
Small ; 16(11): e1906374, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32077623

ABSTRACT

Critical to the development of all-solid-state lithium-ion batteries technology are novel solid-state electrolytes with high ionic conductivity and robust stability under inorganic solid-electrolyte operating conditions. Herein, by using density functional theory and molecular dynamics, a mixed oxygen-sulfur-based Li-superionic conductor is screened out from the local chemical structure of ß-Li3 PS4 to discover novel Li14 P2 Ge2 S8 O8 (LPGSO) with high ionic conductivity and high stability under thermal, moist, and electrochemical conditions, which causes oxygenation at specific sites to improve the stability and selective sulfuration to provide an O-S mixed path by Li-S/O structure units with coordination number between 3 and 4 for fast Li-cooperative conduction. Furthermore, LPGSO exhibits a quasi-isotropic 3D Li-ion cooperative diffusion with a lesser migration barrier (≈0.19 eV) compared to its sulfide-analog Li14 P2 Ge2 S16 . The theoretical ionic conductivity of this conductor at room temperature is as high as ≈30.0 mS cm-1 , which is among the best in current solid-state electrolytes. Such an oxy-sulfide synergistic effect and Li-ion cooperative migration mechanism would enable the engineering of next-generation electrolyte materials with desirable safety and high ionic conductivity, for possible application in the near future.

12.
Angew Chem Int Ed Engl ; 59(38): 16594-16601, 2020 Sep 14.
Article in English | MEDLINE | ID: mdl-32519452

ABSTRACT

Aqueous zinc (Zn) batteries (AZBs) are widely considered as a promising candidate for next-generation energy storage owing to their excellent safety features. However, the application of a Zn anode is hindered by severe dendrite formation and side reactions. Herein, an interfacial bridged organic-inorganic hybrid protection layer (Nafion-Zn-X) is developed by complexing inorganic Zn-X zeolite nanoparticles with Nafion, which shifts ion transport from channel transport in Nafion to a hopping mechanism in the organic-inorganic interface. This unique organic-inorganic structure is found to effectively suppress dendrite growth and side reactions of the Zn anode. Consequently, the Zn@Nafion-Zn-X composite anode delivers high coulombic efficiency (ca. 97 %), deep Zn plating/stripping (10 mAh cm-2 ), and long cycle life (over 10 000 cycles). By tackling the intrinsic chemical/electrochemical issues, the proposed strategy provides a versatile remedy for the limited cycle life of the Zn anode.

13.
Small ; 15(47): e1904545, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31588653

ABSTRACT

Aqueous Zn-MnO2 batteries using mild electrolyte show great potential in large-scale energy storage (LSES) application, due to high safety and low cost. However, structure collapse of manganese oxides upon cycling caused by the conversion mechanism (e.g., from tunnel to layer structures for α-, ß-, and γ-phases) is one of the most urgent issues plaguing its practical applications. Herein, to avoid the phase conversion issue and enhance battery performance, a structurally robust novel phase of manganese oxide MnO2 H0.16 (H2 O)0.27 (MON) nanosheet with thickness of ≈2.5 nm is designed and synthesized as a promising cathode material, in which a nanosheet structure combined with a novel H+ /Zn2+ synergistic intercalation mechanism is demonstrated and evidenced. Accordingly, a high-performance Zn/MON cell is achieved, showing a high energy density of ≈228.5 Wh kg-1 , impressive cyclability with capacity retention of 96% at 0.5 C after 300 cycles, as well as exhibiting rate performance of 115.1 mAh g-1 at current rate of 10 C. To the best current knowledge, this H+ /Zn2+ synergistic intercalation mechanism is first reported in an aqueous battery system, which opens a new opportunity for development of high-performance aqueous Zn ion batteries for LSES.

14.
Inorg Chem ; 57(5): 2766-2772, 2018 Mar 05.
Article in English | MEDLINE | ID: mdl-29470062

ABSTRACT

Oxygen evolution reaction (OER), as the critical step in splitting water, is a thermodynamically "up-hill" process and requires highly efficient catalysts to run. Arrhenius' law suggests that the higher temperature, the faster the reaction rate, so that a larger OER current density can be achieved at a lower η. Herein, we report an abnormal temperature effect on the performance of Co-based catalysts, e.g., Co3O4, Li2CoSiO4, and Fe-doped Co(OH) x, in OER in alkaline electrolytes. The OER performance reached a maximum when the temperature increased to 65 °C, and the OER performance declined when the temperature became higher. The mechanism was investigated by using Co3O4 as a model sample, and we propose that at an optimal temperature (around 55-65 °C) the main rate-determining step changes from OH- adsorption dominant to a mixed mode and both the adsorption and the cleavage of the OH group can be rate-determining, which leads to the fastest kinetics.

15.
Phys Rev Lett ; 119(13): 137401, 2017 Sep 29.
Article in English | MEDLINE | ID: mdl-29341682

ABSTRACT

Using time-resolved Kerr rotation, we measure the spin-valley dynamics of resident electrons and holes in single charge-tunable monolayers of the archetypal transition-metal dichalcogenide (TMD) semiconductor WSe_{2}. In the n-type regime, we observe long (∼130 ns) polarization relaxation of electrons that is sensitive to in-plane magnetic fields B_{y}, indicating spin relaxation. In marked contrast, extraordinarily long (∼2 µs) polarization relaxation of holes is revealed in the p-type regime, which is unaffected by B_{y}, directly confirming long-standing expectations of strong spin-valley locking of holes in the valence band of monolayer TMDs. Supported by continuous-wave Kerr spectroscopy and Hanle measurements, these studies provide a unified picture of carrier polarization dynamics in monolayer TMDs, which can guide design principles for future valleytronic devices.

16.
Inorg Chem ; 56(21): 13411-13416, 2017 Nov 06.
Article in English | MEDLINE | ID: mdl-29068671

ABSTRACT

In this work, MgxFePO4 is exploited as a cathode material for rechargeable Mg-ion batteries. FePO4/C prepared via electrochemical delithiation of LiFePO4/C is directly used as the cathode in aqueous Mg2+ electrolyte, and reversible capacity is achieved for the first time. Notably, the capacity (82 mA h/g) is half of the theoretical value (164 mA h/g) and "asymmetric" discharge/charge behavior can be observed. In addition, first-principles calculations show it is the strong Mg-ion interactions between adjacent channels that not only limit the capacity of the cathode but also lead to the difference in rates for Mg-ion intercalation and deintercalation. This work provides experimental and theoretical evidence that reveal the mechanism of Mg-ion intercalation and deintercalation in a FePO4 host, which gives guidance in designing cathode materials for rechargeable batteries based on multivalent metal ions.

17.
Nano Lett ; 15(12): 8250-4, 2015 Dec 09.
Article in English | MEDLINE | ID: mdl-26554897

ABSTRACT

We report a systematic study of coherent spin precession and spin dephasing in electron-doped monolayer MoS2. Using time-resolved Kerr rotation spectroscopy and applied in-plane magnetic fields, a nanosecond time scale Larmor spin precession signal commensurate with g-factor |g0| ≃ 1.86 is observed in several different MoS2 samples grown by chemical vapor deposition. The dephasing rate of this oscillatory signal increases linearly with magnetic field, suggesting that the coherence arises from a subensemble of localized electron spins having an inhomogeneously broadened distribution of g-factors, g0 + Δg. In contrast to g0, Δg is sample-dependent and ranges from 0.042 to 0.115.

18.
Guang Pu Xue Yu Guang Pu Fen Xi ; 36(7): 2178-82, 2016 Jul.
Article in Zh | MEDLINE | ID: mdl-30035973

ABSTRACT

In order to reveal the mechanism of LLLI accelerating teeth moving, we investigated the changes of alkaline phosphatase and intracellular calcium concentration when osteoblasts under stress were subjected low-level-laser-irradiation (LLLI). MG-63 cells were divided into four groups: control group, stress group, LLLI group and LLLI-stress group. Osteoblasts were subjected to the mechanical stress by a four-point bending system at 0.5 Hz and 3 000 µstrain. The secretions of ALP of each group are measured by spectrophotometer. In the second part, MG-63 cells were divided into two groups: stress group and LLLI-stress group. We checked intracellular calcium concentration via FCM and fluorescent indicator fluo-3/AM at 0, 5, 15, 30 and 60 min under stress. LLLI- stress group will receive LLLI for 1 min after stress. Compared to a control group, increased ALP secretions were observed in the other three groups. But ALP secretions in LLLI-stress group were lower than stress group and LLLI group. THE changing curve of intracellular calcium concentration in laser-stress groups is gentle instead of "jumping" in stress group. Proper stress, LLLI and combined application of these two can increase the secretions of ALP in osteoblasts compared to the control group. But the secretions of ALP decreased when combined application of stress and LLLI compared to using alone. LLLI can regulate the changing rhythm of concentration of the intracellular calcium to promote proliferation of MG-63 cell under stress, which means LLLI can reduce the bone-formation of osteoblasts under stress.


Subject(s)
Osteoblasts , Stress, Mechanical , Alkaline Phosphatase , Calcium , Cell Proliferation , Cytoplasm
19.
Phys Rev Lett ; 113(15): 156601, 2014 Oct 10.
Article in English | MEDLINE | ID: mdl-25375727

ABSTRACT

Per the fluctuation-dissipation theorem, the information obtained from spin fluctuation studies in thermal equilibrium is necessarily constrained by the system's linear response functions. However, by including weak radio frequency magnetic fields, we demonstrate that intrinsic and random spin fluctuations even in strictly unpolarized ensembles can reveal underlying patterns of correlation and coupling beyond linear response, and can be used to study nonequilibrium and even multiphoton coherent spin phenomena. We demonstrate this capability in a classical vapor of (41)K alkali atoms, where spin fluctuations alone directly reveal Rabi splittings, the formation of Mollow triplets and Autler-Townes doublets, ac Zeeman shifts, and even nonlinear multiphoton coherences.

20.
Front Immunol ; 15: 1254516, 2024.
Article in English | MEDLINE | ID: mdl-38455060

ABSTRACT

There exists a bidirectional relationship between oral health and general well-being, with an imbalance in oral symbiotic flora posing a threat to overall human health. Disruptions in the commensal flora can lead to oral diseases, while systemic illnesses can also impact the oral cavity, resulting in the development of oral diseases and disorders. Porphyromonas gingivalis and Fusobacterium nucleatum, known as pathogenic bacteria associated with periodontitis, play a crucial role in linking periodontitis to accompanying systemic diseases. In periodontal tissues, these bacteria, along with their virulence factors, can excessively activate the host immune system through local diffusion, lymphatic circulation, and blood transmission. This immune response disruption contributes to an imbalance in osteoimmune mechanisms, alveolar bone resorption, and potential systemic inflammation. To restore local homeostasis, a deeper understanding of microbiota-host interactions and the immune network phenotype in local tissues is imperative. Defining the immune network phenotype in periodontal tissues offers a promising avenue for investigating the complex characteristics of oral plaque biofilms and exploring the potential relationship between periodontitis and associated systemic diseases. This review aims to provide an overview of the mechanisms underlying Porphyromonas gingivalis- and Fusobacterium nucleatum-induced alveolar bone resorption, as well as the immunophenotypes observed in host periodontal tissues during pathological conditions.


Subject(s)
Alveolar Bone Loss , Periodontitis , Humans , Porphyromonas gingivalis , Inflammation , Fusobacterium nucleatum/physiology
SELECTION OF CITATIONS
SEARCH DETAIL