Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
Small ; 20(14): e2308547, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37988646

ABSTRACT

Magnetic resonance imaging contrast agents are frequently used in clinics to enhance the contrast between diseased and normal tissues. The previously reported poly(acrylic acid) stabilized exceedingly small gadolinium oxide nanoparticles (ES-GdON-PAA) overcame the problems of commercial Gd chelates, but limitations still exist, i.e., high r2/r1 ratio, long blood circulation half-life, and no data for large scale synthesis and formulation optimization. In this study, polymaleic acid (PMA) is found to be an ideal stabilizer to synthesize ES-GdONs. Compared with ES-GdON-PAA, the PMA-stabilized ES-GdON (ES-GdON-PMA) has a lower r2/r1 ratio (2.05, 7.0 T) and a lower blood circulation half-life (37.51 min). The optimized ES-GdON-PMA-9 has an exceedingly small particle size (2.1 nm), excellent water dispersibility, and stability. A facile, efficient, and environmental friendly synthetic method is developed for large-scale synthesis of the ES-GdONs-PMA. The weight of the optimized freeze-dried ES-GdON-PMA-26 synthesized in a 20 L of reactor reaches the kilogram level. The formulation optimization is also finished, and the concentrated ES-GdON-PMA-26 formulation (CGd = 100 mm) after high-pressure steam sterilization possesses eligible physicochemical properties (i.e., pH value, osmolality, viscosity, and density) for investigational new drug application.


Subject(s)
Contrast Media , Nanoparticles , Contrast Media/chemistry , Magnetic Resonance Imaging/methods , Gadolinium/chemistry , Nanoparticles/chemistry
2.
Int J Mol Sci ; 25(8)2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38673901

ABSTRACT

Irreversible electroporation (IRE) is a prominent non-thermal ablation method widely employed in clinical settings for the focal ablation therapy of solid tumors. Utilizing high-voltage, short-duration electric pulses, IRE induces perforation defects in the cell membrane, leading to apoptotic cell death. Despite the promise of irreversible electroporation (IRE) in clinical applications, it faces challenges concerning the coverage of target tissues for ablation, particularly when compared to other thermal ablation therapies such as radiofrequency ablation, microwave ablation, and cryoablation. This study aims to investigate the induced hyperthermal effect of IRE by applying a polydopamine nanoparticle (Dopa NP) coating on the electrode. We hypothesize that the induced hyperthermal effect enhances the therapeutic efficacy of IRE for cancer ablation. First, we observed the hyperthermal effect of IRE using Dopa NP-coated electrodes in hydrogel phantom models and then moved to in vivo models. In particular, in in vivo animal studies, the IRE treatment of rabbit hepatic lobes with Dopa NP-coated electrodes exhibited a two-fold higher increase in temperature (ΔT) compared to non-coated electrodes. Through a comprehensive analysis, we found that IRE treatment with Dopa NP-coated electrodes displayed the typical histological signatures of hyperthermal ablation, including the disruption of the hepatic cord and lobular structure, as well as the infiltration of erythrocytes. These findings unequivocally highlight the combined efficacy of IRE with Dopa NPs for electroporation and the hyperthermal ablation of target cancer tissues.


Subject(s)
Electrodes , Electroporation , Indoles , Nanoparticles , Polymers , Indoles/chemistry , Indoles/pharmacology , Animals , Polymers/chemistry , Nanoparticles/chemistry , Electroporation/methods , Rabbits , Liver/surgery , Liver/drug effects , Hyperthermia, Induced/methods
3.
Small ; 19(49): e2302856, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37596716

ABSTRACT

Magnetic iron oxide nanoparticles (MIONs) based T2 -weighted magnetic resonance imaging (MRI) contrast agents (CAs) are liver-specific with good biocompatibility, but have been withdrawn from the market and replaced with Eovist (Gd-EOB-DTPA) due to their inherent limitations (e.g., susceptibility to artifacts, high magnetic moment, dark signals, long processing time of T2 imaging, and long waiting time for patients after administration). Without the disadvantages of Gd-chelates and MIONs, the recently emerging exceedingly small MIONs (ES-MIONs) (<5 nm) are promising T1 CAs for MRI. However, there are rare review articles focusing on ES-MIONs for T1 -weighted MRI. Herein, the recent progress of ES-MIONs, including synthesis methods (the current basic synthesis methods and improved methods), surface modifications (artificial polymers, natural polymers, zwitterions, and functional protein), T1 -MRI visual strategies (structural remodeling, reversible self-assemblies, metal ions doped, T1 /T2 dual imaging modes, and PET/MRI strategy), and imaging-guided cancer therapy (chemotherapy, gene therapy, ferroptosis therapy, photothermal therapy, photodymatic therapy, radiotherapy, immuotherapy, sonodynamic therapy, and multimode therapy), is summarized. The detailed description of synthesis methods and applications of ES-MIONs in this review is anticipated to attract extensive interest from researchers in different fields and promote their participation in the establishment of ES-MIONs based nanoplatforms for tumor theranostics.


Subject(s)
Neoplasms , Humans , Neoplasms/diagnostic imaging , Neoplasms/therapy , Magnetic Resonance Imaging/methods , Contrast Media/chemistry , Magnetic Iron Oxide Nanoparticles , Polymers
4.
Molecules ; 27(7)2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35408604

ABSTRACT

Epigenetic alterations found in all human cancers are promising targets for anticancer therapy. In this sense, histone deacetylase inhibitors (HDACIs) are interesting anticancer agents that play an important role in the epigenetic regulation of cancer cells. Here, we report 15 novel hydroxamic acid-based histone deacetylase inhibitors with quinazolinone core structures. Five compounds exhibited antiproliferative activity with IC50 values of 3.4-37.8 µM. Compound 8 with a 2-mercaptoquinazolinone cap moiety displayed the highest antiproliferative efficacy against MCF-7 cells. For the HDAC6 target selectivity study, compound 8 displayed an IC50 value of 2.3 µM, which is 29.3 times higher than those of HDAC3, HDAC4, HDAC8, and HDAC11. Western blot assay proved that compound 8 strongly inhibited tubulin acetylation, a substrate of HDAC6. Compound 8 also displayed stronger inhibition activity against HDAC11 than the control drug Belinostat. The inhibitory mechanism of action of compound 8 on HDAC enzymes was then explored using molecular docking study. The data revealed a high binding affinity (-7.92 kcal/mol) of compound 8 toward HDAC6. In addition, dock pose analysis also proved that compound 8 might serve as a potent inhibitor of HDAC11.


Subject(s)
Antineoplastic Agents , Histone Deacetylase Inhibitors , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Proliferation , Drug Screening Assays, Antitumor , Epigenesis, Genetic , Histone Deacetylase 6 , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Humans , Molecular Docking Simulation , Molecular Structure , Repressor Proteins/metabolism , Structure-Activity Relationship
5.
Biomacromolecules ; 22(10): 4138-4145, 2021 10 11.
Article in English | MEDLINE | ID: mdl-34347453

ABSTRACT

In this study, we designed bisphosphonate-conjugated polyanionic hyaluronic acid (HA) microbeads (MBs) for the controlled delivery of bone morphogenetic protein 2 (BMP2). MBs were prepared via the photo-crosslinking of bisphosphonate (alendronate)-conjugated methacrylated HA (Alen-MHA). The polyanionic Alen-MHA MBs actively absorbed cationic BMP2 up to 91.0% of the loading efficacy and displayed a sustained release of BMP2 for 10 days. BMP2/Alen-MHA MBs induced osteogenic-related genes in cellular experiments and showed the highly increased bone formation efficacy in thigh muscle injection and rat spinal fusion animal models. Thus, BMP2/Alen-MHA MBs provide a promising opportunity to improve the delivery efficiency of BMP2.


Subject(s)
Bone Morphogenetic Protein 2 , Osteogenesis , Animals , Diphosphonates , Hyaluronic Acid , Microspheres , Rats
6.
Biochem Biophys Res Commun ; 504(1): 25-33, 2018 09 26.
Article in English | MEDLINE | ID: mdl-30172374

ABSTRACT

Hepatic fibrosis is characterized by the excessive accumulation of extracellular matrix (ECM), primarily collagen, within the liver. Because reactive oxygen species (ROS) has been implicated in its pathogenesis, the use of antioxidants as a potential treatment has been broadly explored. Here, we investigated the hepatoprotective properties of ramalin (RM), a compound extracted from the Antarctic lichen Ramalina terebrata, against hepatic fibrosis in vitro and in vivo. RM suppressed hepatic stellate cell (HSC) activation in vitro without any significant signs of adverse effects on the cells tested, and the accumulation of ECM was dramatically reduced in the liver tissue. Oral administration of RM in rats noticeably improved the gross appearance of the liver with increased body and liver weight relative to the DMN injected rats, and all of the serum biochemical markers returned to the normal range. RM treatment have ameliorated hepatic fibrosis in rats induced by DMN by repressing α-smooth muscle actin (α-SMA) and upregulating heme oxygenase-1 (HO-1). In addition, RM significantly reduced collagen accumulation, and levels of malondialdehyde (MDA) and hydroxyproline (HP) in the liver tissue of DMN injected rats. The efficacy exerted by RM was through erythroid 2-related factor 2 (Nrf2) mediated antioxidant response proteins such as HO-1 and NAD(P)H quinone dehydrogenase 1 (NQO-1). Our results show the beneficial effect of RM against the progression of hepatic fibrosis.


Subject(s)
Antioxidants/therapeutic use , Glutamates/therapeutic use , Liver Cirrhosis/drug therapy , Animals , Antioxidants/chemistry , Cell Line , Cell Proliferation/drug effects , Dimethylnitrosamine , Disease Progression , Glutamates/chemistry , Hepatic Stellate Cells/cytology , Hepatic Stellate Cells/drug effects , Humans , Liver Cirrhosis/chemically induced , Liver Cirrhosis/pathology , NF-E2-Related Factor 2/metabolism , Platelet-Derived Growth Factor/antagonists & inhibitors , Rats , Response Elements , Signal Transduction/drug effects
7.
J Vasc Interv Radiol ; 29(12): 1756-1763, 2018 12.
Article in English | MEDLINE | ID: mdl-30266211

ABSTRACT

PURPOSE: To evaluate the feasibility of self-expanding metal stent (SEMS) placement and fluorescence microendoscopic monitoring for determination of fibroblast cell proliferation after stent placement in an esophageal mouse model. MATERIALS AND METHODS: Twenty fibroblast-specific protein (FSP)-1 green fluorescent protein (GFP) transgenic mice were analyzed. Ten mice (Group A) underwent SEMS placement, and fluoroscopic and fluorescence microendoscopic images were obtained biweekly until 8 weeks thereafter. Ten healthy mice (Group B) were used for control esophageal values. RESULTS: SEMS placement was technically successful in all mice. The relative average number of fibroblast GFP cells and the intensities of GFP signals in Group A were significantly higher than in Group B after stent placement. The proliferative cellular response, including granulation tissue, epithelial layer, submucosal fibrosis, and connective tissue, was increased in Group A. FSP-1-positive cells were more prominent in Group A than in Group B. CONCLUSIONS: SEMS placement was feasible and safe in an esophageal mouse model, and proliferative cellular response caused by fibroblast cell proliferation after stent placement was longitudinally monitored using a noninvasive fluorescence microendoscopic technique. The results have implications for the understanding of proliferative cellular response after stent placement in real-life patients and provide initial insights into new clinical therapeutic strategies for restenosis.


Subject(s)
Cell Proliferation , Esophagoscopy/instrumentation , Esophagus/pathology , Fibroblasts/pathology , Microscopy, Fluorescence , Self Expandable Metallic Stents , Animals , Esophagoscopy/adverse effects , Esophagus/metabolism , Feasibility Studies , Fibroblasts/metabolism , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Materials Testing , Mice, Transgenic , Prosthesis Design , S100 Calcium-Binding Protein A4/genetics , S100 Calcium-Binding Protein A4/metabolism , Time Factors
8.
Pharm Dev Technol ; 23(4): 407-413, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29095656

ABSTRACT

Megestrol acetate (MGA) is used as a progestagen to treat advanced cancers in the breast or uterus and anorexia-cachexia syndrome in cancer patients. Due to its low solubility (BCS class II), MGA bioavailability needs to be enhanced for efficacy and safety. We developed MGA-encapsulated Eudragit® L100 (EUD) nanoparticles (MGA-EUD (1:1) and MGA-EUD (2:1)) using an ultrasonic nebulization method. MGA-EUD (1:1) and MGA-EUD (2:1) consisted of MGA and EUD at the mass ratios of 1:1 and 2:1. Their physicochemical properties, i.e. particle size, loading efficiency, morphology, and crystallinity were determined. Dissolution tests were performed using USP method II. For pharmacokinetics, they were orally administered at 50 mg/kg to mice. Microcrystalline MGA suspension (MGA-MC, Megace®, BMS) was used as control. MGA-EUD (1:1) and MGA-EUD (2:1) had a smooth and spherical shape of 0.70 and 1.05 µm in diameter with loading efficiencies of 93 and 95% showing amorphous states of MGA. They significantly enhanced the dissolution potential of MGA. Oral bioavailability of MGA-EUD (1:1) and MGA-EUD (2:1) increased 2.0- and 1.7-fold compared to that of MGA-MC. It suggests that ultrasonic nebulization method for the fabrication of polymeric nanoparticles is a promising approach to improve the bioavailability of poorly soluble drugs.


Subject(s)
Antineoplastic Agents, Hormonal/administration & dosage , Appetite Stimulants/administration & dosage , Megestrol Acetate/administration & dosage , Nanoparticles/chemistry , Polymethacrylic Acids/chemistry , Administration, Oral , Animals , Antineoplastic Agents, Hormonal/chemistry , Antineoplastic Agents, Hormonal/pharmacokinetics , Appetite Stimulants/chemistry , Appetite Stimulants/pharmacokinetics , Biological Availability , Male , Megestrol Acetate/chemistry , Megestrol Acetate/pharmacokinetics , Mice , Mice, Inbred BALB C , Particle Size , Phase Transition , Solubility , Sonication , Suspensions , Ultrasonics
9.
Gastrointest Endosc ; 86(1): 219-228, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28137596

ABSTRACT

BACKGROUND AND AIMS: Self-expanding metallic stent (SEMS) placement is a well-established method for treating malignant esophageal strictures; however, this procedure has not gained widespread acceptance for treating benign esophageal strictures because of granulation tissue formation. The aim of the present study was to investigate whether EW-7197, a novel per-oral transforming growth factor-ß type I receptor kinase inhibitor, suppressed granulation tissue formation after SEMS placement in the rat esophagus. METHODS: Sixty rats underwent SEMS placement and were randomly divided into 4 groups. Group A (n = 20) received vehicle-treated control for 4 weeks. Group B (n = 20) received 20 mg/kg/day EW-7197 for 4 weeks. Group C (n = 10) received 20 mg/kg/day EW-7197 for 4 weeks followed by vehicle-treated control for 4 weeks. Group D (n = 10) received 20 mg/kg/day EW-7197 for 8 weeks. RESULTS: SEMS placement was technically successful in all rats. Eleven rats, however, were excluded because of stent migration (n = 9) and procedure-related death (n = 2). The luminal diameter in group A was significantly smaller than those in groups B, C, and D (all P < .001). The percentage of granulation tissue area, number of epithelial layers, thickness of submucosal fibrosis, percentage of connective tissue area, and degree of collagen deposition were significantly higher in group A than in groups B, C, and D (all P < .001); however, there were no significant differences among groups B, C, and D. EW-7197 decreased the expression levels of phospho-Smad 3, N-cadherin, fibronectin, α-smooth muscle actin, and transforming growth factor-ß1 and increased the expression level of E-cadherin (all P < .01). CONCLUSIONS: EW-7197 suppressed granulation tissue formation after SEMS placement in the rat esophagus.


Subject(s)
Aniline Compounds/pharmacology , Esophagus/drug effects , Granulation Tissue/drug effects , Granulation Tissue/pathology , Protein Kinase Inhibitors/pharmacology , Self Expandable Metallic Stents/adverse effects , Triazoles/pharmacology , Actins/metabolism , Animals , Cadherins/metabolism , Esophagus/diagnostic imaging , Esophagus/metabolism , Esophagus/pathology , Fibronectins/metabolism , Granulation Tissue/diagnostic imaging , Granulation Tissue/metabolism , Male , Nerve Tissue Proteins/metabolism , Phosphorylation , Protein Serine-Threonine Kinases/antagonists & inhibitors , Radiography , Rats , Rats, Sprague-Dawley , Receptor, Transforming Growth Factor-beta Type I , Receptors, Transforming Growth Factor beta/antagonists & inhibitors , Smad3 Protein/metabolism , Transforming Growth Factor beta1/metabolism
10.
Biomacromolecules ; 18(10): 3099-3105, 2017 Oct 09.
Article in English | MEDLINE | ID: mdl-28850775

ABSTRACT

Recombinant human parathyroid hormone 1-34 (rhPTH 1-34) is the most potent anabolic drug recommended for patients with osteoporosis who do not respond to conventional treatment. However, subcutaneous intermittent injection is the only effective regimen due to its unusual action of mechanism. This regimen is inconvenient and is a big hurdle in clinical applications. In this study, we designed polyelectrolyte microbeads that can deliver rhPTH 1-34 in response to Ca2+ concentration, which indicates the osteoporotic status. Dextran photopolymer was synthesized, mixed with anionic monoacrylate, and photopolymerized by passing through capillary microfluidics to obtain the microbeads. The anionic property of microbeads was confirmed by toluidine blue staining. One microbead, loaded with a 1 day dose of rhPTH 1-34 (23.4 ± 0.9 µg), released rhPTH 1-34 in a triggered manner following the addition of Ca2+ ion. In vitro cell study demonstrated that rhPTH 1-34 released in a pulsatile manner from the microbeads induced osteogenic markers (ALP, RUNX2, and OPN) and precipitated mineral disposition more effectively.


Subject(s)
Calcium/metabolism , Drug Liberation , Microspheres , Osteoporosis/drug therapy , Peptide Fragments/administration & dosage , Teriparatide/analogs & derivatives , Animals , Cell Line , Dextrans/chemistry , Mice , Peptide Fragments/pharmacokinetics , Peptide Fragments/therapeutic use , Rats , Teriparatide/administration & dosage , Teriparatide/pharmacokinetics , Teriparatide/therapeutic use
11.
Biomed Microdevices ; 16(6): 897-904, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25135441

ABSTRACT

Self-expanding non-vascular metal stents (SEMS) is now a choice of treatment for tumor-induced obstructive symptoms of gastrointestinal tract. But in-growing tumor causes re-stenosis. Here, we studied a paclitaxel-eluting nanofiber-covered stent for palliative chemotherapy of gastrointestinal cancer and its related stenosis. In vivo and in vitro feasibility of nanofiber-covered nonvascular stent was evaluated in this study. Nanofiber-covered stent released paclitaxel (PTX) in controlled manner for 30 days. PTX-NFM significantly inhibited the growth of CT-26 colon cancer in comparison with PTX injection. PTX maintained higher tumor concentrations over 1.0 µg/ml for more than 14 days without systemic exposure. TUNEL and H&E staining proved locally concentrated PTX induced the higher apoptosis than PTX injection. In this way, PTX-eluting nanofiber-covered stent possibly inhibits in-growth of cancer and extends patency of stent. Clinical feasibility of PTX-eluting nanofiber nonvascular stent for cholangiocarcinoma and gastrointestinal cancers will be investigated in further studies.


Subject(s)
Antineoplastic Agents, Phytogenic , Coated Materials, Biocompatible , Colonic Neoplasms/therapy , Drug-Eluting Stents , Nanofibers/chemistry , Paclitaxel , Palliative Care/methods , Animals , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Cell Line, Tumor , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Colonic Neoplasms/pathology , Constriction, Pathologic/pathology , Constriction, Pathologic/therapy , Humans , Mice , Mice, Inbred BALB C , Paclitaxel/chemistry , Paclitaxel/pharmacology
12.
J Mater Sci Mater Med ; 25(2): 573-82, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24338378

ABSTRACT

The gastrointestinal (GI) endoscopy has become a standard diagnostic tool for GI ulcers and cancer. In this study we studied endoscopic application of epidermal growth factor-containing chitosan hydrogel (EGF-CS gel) for treatment of GI ulcer. We hypothesized that directional ulcer-coating using EGF-CS gel via endoscope would precipitate ulcer-healing. EGF-CS gel was directly introduced to the ulcer-region after ulceration in acetic acid-induced gastric ulcer (AAU) and mucosal resection-induced gastric ulcer (MRU) rabbit and pig models. The ulcer dimensions and mucosal thicknesses were estimated and compared with those in the control group. Healing efficacy was more closely evaluated by microscopic observation of the ulcer after histological assays. In the AAU model, the normalized ulcer size of the gel-treated group was 2.3 times smaller than that in the non-treated control group on day 3 after ulceration (P < 0.01). In the MRU model, the normalized ulcer size of the gel-treated group was 5.4 times smaller compared to that in the non-treated control group on day 1 after ulceration (P < 0.05). Histological analysis supported the ability of EGF-CS gel to heal ulcers. The present study suggests that EGF-CS gel is a promising candidate for treating gastric bleeding and ulcers.


Subject(s)
Chitosan/administration & dosage , Endoscopy, Gastrointestinal , Epidermal Growth Factor/administration & dosage , Gastric Mucosa/surgery , Hydrogels , Peptic Ulcer/therapy , Wound Healing , Animals , Disease Models, Animal , Female , Peptic Ulcer/physiopathology , Rabbits , Swine
13.
Sci Rep ; 14(1): 4428, 2024 02 23.
Article in English | MEDLINE | ID: mdl-38395958

ABSTRACT

Controlled release of proteins, such as growth factors, from biocompatible silk fibroin (SF) hydrogel is valuable for its use in tissue engineering, drug delivery, and other biological systems. To achieve this, we introduced silk fibroin-mimetic peptides (SFMPs) with the repeating unit (GAGAGS)n. Using green fluorescent protein (GFP) as a model protein, our results showed that SFMPs did not affect the GFP function when conjugated to it. The SFMP-GFP conjugates incorporated into SF hydrogel did not change the gelation time and allowed for controlled release of the GFP. By varying the length of SFMPs, we were able to modulate the release rate, with longer SFMPs resulting in a slower release, both in water at room temperature and PBS at 37 °C. Furthermore, the SF hydrogel with the SFMPs showed greater strength and stiffness. The increased ß-sheet fraction of the SF hydrogel, as revealed by FTIR analysis, explained the gel properties and protein release behavior. Our results suggest that the SFMPs effectively control protein release from SF hydrogel, with the potential to enhance its mechanical stability. The ability to modulate release rates by varying the SFMP length will benefit personalized and controlled protein delivery in various systems.


Subject(s)
Fibroins , Fibroins/chemistry , Hydrogels/chemistry , Delayed-Action Preparations , Peptides , Drug Delivery Systems , Silk/chemistry
14.
Article in English | MEDLINE | ID: mdl-36576112

ABSTRACT

Cancer immunotherapy agents fight cancer via immune system stimulation and have made significant advances in minimizing side effects and prolonging the survival of patients with solid tumors. However, major limitations still exist in cancer immunotherapy, including the inefficiency of immune response stimulation in specific cancer types, therapy resistance caused by the tumor microenvironment (TME), toxicities by the immune imbalance, and short lifetime of stimulator of interferon genes (STING) agonist. Recent advances in nanomedicine have shown significant potential in overcoming the obstacles of cancer immunotherapy. Several nanoscale agents have been reported for cancer immunotherapy, including nanoscale cancer vaccines impacting the STING pathway, nanomaterials reprogramming TME, nano-agents triggering immune response with immune checkpoint inhibitor synergy, ferroptosis-mediated and indoleamine-2,3-dioxygenase immunosuppression-mediated cancer immunotherapy, and nanomedicine-meditated chimeric antigen receptor-T-cell therapy. Herein, we summarize the major advances and innovations in nanomedicine-based cancer immunotherapy, and outline the opportunities and challenges to integrate more advanced nanomaterials into cancer immunotherapy. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.


Subject(s)
Nanomedicine , Neoplasms , Humans , Immunotherapy , Neoplasms/therapy , Immunity , Tumor Microenvironment
15.
Adv Healthc Mater ; 12(18): e2203362, 2023 07.
Article in English | MEDLINE | ID: mdl-36893770

ABSTRACT

The emerging tumor ferroptosis therapy confronts impediments of the tumor microenvironment (TME) with weak intrinsic acidity, inadequate endogenous H2 O2 , and a powerful intracellular redox balance system that eliminates toxic reactive oxygen species (ROS). Herein, a strategy of Fenton reaction cycloacceleration initiated by remodeling the TME for magnetic resonance imaging (MRI)-guided high-performance ferroptosis therapy of tumors is proposed. The synthesized nanocomplex exhibits enhanced accumulation at carbonic anhydrase IX (CAIX)-positive tumors based on the CAIX-mediated active targeting, and increased acidification via the inhibition of CAIX by 4-(2-aminoethyl) benzene sulfonamide (ABS) (remodeling TME). This accumulated H+ and abundant glutathione in TME synergistically trigger biodegradation of the nanocomplex to release the loaded cuprous oxide nanodots (CON), ß-lapachon (LAP), Fe3+ , and gallic acid-ferric ions coordination networks (GF). The Fenton and Fenton-like reactions are cycloaccelerated via the catalytic loop of Fe-Cu, and the LAP-triggered and nicotinamide adenine dinucleotide phosphate quinone oxidoreductase1-mediated redox cycle, generating robust ROS and plenitudinous lipid peroxides accumulation for ferroptosis of tumor cells. The detached GF network has improved relaxivities in response to the TME. Therefore, the strategy of Fenton reaction cycloacceleration initiated by remodeling the TME is promising for MRI-guided high-performance ferroptosis therapy of tumors.


