Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
PLoS Biol ; 9(7): e1001111, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21814489

ABSTRACT

The TGF-ß homolog Decapentaplegic (Dpp) acts as a secreted morphogen in the Drosophila wing disc, and spreads through the target tissue in order to form a long range concentration gradient. Despite extensive studies, the mechanism by which the Dpp gradient is formed remains controversial. Two opposing mechanisms have been proposed: receptor-mediated transcytosis (RMT) and restricted extracellular diffusion (RED). In these scenarios the receptor for Dpp plays different roles. In the RMT model it is essential for endocytosis, re-secretion, and thus transport of Dpp, whereas in the RED model it merely modulates Dpp distribution by binding it at the cell surface for internalization and subsequent degradation. Here we analyzed the effect of receptor mutant clones on the Dpp profile in quantitative mathematical models representing transport by either RMT or RED. We then, using novel genetic tools, experimentally monitored the actual Dpp gradient in wing discs containing receptor gain-of-function and loss-of-function clones. Gain-of-function clones reveal that Dpp binds in vivo strongly to the type I receptor Thick veins, but not to the type II receptor Punt. Importantly, results with the loss-of-function clones then refute the RMT model for Dpp gradient formation, while supporting the RED model in which the majority of Dpp is not bound to Thick veins. Together our results show that receptor-mediated transcytosis cannot account for Dpp gradient formation, and support restricted extracellular diffusion as the main mechanism for Dpp dispersal. The properties of this mechanism, in which only a minority of Dpp is receptor-bound, may facilitate long-range distribution.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Activin Receptors, Type II/genetics , Activin Receptors, Type II/metabolism , Algorithms , Animals , Drosophila Proteins/genetics , Drosophila melanogaster/anatomy & histology , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , Larva/genetics , Larva/growth & development , Larva/metabolism , Models, Chemical , Morphogenesis , Mutation , Organ Specificity , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Wings, Animal/growth & development , Wings, Animal/metabolism
2.
Science ; 335(6067): 401; author reply 401, 2012 Jan 27.
Article in English | MEDLINE | ID: mdl-22282789

ABSTRACT

Wartlick et al. (Research Articles, 4 March 2011, p. 1154) reported that growth rates in the Drosophila wing disc correlate with increasing Dpp signaling levels, suggesting that the rate of Dpp increase determines the cell-cycle length. Contradicting their model, we found that cells in which the increase of Dpp signaling levels was genetically abrogated grew at rates comparable to those of wild-type cells.


Subject(s)
Cell Proliferation , Drosophila Proteins/metabolism , Drosophila melanogaster/growth & development , Drosophila melanogaster/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Signal Transduction , Wings, Animal/growth & development , Wings, Animal/metabolism , Animals
3.
Genes Dev ; 21(20): 2558-70, 2007 Oct 15.
Article in English | MEDLINE | ID: mdl-17901217

ABSTRACT

microRNAs (miRNAs) silence gene expression by suppressing protein production and/or by promoting mRNA decay. To elucidate how silencing is accomplished, we screened an RNA interference library for suppressors of miRNA-mediated regulation in Drosophila melanogaster cells. In addition to proteins known to be required for miRNA biogenesis and function (i.e., Drosha, Pasha, Dicer-1, AGO1, and GW182), the screen identified the decapping activator Ge-1 as being required for silencing by miRNAs. Depleting Ge-1 alone and/or in combination with other decapping activators (e.g., DCP1, EDC3, HPat, or Me31B) suppresses silencing of several miRNA targets, indicating that miRNAs elicit mRNA decapping. A comparison of gene expression profiles in cells depleted of AGO1 or of individual decapping activators shows that approximately 15% of AGO1-targets are also regulated by Ge-1, DCP1, and HPat, whereas 5% are dependent on EDC3 and LSm1-7. These percentages are underestimated because decapping activators are partially redundant. Furthermore, in the absence of active translation, some miRNA targets are stabilized, whereas others continue to be degraded in a miRNA-dependent manner. These findings suggest that miRNAs mediate post-transcriptional gene silencing by more than one mechanism.


Subject(s)
MicroRNAs/genetics , Animals , Argonaute Proteins , Cell Line , Drosophila Proteins/chemistry , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Eukaryotic Initiation Factors , Genes, Insect , Genes, Reporter , MicroRNAs/metabolism , Protein Biosynthesis , RNA Caps/genetics , RNA Caps/metabolism , RNA Interference , RNA, Messenger/genetics , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL