Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 553
Filter
Add more filters

Publication year range
1.
Nature ; 628(8008): 630-638, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38538795

ABSTRACT

Lysosomes are degradation and signalling centres crucial for homeostasis, development and ageing1. To meet diverse cellular demands, lysosomes remodel their morphology and function through constant fusion and fission2,3. Little is known about the molecular basis of fission. Here we identify HPO-27, a conserved HEAT repeat protein, as a lysosome scission factor in Caenorhabditis elegans. Loss of HPO-27 impairs lysosome fission and leads to an excessive tubular network that ultimately collapses. HPO-27 and its human homologue MROH1 are recruited to lysosomes by RAB-7 and enriched at scission sites. Super-resolution imaging, negative-staining electron microscopy and in vitro reconstitution assays reveal that HPO-27 and MROH1 self-assemble to mediate the constriction and scission of lysosomal tubules in worms and mammalian cells, respectively, and assemble to sever supported membrane tubes in vitro. Loss of HPO-27 affects lysosomal morphology, integrity and degradation activity, which impairs animal development and longevity. Thus, HPO-27 and MROH1 act as self-assembling scission factors to maintain lysosomal homeostasis and function.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Lysosomes , Animals , Humans , Caenorhabditis elegans/cytology , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/ultrastructure , Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/ultrastructure , Homeostasis , Longevity , Lysosomes/metabolism , Lysosomes/ultrastructure , Amino Acid Motifs , Microscopy, Electron
2.
Nature ; 621(7979): 506-510, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37648858

ABSTRACT

Graphitic electrode is commonly used in electrochemical reactions owing to its excellent in-plane conductivity, structural robustness and cost efficiency1,2. It serves as prime electrocatalyst support as well as a layered intercalation matrix2,3, with wide applications in energy conversion and storage1,4. Being the two-dimensional building block of graphite, graphene shares similar chemical properties with graphite1,2, and its unique physical and chemical properties offer more varieties and tunability for developing state-of-the-art graphitic devices5-7. Hence it serves as an ideal platform to investigate the microscopic structure and reaction kinetics at the graphitic-electrode interfaces. Unfortunately, graphene is susceptible to various extrinsic factors, such as substrate effect8-10, causing much confusion and controversy7,8,10,11. Hereby we have obtained centimetre-sized substrate-free monolayer graphene suspended on aqueous electrolyte surface with gate tunability. Using sum-frequency spectroscopy, here we show the structural evolution versus the gate voltage at the graphene-water interface. The hydrogen-bond network of water in the Stern layer is barely changed within the water-electrolysis window but undergoes notable change when switching on the electrochemical reactions. The dangling O-H bond protruding at the graphene-water interface disappears at the onset of the hydrogen evolution reaction, signifying a marked structural change on the topmost layer owing to excess intermediate species next to the electrode. The large-size suspended pristine graphene offers a new platform to unravel the microscopic processes at the graphitic-electrode interfaces.

3.
N Engl J Med ; 390(8): 712-722, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38381674

ABSTRACT

BACKGROUND: Biomarker changes that occur in the period between normal cognition and the diagnosis of sporadic Alzheimer's disease have not been extensively investigated in longitudinal studies. METHODS: We conducted a multicenter, nested case-control study of Alzheimer's disease biomarkers in cognitively normal participants who were enrolled in the China Cognition and Aging Study from January 2000 through December 2020. A subgroup of these participants underwent testing of cerebrospinal fluid (CSF), cognitive assessments, and brain imaging at 2-year-to-3-year intervals. A total of 648 participants in whom Alzheimer's disease developed were matched with 648 participants who had normal cognition, and the temporal trajectories of CSF biochemical marker concentrations, cognitive testing, and imaging were analyzed in the two groups. RESULTS: The median follow-up was 19.9 years (interquartile range, 19.5 to 20.2). CSF and imaging biomarkers in the Alzheimer's disease group diverged from those in the cognitively normal group at the following estimated number of years before diagnosis: amyloid-beta (Aß)42, 18 years; the ratio of Aß42 to Aß40, 14 years; phosphorylated tau 181, 11 years; total tau, 10 years; neurofilament light chain, 9 years; hippocampal volume, 8 years; and cognitive decline, 6 years. As cognitive impairment progressed, the changes in CSF biomarker levels in the Alzheimer's disease group initially accelerated and then slowed. CONCLUSIONS: In this study involving Chinese participants during the 20 years preceding clinical diagnosis of sporadic Alzheimer's disease, we observed the time courses of CSF biomarkers, the times before diagnosis at which they diverged from the biomarkers from a matched group of participants who remained cognitively normal, and the temporal order in which the biomarkers became abnormal. (Funded by the Key Project of the National Natural Science Foundation of China and others; ClinicalTrials.gov number, NCT03653156.).


Subject(s)
Alzheimer Disease , Biomarkers , Cognitive Dysfunction , Humans , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/complications , Alzheimer Disease/diagnosis , Alzheimer Disease/diagnostic imaging , Amyloid beta-Peptides/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Case-Control Studies , Cognitive Dysfunction/cerebrospinal fluid , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/etiology , tau Proteins/cerebrospinal fluid , Follow-Up Studies
4.
Infect Immun ; 92(4): e0048323, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38501672

ABSTRACT

Aspergillus fumigatus (A. fumigatus) is one of the common pathogens of fungal keratitis. Fungal growth and invasion cause excessive inflammation and corneal damage, leading to severe vision loss. Neutrophils are the primary infiltrating cells critical for fungal clearance. Cathelicidin [LL-37 in humans and cathelicidin-related antimicrobial peptide (CRAMP) in mice], a natural antimicrobial peptide, can directly inhibit the growth of many pathogens and regulate immune responses. However, the role of cathelicidin and its effect on neutrophils in A. fumigatus keratitis remain unclear. By establishing A. fumigatus keratitis mouse models, we found that cathelicidin was increased in A. fumigatus keratitis. It could reduce fungal loads, lower clinical scores, and improve corneal transparency. Restriction of CRAMP on fungal proliferation was largely counteracted in CD18-/- mice, in which neutrophils cannot migrate into infected sites. When WT neutrophils were transferred into CD18-/- mice, corneal fungal loads were distinctly reduced, indicating that neutrophils are vital for CRAMP-mediated resistance. Furthermore, cathelicidin promoted neutrophils to phagocytose and degrade conidia both in vitro and in vivo. CXC chemokine receptor 2 (CXCR2) was reported to be a functional receptor of LL-37 on neutrophils. CXCR2 antagonist SB225002 or phospholipase C (PLC) inhibitor U73122 weakened LL-37-induced phagocytosis. Meanwhile, LL-37 induced PLC γ phosphorylation, which was attenuated by SB225002. SB225002 or the autophagy inhibitors Bafilomycin-A1 and 3-Methyladenine weakened LL-37-induced degradation of conidia. Transmission electron microscopy (TEM) observed that LL-37 increased autophagosomes in Aspergillus-infected neutrophils. Consistently, LL-37 elevated autophagy-associated protein expressions (Beclin-1 and LC3-II), but this effect was weakened by SB225002. Collectively, cathelicidin reduces fungal loads and improves the prognosis of A. fumigatus keratitis. Both in vitro and in vivo, cathelicidin promotes neutrophils to phagocytose and degrade conidia. LL-37/CXCR2 activates PLC γ to amplify neutrophils' phagocytosis and induces autophagy to eliminate intracellular conidia.


Subject(s)
Aspergillus fumigatus , Keratitis , Phenylurea Compounds , Humans , Animals , Mice , Neutrophils , Antifungal Agents/metabolism , Cathelicidins , Phospholipase C gamma/metabolism , Keratitis/microbiology , Prognosis , Mice, Inbred C57BL
5.
Hum Mol Genet ; 31(22): 3829-3845, 2022 11 10.
Article in English | MEDLINE | ID: mdl-35708510

ABSTRACT

The aim of this study is to investigate if extracellular vesicles (EVs) from bone marrow mesenchymal stem cells (BMSCs) deliver microRNA (miR)-331-3p to regulate LIM zinc finger domain containing 2 (LIMS2) methylation in cervical cancer cells. Cervical cancer cells were incubated with EVs from BMSCs with altered expression of miR-331-3p, DNA methyltransferase 3 alpha (DNMT3A) or/and LIMS2 and then subjected to 5-ethynyl-2'-deoxyuridine, Transwell, flow cytometry and western blotting analyses. Dual-luciferase reporter assay was conducted to verify the binding between miR-331-3p and DNMT3A. A xenograft model was established to evaluate the effect of BMSC-derived EV-miR-331-3p on cervical tumor growth. miR-331-3p was lowly and DNMT3A was highly expressed in cervical cancer. BMSC-derived EVs delivered miR-331-3p to control the behaviors of cervical cancer cells. miR-331-3p inhibited the expression of DNMT3A by binding DNMT3A mRNA. DNMT3A promoted LIMS2 methylation and reduced the expression of LIMS2. Overexpression of DNMT3A or silencing of LIMS2 in BMSCs counteracted the tumor suppressive effects of miR-331-3p. BMSC-derived EV-miR-331-3p also inhibited the growth of cervical tumors in vivo. BMSC-derived EVs alleviate cervical cancer partially by delivering miR-331-3p to reduce DNMT3A-dependent LIMS2 methylation in tumor cells.


Subject(s)
Extracellular Vesicles , Mesenchymal Stem Cells , MicroRNAs , Uterine Cervical Neoplasms , Female , Humans , Uterine Cervical Neoplasms/genetics , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Mesenchymal Stem Cells/metabolism , DNA Methylation/genetics , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism , DNA Methyltransferase 3A , Zinc Fingers
6.
Planta ; 259(6): 148, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717679

ABSTRACT

MAIN CONCLUSION: Mutation of OsSHR2 adversely impacted root and shoot growth and impaired plant response to N conditions, further reducing the yield per plant. Nitrogen (N) is a crucial factor that regulates the plant architecture. There is still a lack of research on it. In our study, it was observed that the knockout of the SHORTROOT 2 (OsSHR2) which was induced by N deficiency, can significantly affect the regulation of plant architecture response to N in rice. Under N deficiency, the mutation of OsSHR2 significantly reduced root growth, and impaired the sensitivity of the root meristem length to N deficiency. The mutants were found to have approximately a 15% reduction in plant height compared to wild type. But mutants showed a significant increase in tillering at post-heading stage, approximately 26% more than the wild type, particularly in high N conditions. In addition, due to reduced seed setting rate and 1000-grain weight, mutant yield was significantly decreased by approximately 33% under low N fertilizer supply. The mutation also changed the distribution of N between the vegetative and reproductive organs. Our findings suggest that the transcription factor OsSHR2 plays a regulatory role in the response of plant architecture and yield per plant to N in rice.


Subject(s)
Gene Expression Regulation, Plant , Nitrogen , Oryza , Transcription Factors , Gene Expression Regulation, Plant/drug effects , Meristem/genetics , Meristem/growth & development , Meristem/drug effects , Mutation , Nitrogen/metabolism , Nitrogen/pharmacology , Oryza/genetics , Oryza/growth & development , Oryza/metabolism , Oryza/drug effects , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/growth & development , Plant Roots/genetics , Plant Roots/drug effects , Plant Roots/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
7.
J Virol ; 97(12): e0170023, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38009930

ABSTRACT

IMPORTANCE: Porcine epidemic diarrhea virus (PEDV) is a pig coronavirus that causes severe diarrhea and high mortality in piglets, but as no effective drugs are available, this virus threatens the pig industry. Here, we found that the intestinal contents of specific pathogen-free pigs effectively blocked PEDV invasion. Through proteomic and metabolic analyses of the intestinal contents, we screened 10 metabolites to investigate their function and found that linoleic acid (LA) significantly inhibited PEDV replication. Further investigations revealed that LA inhibited viral replication and release mainly by binding with PEDV NSP5 to regulate the PI3K pathway and, in particular, inhibiting AKT phosphorylation. In vivo experiments illustrated that orally administered LA protected pigs from PEDV challenge and severe diarrhea. These findings provide strong support for exploring antiviral drugs for coronavirus treatment.


Subject(s)
Antiviral Agents , Coronavirus Infections , Diarrhea , Linoleic Acid , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Coronavirus Infections/drug therapy , Coronavirus Infections/veterinary , Diarrhea/drug therapy , Diarrhea/veterinary , Linoleic Acid/therapeutic use , Phosphatidylinositol 3-Kinases/metabolism , Porcine epidemic diarrhea virus/physiology , Proteomics , Swine , Swine Diseases/drug therapy , Virus Replication/drug effects , Antiviral Agents/therapeutic use
8.
FASEB J ; 37(10): e23180, 2023 10.
Article in English | MEDLINE | ID: mdl-37738038

ABSTRACT

Transforming growth factor ß1 (TGF-ß1) performs a critical role in maintaining homeostasis of intestinal mucosa regulation and controls the survival, proliferation, and differentiation of many immune cells. In this study, we discovered that the infection of porcine epidemic diarrhea virus (PEDV), a coronavirus, upregulated TGF-ß1 expression via activating Tregs. Besides, recombinant porcine TGF-ß1 decreased the percentage of CD21+ B cells within the lymphocyte population in vitro. We further found that TGF-ß1 reduced the IgA-secreting B cell numbers and also inhibited plasma cell differentiation. Additional investigations revealed that TGF-ß1 induced the apoptosis of IgM+ B cells in both peyer's patches (PPs) and peripheral blood (PB) through the activation of the Bax/Bcl2-Caspase3 pathway. Conversely, the application of the TGF-ß1 signaling inhibitor SB431542 significantly antagonized the TGF-ß1-induced reduction of IgA secretion and B cell apoptosis and restored plasma cell differentiation. Collectively, TGF-ß1 plays an important role in regulating the survival and differentiation of porcine IgA-secreting B cells through the classical mitochondrial apoptosis pathway. These findings will facilitate future mucosal vaccine designs that target the regulation of TGF-ß1 for the control of enteric pathogens in the pig industry.


Subject(s)
Plasma Cells , Transforming Growth Factor beta1 , Swine , Animals , bcl-2-Associated X Protein , Cell Differentiation , Apoptosis , Immunoglobulin A , Immunoglobulin M
9.
Mol Cell Biochem ; 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38642274

ABSTRACT

Loss and functional failure of pancreatic ß-cells results in disruption of glucose homeostasis and progression of diabetes. Although whole pancreas or pancreatic islet transplantation serves as a promising approach for ß-cell replenishment and diabetes therapy, the severe scarcity of donor islets makes it unattainable for most diabetic patients. Stem cells, particularly induced pluripotent stem cells (iPSCs), are promising for the treatment of diabetes owing to their self-renewal capacity and ability to differentiate into functional ß-cells. In this review, we first introduce the development of functional ß-cells and their heterogeneity and then turn to highlight recent advances in the generation of ß-cells from stem cells and their potential applications in disease modeling, drug discovery and clinical therapy. Finally, we have discussed the current challenges in developing stem cell-based therapeutic strategies for improving the treatment of diabetes. Although some significant technical hurdles remain, stem cells offer great hope for patients with diabetes and will certainly transform future clinical practice.

10.
Environ Sci Technol ; 58(27): 12028-12041, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38838251

ABSTRACT

Recent discoveries indicate that several insect larvae are capable of ingesting and biodegrading plastics rapidly and symbiotically, but the ecological adaptability of the larval gut microbiome to microplastics (MPs) remains unclear. Here, we described the gut microbiome assemblage and MP biodegradation of superworms (Zophobas atratus larvae) fed MPs of five major petroleum-based polymers (polyethylene, polypropylene, polystyrene, polyvinyl chloride, and polyethylene terephthalate) and antibiotics. The shift of molecular weight distribution, characteristic peaks of C═O, and metabolic intermediates of residual polymers in egested frass proved depolymerization and biodegradation of all MPs tested in the larval intestines, even under antibiotic suppression. Superworms showed a wide adaptation to the digestion of the five polymer MPs. Antibiotic suppression negatively influenced the survival rate and plastic depolymerization patterns. The larval gut microbiomes differed from those fed MPs and antibiotics, indicating that antibiotic supplementation substantially shaped the gut microbiome composition. The larval gut microbiomes fed MPs had higher network complexity and stability than those fed MPs and antibiotics, suggesting that the ecological robustness of the gut microbiomes ensured the functional adaptability of larvae to different MPs. In addition, Mantel's test indicated that the gut microbiome assemblage was obviously related to the polymer type, the plastic degradability, antibiotic stress, and larval survival rate. This finding provided novel insights into the self-adaptation of the gut microbiome of superworms in response to different MPs.


Subject(s)
Anti-Bacterial Agents , Gastrointestinal Microbiome , Microplastics , Animals , Gastrointestinal Microbiome/drug effects , Anti-Bacterial Agents/pharmacology , Larva/drug effects , Biodegradation, Environmental , Plastics
11.
BMC Infect Dis ; 24(1): 473, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711014

ABSTRACT

BACKGROUND: The incidence of Talaromyces marneffei (T. marneffei) infection has increased in recent years with the development of organ transplantation and the widespread use of immunosuppressive agents. However, the lack of clinical suspicion leading to delay or misdiagnosis is an important reason for the high mortality rate in non-human immunodeficiency virus (HIV) and non-endemic population. Herein, we report a case of disseminated T. marneffei infection in a non-HIV and non-endemic recipient after renal transplant, who initially presented with skin rashes and subcutaneous nodules and developed gastrointestinal bleeding. CASE PRESENTATION: We describe a 54-year-old renal transplantation recipient presented with scattered rashes, subcutaneous nodules and ulcerations on the head, face, abdomen, and right upper limb. The HIV antibody test was negative. The patient had no obvious symptoms such as fever, cough, etc. Histopathological result of the skin lesion sites showed chronic suppurative inflammation with a large number of fungal spores. Subsequent fungal culture suggested T. marneffei infection. Amphotericin B deoxycholate was given for antifungal treatment, and there was no deterioration in the parameters of liver and kidney function. Unfortunately, the patient was soon diagnosed with gastrointestinal bleeding, gastrointestinal perforation and acute peritonitis. Then he rapidly developed multiple organ dysfunction syndrome and abandoned treatment. CONCLUSIONS: The risk of fatal gastrointestinal bleeding can be significantly increased in kidney transplant patients with T. marneffei infection because of the long-term side effects of post-transplant medications. Strengthening clinical awareness and using mNGS or mass spectrometry technologies to improve the detection rate and early diagnosis of T. marneffei are crucial for clinical treatment in non-HIV and non-endemic population.


Subject(s)
Kidney Transplantation , Mycoses , Talaromyces , Transplant Recipients , Humans , Male , Middle Aged , Amphotericin B/therapeutic use , Antifungal Agents/therapeutic use , Deoxycholic Acid , Dermatomycoses/diagnosis , Dermatomycoses/microbiology , Dermatomycoses/drug therapy , Drug Combinations , Fatal Outcome , Kidney Transplantation/adverse effects , Mycoses/diagnosis , Mycoses/drug therapy , Mycoses/microbiology , Talaromyces/isolation & purification
12.
Environ Sci Technol ; 58(15): 6647-6658, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38563431

ABSTRACT

The biodegradation of polypropylene (PP), a highly persistent nonhydrolyzable polymer, by Tenebrio molitor has been confirmed using commercial PP microplastics (MPs) (Mn 26.59 and Mw 187.12 kDa). This confirmation was based on the reduction of the PP mass, change in molecular weight (MW), and a positive Δδ13C in the residual PP. A MW-dependent biodegradation mechanism was investigated using five high-purity PP MPs, classified into low (0.83 and 6.20 kDa), medium (50.40 and 108.0 kDa), and high (575.0 kDa) MW categories to access the impact of MW on the depolymerization pattern and associated gene expression of gut bacteria and the larval host. The larvae can depolymerize/biodegrade PP polymers with high MW although the consumption rate and weight losses increased, and survival rates declined with increasing PP MW. This pattern is similar to observations with polystyrene (PS) and polyethylene (PE), i.e., both Mn and Mw decreased after being fed low MW PP, while Mn and/or Mw increased after high MW PP was fed. The gut microbiota exhibited specific bacteria associations, such as Kluyvera sp. and Pediococcus sp. for high MW PP degradation, Acinetobacter sp. for medium MW PP, and Bacillus sp. alongside three other bacteria for low MW PP metabolism. In the host transcriptome, digestive enzymes and plastic degradation-related bacterial enzymes were up-regulated after feeding on PP depending on different MWs. The T. molitor host exhibited both defensive function and degradation capability during the biodegradation of plastics, with high MW PP showing a relatively negative impact on the larvae.


Subject(s)
Microbiota , Tenebrio , Animals , Tenebrio/metabolism , Tenebrio/microbiology , Plastics , Polypropylenes/metabolism , Microplastics , Molecular Weight , Polystyrenes , Larva/metabolism , Bacteria/metabolism , Biodegradation, Environmental
13.
Eur J Epidemiol ; 39(1): 101-110, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38177569

ABSTRACT

The Beijing Healthy Aging Cohort Study (BHACS) was established to supplement the limited data of a large representative cohort of older people based on the general population and was designed to evaluate the prevalence, incidence, and natural history of cognitive decline, functional disability, and conventional vascular risk factors. The aim was to determine the evolution of these conditions by estimating the rates and determinants of progression and regression to adverse outcomes, including dementia, cardiovascular events, cancer, and all-cause death. It can therefore provide evidence to help policy makers develop better policies to promote healthy aging in China. BHACS consisted of three cohorts (BLSA, CCHS-Beijing, and BECHCS) in Beijing with a total population of 11 235 (6281 in urban and 4954 in rural areas) and an age range of 55 years or older (55-101 years) with a mean age of 70.35 ± 7.71 years (70.69 ± 7.62 years in urban and 69.92 ± 7.80 years in rural areas). BHACS-BLSA conducted the baseline survey in 2009 with a multistage stratification-random clustering procedure for people aged 55 years or older; BHACS-CCHS-Beijing conducted the baseline survey in 2013-2015 with a stratified multistage cluster random sampling method for people aged 55 years or older; and BHACS-BECHCS conducted the baseline survey in 2010-2014 with two-stage cluster random sampling method for people aged 60 years or older. Data were collected through questionnaires, physical measurements, and laboratory analyses. Topics covered by BHACS include a wide range of physical and mental health indicators, lifestyles and personal, family, and socio-economic determinants of health. There are no immediate plans to make the cohort data freely available to the public, but specific proposals for further collaboration are welcome. For further information and collaboration, please contact the corresponding author Yao He (e-mail: yhe301@x263.net).


Subject(s)
Cognitive Dysfunction , Healthy Aging , Male , Humans , Aged , Middle Aged , Beijing/epidemiology , Cohort Studies , China/epidemiology , Cognitive Dysfunction/epidemiology
14.
Environ Res ; 250: 118518, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38382662

ABSTRACT

Plant residues are important sources of soil organic carbon in terrestrial ecosystems. The degradation of plant residue by microbes can influence the soil carbon cycle and sequestration. However, little is known about the microbial composition and function, as well as the accumulation of soil organic carbon (SOC) in response to the inputs of different quality plant residues in the desert environment. The present study evaluated the effects of plant residue addition from Pinus sylvestris var. mongolica (Pi), Artemisia desertorum (Ar) and Amorpha fruticosa (Am) on desert soil microbial community composition and function in a field experiment in the Mu Us Desert. The results showed that the addition of the three plant residues with different C/N ratios induced significant variation in soil microbial communities. The Am treatment (low C/N ratio) improved microbial diversity compared with the Ar and Pi treatments (medium and high C/N ratios). The variations in the taxonomic and functional compositions of the dominant phyla Actinobacteria and Proteobacteria were higher than those of the other phyla among the different treatments. Moreover, the network links between Proteobacteria and other phyla and the CAZyme genes abundances from Proteobacteria increased with increasing residue C/N, whereas those decreased for Actinobacteria. The SOC content of the Am, Ar and Pi treatments increased by 45.73%, 66.54% and 107.99%, respectively, as compared to the original soil. The net SOC accumulation was positively correlated with Proteobacteria abundance and negatively correlated with Actinobacteria abundance. These findings showed that changing the initial quality of plant residue from low C/N to high C/N can result in shifts in taxonomic and functional composition from Actinobacteria to Proteobacteria, which favors SOC accumulation. This study elucidates the ecophysiological roles of Actinobacteria and Proteobacteria in the desert carbon cycle, expands our understanding of the potential microbial-mediated mechanisms by which plant residue inputs affect SOC sequestration in desert soils, and provides valuable guidance for species selection in desert vegetation reconstruction.


Subject(s)
Desert Climate , Soil Microbiology , Ecosystem , Carbon/analysis , Carbon/metabolism , Soil/chemistry , Carbon Sequestration , Microbiota , Bacteria/classification , Bacteria/genetics
15.
Immun Ageing ; 21(1): 29, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730291

ABSTRACT

BACKGROUND: Quercetin is a flavonol compound widely distributed in plants that possesses diverse biological properties, including antioxidative, anti-inflammatory, anticancer, neuroprotective and senescent cell-clearing activities. It has been shown to effectively alleviate neurodegenerative diseases and enhance cognitive functions in various models. The immune system has been implicated in the regulation of brain function and cognitive abilities. However, it remains unclear whether quercetin enhances cognitive functions by interacting with the immune system. RESULTS: In this study, middle-aged female mice were administered quercetin via tail vein injection. Quercetin increased the proportion of NK cells, without affecting T or B cells, and improved cognitive performance. Depletion of NK cells significantly reduces cognitive ability in mice. RNA-seq analysis revealed that quercetin modulated the RNA profile of hippocampal tissues in aging animals towards a more youthful state. In vitro, quercetin significantly inhibited the differentiation of Lin-CD117+ hematopoietic stem cells into NK cells. Furthermore, quercetin promoted the proportion and maturation of NK cells by binding to the MYH9 protein. CONCLUSIONS: In summary, our findings suggest that quercetin promotes the proportion and maturation of NK cells by binding to the MYH9 protein, thereby improving cognitive performance in middle-aged mice.

16.
Am J Respir Crit Care Med ; 207(9): 1203-1213, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36346614

ABSTRACT

Rationale: Cell-free DNA (cfDNA) analysis holds promise for early detection of lung cancer and benefits patients with higher survival. However, the detection sensitivity of previous cfDNA-based studies was still low to suffice for clinical use, especially for early-stage tumors. Objectives: Establish an accurate and affordable approach for early-stage lung cancer detection by integrating cfDNA fragmentomics and machine learning models. Methods: This study included 350 participants without cancer and 432 participants with cancer. The participants' plasma cfDNA samples were profiled by whole-genome sequencing. Multiple cfDNA features and machine learning models were compared in the training cohort to achieve an optimal model. Model performance was evaluated in three validation cohorts. Measurements and Main Results: A stacked ensemble model integrating five cfDNA features and five machine learning algorithms constructed in the training cohort (cancer: 113; healthy: 113) outperformed all the models built on individual feature-algorithm combinations. This integrated model yielded superior sensitivities of 91.4% at 95.7% specificity for cohort validation I (area under the curve [AUC], 0.984), 84.7% at 98.6% specificity for validation II (AUC, 0.987), and 92.5% at 94.2% specificity for additional validation (AUC, 0.974), respectively. The model's high performance remained consistent when sequencing depth was down to 0.5× (AUC, 0.966-0.971). Furthermore, our model is sensitive to identifying early pathological features (83.2% sensitivity for stage I, 85.0% sensitivity for <1 cm tumor at the 0.66 cutoff). Conclusions: We have established a stacked ensemble model using cfDNA fragmentomics features and achieved superior sensitivity for detecting early-stage lung cancer, which could promote early diagnosis and benefit more patients.


Subject(s)
Cell-Free Nucleic Acids , Lung Neoplasms , Humans , Cell-Free Nucleic Acids/genetics , Lung , Lung Neoplasms/diagnosis , Whole Genome Sequencing , Biomarkers, Tumor/genetics
17.
Clin Oral Investig ; 28(7): 395, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916666

ABSTRACT

BACKGROUND: While the accurate prediction of the overall survival (OS) in patients with submandibular gland cancer (SGC) is paramount for informed therapeutic planning, the development of reliable survival prediction models has been hindered by the rarity of SGC cases. The purpose of this study is to identify key prognostic factors for OS in SGC patients using a large database and construct decision tree models to aid the prediction of survival probabilities in 12, 24, 60 and 120 months. MATERIALS AND METHODS: We performed a retrospective cohort study using the Surveillance, Epidemiology and End Result (SEER) program. Demographic and peri-operative predictor variables were identified. The outcome variables overall survival at 12-, 24-, 60, and 120 months. The C5.0 algorithm was utilized to establish the dichotomous decision tree models, with the depth of tree limited within 4 layers. To evaluate the performances of the novel models, the receiver operator characteristic (ROC) curves were generated, and the metrics such as accuracy rate, and area under ROC curve (AUC) were calculated. RESULTS: A total of 1,705, 1,666, 1,543, and 1,413 SGC patients with a follow up of 12, 24, 60 and 120 months and exact survival status were identified from the SEER database. Predictor variables of age, sex, surgery, radiation, chemotherapy, tumor histology, summary stage, metastasis to distant lymph node, and marital status exerted substantial influence on overall survival. Decision tree models were then developed, incorporating these vital prognostic indicators. Favorable consistency was presented between the predicted and actual survival statuses. For the training dataset, the accuracy rates for the 12-, 24-, 60- and 120-month survival models were 0.866, 0.767, 0.737 and 0.797. Correspondingly, the AUC values were 0.841, 0.756, 0.725, and 0.774 for the same time points. CONCLUSIONS: Based on the most important predictor variables identified using the large, SEER database, decision tree models were established that predict OS of SGC patients. The models offer a more exhaustive evaluation of mortality risk and may lead to more personalized treatment strategies.


Subject(s)
Decision Trees , SEER Program , Submandibular Gland Neoplasms , Humans , Male , Female , Middle Aged , Retrospective Studies , Submandibular Gland Neoplasms/pathology , Submandibular Gland Neoplasms/therapy , Aged , Prognosis , Adult , Survival Rate , Neoplasm Staging , Algorithms , Survival Analysis
18.
Sensors (Basel) ; 24(11)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38894427

ABSTRACT

To address the challenges associated with achieving high-fidelity printing of complex 3D bionic models, this paper proposes a method for spatially resolved defect characterization and fidelity assessment. This approach is based on 3D printer-associated optical coherence tomography (3D P-OCT) and GCode information. This method generates a defect characterization map by comparing and analyzing the target model map from GCode information and the reconstructed model map from 3D P-OCT. The defect characterization map enables the detection of defects such as material accumulation, filament breakage and under-extrusion within the print path, as well as stringing outside the print path. The defect characterization map is also used for defect visualization, fidelity assessment and filament breakage repair during secondary printing. Finally, the proposed method is validated on different bionic models, printing paths and materials. The fidelity of the multilayer HAP scaffold with gradient spacing increased from 0.8398 to 0.9048 after the repair of filament breakage defects. At the same time, the over-extrusion defects on the nostril and along the high-curvature contours of the nose model were effectively detected. In addition, the finite element analysis results verified that the 60-degree filling model is superior to the 90-degree filling model in terms of mechanical strength, which is consistent with the defect detection results. The results confirm that the proposed method based on 3D P-OCT and GCode can achieve spatially resolved defect characterization and fidelity assessment in situ, facilitating defect visualization and filament breakage repair. Ultimately, this enables high-fidelity printing, encompassing both shape and function.

19.
J Environ Manage ; 358: 120832, 2024 May.
Article in English | MEDLINE | ID: mdl-38599089

ABSTRACT

Polyethylene (PE) is the most productive plastic product and includes three major polymers including high-density polyethylene (HDPE), linear low-density polyethylene (LLDPE) and low-density polyethylene (LDPE) variation in the PE depends on the branching of the polymer chain and its crystallinity. Tenebrio obscurus and Tenebrio molitor larvae biodegrade PE. We subsequently tested larval physiology, gut microbiome, oxidative stress, and PE degradation capability and degradation products under high-purity HDPE, LLDPE, and LDPE powders (<300 µm) diets for 21 days at 65 ± 5% humidity and 25 ± 0.5 °C. Our results demonstrated the specific PE consumption rates by T. molitor was 8.04-8.73 mg PE ∙ 100 larvae-1⋅day-1 and by T. obscurus was 7.68-9.31 for LDPE, LLDPE and HDPE, respectively. The larvae digested nearly 40% of the ingested three PE and showed similar survival rates and weight changes but their fat content decreased by 30-50% over 21-day period. All the PE-fed groups exhibited adverse effects, such as increased benzoquinone concentrations, intestinal tissue damage and elevated oxidative stress indicators, compared with bran-fed control. In the current study, the digestive tract or gut microbiome exhibited a high level of adaptability to PE exposure, altering the width of the gut microbial ecological niche and community diversity, revealing notable correlations between Tenebrio species and the physical and chemical properties (PCPs) of PE-MPs, with the gut microbiome and molecular weight change due to biodegradation. An ecotoxicological simulation by T.E.S.T. confirmed that PE degradation products were little ecotoxic to Daphnia magna and Rattus norvegicus providing important novel insights for future investigations into the environmentally-friendly approach of insect-mediated biodegradation of persistent plastics.


Subject(s)
Biodegradation, Environmental , Larva , Microplastics , Polyethylene , Tenebrio , Animals , Tenebrio/metabolism , Polyethylene/metabolism , Microplastics/toxicity , Gastrointestinal Microbiome/drug effects , Oxidative Stress
20.
Mol Cancer ; 22(1): 48, 2023 03 11.
Article in English | MEDLINE | ID: mdl-36906534

ABSTRACT

The malignant tumor is a multi-etiological, systemic and complex disease characterized by uncontrolled cell proliferation and distant metastasis. Anticancer treatments including adjuvant therapies and targeted therapies are effective in eliminating cancer cells but in a limited number of patients. Increasing evidence suggests that the extracellular matrix (ECM) plays an important role in tumor development through changes in macromolecule components, degradation enzymes and stiffness. These variations are under the control of cellular components in tumor tissue via the aberrant activation of signaling pathways, the interaction of the ECM components to multiple surface receptors, and mechanical impact. Additionally, the ECM shaped by cancer regulates immune cells which results in an immune suppressive microenvironment and hinders the efficacy of immunotherapies. Thus, the ECM acts as a barrier to protect cancer from treatments and supports tumor progression. Nevertheless, the profound regulatory network of the ECM remodeling hampers the design of individualized antitumor treatment. Here, we elaborate on the composition of the malignant ECM, and discuss the specific mechanisms of the ECM remodeling. Precisely, we highlight the impact of the ECM remodeling on tumor development, including proliferation, anoikis, metastasis, angiogenesis, lymphangiogenesis, and immune escape. Finally, we emphasize ECM "normalization" as a potential strategy for anti-malignant treatment.


Subject(s)
Extracellular Matrix , Neoplasms , Humans , Extracellular Matrix/metabolism , Neoplasms/metabolism , Immunotherapy , Tumor Microenvironment/physiology
SELECTION OF CITATIONS
SEARCH DETAIL