Subject(s)
Ferroptosis , Nanoparticles , Neoplasms , Humans , Reactive Oxygen Species , Tumor Microenvironment , Benzene , Sulfanilamide , Cell Line, Tumor , Neoplasms/drug therapy , Hydrogen Peroxide
16.
ACS Appl Mater Interfaces ; 15(39): 46213-46225, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37740721

ABSTRACT

Recently, nanozymes with peroxidase (POD)-like activity have shown great promise for ferroptosis-based tumor therapy, which are capable of transforming hydrogen peroxide (H2O2) to highly toxic hydroxyl radicals (•OH). However, the unsatisfactory therapeutic performance of nanozymes due to insufficient endogenous H2O2 and acidity at tumor sites has always been a conundrum. Herein, an ultrasmall gold (Au) @ ferrous sulfide (FeS) cascade nanozyme (AuNP@FeS) with H2S-releasing ability constructed with an Au nanoparticle (AuNP) and an FeS nanoparticle (FeSNP) is designed to increase the H2O2 level and acidity in tumor cells via the collaboration between cascade reactions of AuNP@FeS and the biological effects of released H2S, achieving enhanced •OH generation as well as effective ferroptosis for tumor therapy. The cascade reaction in tumor cells is activated by the glucose oxidase (GOD)-like activity of AuNP in AuNP@FeS to catalyze intratumoral glucose into H2O2 and gluconic acid; meanwhile, the released H2S from AuNP@FeS reduces H2O2 consumption by inhibiting intracellular catalase (CAT) activity and promotes lactic acid accumulation. The two pathways synergistically boost H2O2 and acidity in tumor cells, thus inducing a cascade to generate abundant •OH by catalyzing H2O2 through the POD-like activity of FeS in AuNP@FeS and ultimately causing amplified ferroptosis. In vitro and in vivo experiments demonstrated that AuNP@FeS presents a superior tumor therapeutic effect compared to that of AuNP or FeS alone. This strategy represents a simple but powerful method to amplify ferroptosis with H2S-releasing cascade nanozymes and will pave a new way for the development of tumor therapy.

17.
Technol Cancer Res Treat ; 22: 15330338221147122, 2023.
Article in English | MEDLINE | ID: mdl-37861099

ABSTRACT

Irreversible electroporation (IRE) is a non-thermal and minimal invasive modality to ablate pathologic lesions such as hepatic tumors. Histological analysis of the initial lesions after IRE can help predict ablation efficacy. We aimed to investigate the histological characteristics of early hepatic lesions after IRE application using animal models. IRE (1500 V/cm, a pulse length of 100 µs, 60 or 90 pulses) was applied to the liver of miniature pigs. H&E and TUNEL staining were performed and analyzed. Ablated zones of pig liver were discolored and separated from the normal zone after IRE. Histologic characteristics of ablation zones included preserved hepatic lobular architecture with a unique hexagonal-like structure. Apoptotic cells were detected, and sinusoidal dilatation and blood congestion were observed, but hepatic arteries and bile ducts were intact around the ablation zones. The early lesions obtained by delivering monophasic square wave pulses through needle electrodes reflected typical histological changes induced by IRE. Therefore, it was found that the histological assessment of the early hepatic lesion after IRE can be utilized to predict the IRE ablation effect.


Subject(s)
Ablation Techniques , Neoplasms , Swine , Animals , Models, Animal , Liver/surgery , Staining and Labeling , Electroporation
18.
Biochim Biophys Acta Mol Cell Res ; 1870(1): 119384, 2023 01.
Article in English | MEDLINE | ID: mdl-36302465

ABSTRACT

Adverse effects of spaceflight on the human body are attritubuted to microgravity and space radiation. One of the most sensitive organs affected by them is the eye, particularly the retina. The conditions that astronauts suffer, such as visual acuity, is collectively called a spaceflight-associated neuro-ocular syndrome (SANS); however, the underlying molecular mechanism of the microgravity-induced ocular pathogenesis is not clearly understood. The current study explored how microgravity affects the retina function in ARPE19 cells in vitro under time-averaged simulated microgravity (µG) generated by clinostat. We found multicellular spheroid (MCS) formation and a significantly decreased cell migration potency under µG conditions compared to 1G in ARPE19 cells. We also observed that µG increases intracellular reactive oxygen species (ROS) and causes mitochondrial dysfunction in ARPE19 cells. Subsequently, we showed that µG activates autophagic pathways and ciliogenesis. Furthermore, we demonstrated that mitophagy activation is triggered via the mTOR-ULK1-BNIP3 signaling axis. Finally, we validated the effectiveness of TPP-Niacin in mitigating µG-induced oxidative stress and mitochondrial dysfunction in vitro, which provides the first experimental evidence for TPP-Niacin as a potential therapeutic agent to ameliorate the cellular phenotypes caused by µG in ARPE19 cells. Further investigations are, however, required to determine its physiological functions and biological efficacies in primary human retinal cells, in vivo models, and target identification.


Subject(s)
Niacin , Weightlessness , Humans , Niacin/metabolism , Niacin/pharmacology , Oxidative Stress , Epithelial Cells/metabolism , Retina/metabolism , Mitochondria/metabolism
19.
Biomaterials ; 302: 122300, 2023 11.
Article in English | MEDLINE | ID: mdl-37659110

ABSTRACT

The immunotherapy efficiency of stimulator of interferon genes (STING)-activatable drugs (e.g., 7-ethyl-10-hydroxycamptothecin, SN38) is limited by their non-specificity to tumor cells and the slow excretion of the DNA-containing exosomes from the treated cancer cells. The efficacy of tumor ferroptosis therapy is always limited by the elimination of lipid peroxides (LPO) by the pathways of glutathione peroxidase 4 (GPX4), dihydroorotate dehydrogenase (DHODH) and ferroptosis suppressor protein 1(FSP1). To solve these problems, in this study, we developed a STING pathway-activatable contrast agent (i.e., FeGd-HN@TA-Fe2+-SN38 nanoparticles) for magnetic resonance imaging (MRI)-guided tumor immunoferroptosis synergistic therapy. The remarkable in vivo MRI performance of FeGd-HN@TA-Fe2+-SN38 is attributed to its high accumulation at tumor location, the high relaxivities of FeGd-HN core, and the pH-sensitive TA-Fe2+-SN38 layer. The effectiveness and biosafety of the immunoferroptosis synergistic therapy induced by FeGd-HN@TA-Fe2+-SN38 are demonstrated by the in vivo investigations on the 4T1 tumor-bearing mice. The mechanisms of in vivo immunoferroptosis synergistic therapy by FeGd-HN@TA-Fe2+-SN38 are demonstrated by measurements of in vivo ROS, LPO, GPX4 and SLC7A11 levels, the intratumor matured DCs and CD8+ T cells, the protein expresion of STING and IRF-3, and the secretion of IFN-ß and IFN-γ.


Subject(s)
Contrast Media , Neoplasms , Animals , Mice , CD8-Positive T-Lymphocytes , Magnetic Resonance Imaging , Immunotherapy , Neoplasms/diagnostic imaging , Neoplasms/therapy , Lipid Peroxides , Cell Line, Tumor
20.
Pharm Res ; 29(3): 795-805, 2012 Mar.
Article in English | MEDLINE | ID: mdl-21971829

ABSTRACT

PURPOSE: To evaluate the usefulness of hematoporphyrin (HP)-modification of the surface of doxorubicin (DOX)-loaded bovine serum albumin (BSA) nanoparticles (NPs) in the liver cancer-selective delivery of DOX. METHODS: HP-modified NPs (HP-NPs) were prepared by conjugation of amino groups on the surface of NPs with HP, a ligand for low density lipoprotein (LDL) receptors on the hepatoma cells. In vitro cellular accumulation of DOX, in vivo biodistribution of DOX, safety, and anti-tumor efficacy were evaluated for HP-NPs. RESULTS: Cytotoxicity and accumulation of DOX were in the order of HP-NPs>NPs>solution form (SOL). Cellular uptake from HP-NPs was proportional to the expression level of LDL receptors on the cells, indicating possible involvement of LDL receptor-mediated endocytosis (RME) in uptake. The "merit index," an AUC ratio of DOX in liver (target organ) to DOX in heart (major side effect organ) following iv administration of HP-NPs to hepatoma rats, was 132.5 and 4 times greater compared to SOL and NPs, respectively. The greatest suppression of body weight decrease and tumor size increase was observed for iv-administered HP-NPs in tumor-bearing mice. CONCLUSIONS: HP modification appears to be useful in selective delivery of NP-loaded DOX to tumors.


Subject(s)
Antibiotics, Antineoplastic/administration & dosage , Carcinoma, Hepatocellular/drug therapy , Doxorubicin/administration & dosage , Drug Delivery Systems , Hematoporphyrins/chemistry , Liver Neoplasms/drug therapy , Nanoparticles/chemistry , Serum Albumin, Bovine/chemistry , Animals , Antibiotics, Antineoplastic/pharmacokinetics , Antibiotics, Antineoplastic/therapeutic use , Carcinoma, Hepatocellular/pathology , Cattle , Doxorubicin/pharmacokinetics , Doxorubicin/therapeutic use , Drug Delivery Systems/methods , Hep G2 Cells , Humans , Liver/drug effects , Liver/pathology , Liver Neoplasms/pathology , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Myocardium/metabolism , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL