Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
Anal Chem ; 96(15): 5887-5896, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38567874

ABSTRACT

Microcystin-LR (MC-LR) is a severe threat to human and animal health; thus, monitoring it in the environment is essential, especially in water quality protections. Herein, in this work, we synthesize PVDF/CNT/Ag molecular imprinted membranes (PCA-MIMs) via an innovative combination of surface-enhanced Raman spectroscopy (SERS) detection, membrane separation, and molecular-imprinted technique toward the analysis of MC-LR in water. In particular, a light-initiated imprint is employed to protect the chemical structure of the MC-LR molecules. Furthermore, in order to ensure the detection sensitivity, the SERS substrates are combined with the membrane via the assistance of magnetism. The effect of synthesis conditions on the SERS sensitivity was investigated in detail. It is demonstrated from the characteristic results that the PCA-MIMs present high sensitivity to the MC-LR molecules with excellent selectivity against the interfere molecules. Results clearly show that the as-prepared PCA-MIMs hold great potential applications to detect trace MC-LR for the protection of water quality.


Subject(s)
Biomimetics , Fluorocarbon Polymers , Polyvinyls , Spectrum Analysis, Raman , Humans , Spectrum Analysis, Raman/methods , Microcystins/analysis , Marine Toxins
2.
Inorg Chem ; 63(23): 10767-10774, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38781222

ABSTRACT

Preparation of ultrathin metal-organic framework (MOF) nanosheets is an effective way to improve the catalytic efficiency of MOF photocatalysts owing to their superiority in reducing the recombination rate of photogenerated electrons and holes and enhancing charge transfer. Herein, a light-sensitive two-dimensional uranyl-organic framework named HNU-68 was synthesized. Due to its interlayer stacking structure, the corresponding ultrathin nanosheets with a thickness of 4.4 nm (HNU-68-N) can be obtained through ultrasonic exfoliation. HNU-68-N exhibited an enhanced ability to selectively oxidize toluene to benzaldehyde, with the value of turnover frequency being approximately three times higher than that of the bulk HNU-68. This enhancement is attributed to the smaller size and interface resistance of the layered HNU-68-N nanosheets, which facilitate more thorough substrate contact and faster charge transfer, leading to an improvement in the photocatalytic efficiency. This work provides a potential candidate for the application of ultrathin uranyl-based nanosheets.

3.
Small ; 19(6): e2205313, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36461734

ABSTRACT

Electrochemical Nc reduction has been regarded as one of the most promising approaches to producing ammonia under mild conditions, but there are remaining pressing challenges in improving the reaction rate and efficiency. Herein, an unconventional galvanic replacement reaction is reported to fabricate a unique hierarchical structure composed of Fe3 O4 -CeO2 bimetallic nanotubes covered by Fe2 O3 ultrathin nanosheets. Control experiments reveal that CeO2 species play the essential role of stabilizer for Fe2+ cations. Compared with bare CeO2 and Fe2 O3 nanotubes, the as-obtained Fe2 O3 /Fe3 O4 -CeO2 possesses a remarkably enhanced NH3 yield rate (30.9 µg h-1 mgcat -1 ) and Faradaic efficiency (26.3%). The enhancement can be attributed to the hierarchical feature that makes electrodes more easily to contact with electrolytes. More importantly, as verified by density functional theory calculations, the generation of Fe2 O3 -Fe3 O4 heterogeneous junctions can efficiently optimize the reaction pathways, and the energy barrier of the potential determining step (the *N2 hydrogenates into *N*NH) is significantly decreased.

4.
Inorg Chem ; 62(19): 7165-7172, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36630578

ABSTRACT

Defect engineering has been generally observed and utilized in crystal materials including metal oxides, metal-organic frameworks, and so on; however, how to relate the defect formation and crystallization process is needed to be revealed clearly, and how to heal the defect is a big challenge. Herein, based on the new coordination complex (HNU-53), the crystal defects were created by increasing the reaction time and crystal size. Following the crystal growth process, the crystal color centers were simultaneously generated, resulting in fluorescence quenching. To heal the defect, the crystal growth was controlled by the introduction of rare earth ions. With the coordination competition of rare earth ions, the crystal defects were reduced and recovery of fluorescence emission was achieved.

5.
Int J Mol Sci ; 24(14)2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37511611

ABSTRACT

Bladder cancer is the leading urinary tract malignancy. Epidemiological evidence has linked lower cancer incidence in schizophrenia patients to long-term medication, highlighting the anticancer potential of antipsychotics. Sertindole is an atypical antipsychotic agent with reported anticancer action on breast and gastric cancers. Yet, sertindole's effect on bladder cancer remains unaddressed. We herein present the first evidence of sertindole's antiproliferative effect and mechanisms of action on human bladder cancer cells. Sertindole was cytotoxic against bladder cancer cells while less cytotoxic to normal urothelial cells. Apoptosis was a primary cause of sertindole's cytotoxicity, as the pan-caspase inhibitor z-VAD-fmk rescued cells from sertindole-induced killing. Mechanistically, sertindole inhibited the activation of signal transducer and activator of transcription 3 (STAT3), an oncogenic driver of bladder cancer, as sertindole lowered the levels of tyrosine 705-phosphorylated STAT3 along with that of STAT3's target gene BCL-xL. Notably, ectopic expression of the dominant-active STAT3 mutant impaired sertindole-induced apoptosis in addition to restoring BCL-xL expression. Moreover, bladder cancer cells overexpressing BCL-xL were refractory to sertindole's proapoptotic action, arguing that sertindole represses STAT3 to downregulate BCL-xL, culminating in the induction of apoptosis. Overall, the current study indicated sertindole exerts bladder cancer cytotoxicity by provoking apoptosis through targeted inhibition of the antiapoptotic STAT3/BCL-xL signaling axis. These findings implicate the potential to repurpose sertindole as a therapeutic strategy for bladder cancer.


Subject(s)
Antipsychotic Agents , Urinary Bladder Neoplasms , Humans , Antipsychotic Agents/pharmacology , Antipsychotic Agents/therapeutic use , STAT3 Transcription Factor/metabolism , Apoptosis , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/metabolism , bcl-X Protein/genetics , bcl-X Protein/metabolism , Cell Line, Tumor
6.
Cancer Sci ; 113(1): 205-220, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34773335

ABSTRACT

Lung adenocarcinoma (ADC) is the predominant histological type of lung cancer, and radiotherapy is one of the current therapeutic strategies for lung cancer treatment. Unfortunately, biological complexity and cancer heterogeneity contribute to radioresistance development. Karyopherin α2 (KPNA2) is a member of the importin α family that mediates the nucleocytoplasmic transport of cargo proteins. KPNA2 overexpression is observed across cancer tissues of diverse origins. However, the role of KPNA2 in lung cancer radioresistance is unclear. Herein, we demonstrated that high expression of KPNA2 is positively correlated with radioresistance and cancer stem cell (CSC) properties in lung ADC cells. Radioresistant cells exhibited nuclear accumulation of KPNA2 and its cargos (OCT4 and c-MYC). Additionally, KPNA2 knockdown regulated CSC-related gene expression in radioresistant cells. Next-generation sequencing and bioinformatic analysis revealed that STAT1 activation and nuclear phospholipid scramblase 1 (PLSCR1) are involved in KPNA2-mediated radioresistance. Endogenous PLSCR1 interacting with KPNA2 and PLSCR1 knockdown suppressed the radioresistance induced by KPNA2 expression. Both STAT1 and PLSCR1 were found to be positively correlated with dysregulated KPNA2 in radioresistant cells and ADC tissues. We further demonstrated a potential positive feedback loop between PLSCR1 and STAT1 in radioresistant cells, and this PLSCR1-STAT1 loop modulates CSC characteristics. In addition, AKT1 knockdown attenuated the nuclear accumulation of KPNA2 in radioresistant lung cancer cells. Our results collectively support a mechanistic understanding of a novel role for KPNA2 in promoting radioresistance in lung ADC cells.


Subject(s)
Adenocarcinoma of Lung/metabolism , Cell Nucleus/metabolism , Lung Neoplasms/metabolism , Phospholipid Transfer Proteins/metabolism , Radiation Tolerance , STAT1 Transcription Factor/metabolism , alpha Karyopherins/metabolism , Adenocarcinoma of Lung/genetics , Cell Line, Tumor , Feedback, Physiological , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/radiation effects , Gene Knockout Techniques , High-Throughput Nucleotide Sequencing , Humans , Lung Neoplasms/genetics , Neoplastic Stem Cells/metabolism , Phospholipid Transfer Proteins/genetics , STAT1 Transcription Factor/genetics , Up-Regulation , alpha Karyopherins/genetics
7.
Inorg Chem ; 61(31): 12301-12307, 2022 Aug 08.
Article in English | MEDLINE | ID: mdl-35881495

ABSTRACT

Visible-light-driven organic transformation photocatalyzed by metal-organic frameworks (MOFs) under mild conditions is considered a feasible route to conserve energy and simplify synthesis. Herein, a light-sensitized, three-dimensional uranyl-organic framework (HNU-64) with twofold interpenetration and its derivatives HNU-64-CH3 and HNU-64-Cl with functionalized ligands of -CH3 and -Cl groups were obtained. These MOFs have broad optical absorption bands and suitable band energy levels in photooxidation, which makes them exhibit high activity and selectivity for the photooxidation of benzylamine to N-benzylbenzoimide under mild conditions. This work provides an efficient and simple synthetic option for oxidative coupling of amines to directly produce imines.

8.
Inorg Chem ; 61(25): 9801-9807, 2022 Jun 27.
Article in English | MEDLINE | ID: mdl-35696705

ABSTRACT

As an important factor affecting global agricultural output, pesticides have a significant impact on the ecosystem. It is an urgent task to accurately and conveniently detect pesticide residues after their application. Herein, a fluorescent dye@MOF platform was designed via the encapsulation of rhodamine B (RhB) into the MOF structure (named RhB@HNU-48), which can significantly enhance the sensing sensitivity of alachlor with an ultralow detection limit of 0.59 ppb. The improved sensitivity of RhB@HNU-48 to pesticides was attributed to the host-guest interactions that affect the excitation and emission spectra of the composites. Based on the sensing capability of RhB@HNU-48, a logic gate was built to evaluate the safety level of alachlor residues in rivers and soil. The preparation of photofunctionalized MOF composites through modulation of host-guest interactions offers a promising strategy for the construction of desired sensors for agricultural residues.


Subject(s)
Lanthanoid Series Elements , Metal-Organic Frameworks , Pesticides , Acetamides , Ecosystem , Metal-Organic Frameworks/chemistry
9.
Inorg Chem ; 61(1): 456-463, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-34932332

ABSTRACT

Developing fluorescent materials with multiple and tunable emissions under different conditions is necessary to meet the growing demand for optical anticounterfeiting technology. Different modes of fluorescence emission can be obtained by loading multiple fluorescent components into metal-organic frameworks (MOFs) and modulating the interaction among them for multiple anticounterfeiting purposes. Herein, a Cd-based MOF (HNU-60) was constructed as a host to encapsulate both lanthanide ions and carbon quantum dots. Multiple fluorescence emissions can be achieved by modulation of host-guest and guest-guest interaction, which holds promise for multiple anticounterfeiting applications. This work opens the opportunity to construct the hybrid MOF-based materials with controlled fluorescence properties for emerging anticounterfeiting applications in various fields.

10.
Int J Mol Sci ; 24(1)2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36613579

ABSTRACT

Bladder cancer is a leading human malignancy worldwide. Signal transducer and activator of transcription (STAT) 3 is an oncogenic transcription factor commonly hyperactivated in most human cancers, including bladder cancer. Notably, preclinical evidence has validated STAT3 blockade as a promising therapeutic strategy for bladder cancer. Hispolon Methyl Ether (HME) is a structural analog of hispolon, an anticancer component of the medicinal mushroom Phellinus linteus. Thus far, HME's anticancer activity and mechanisms remain largely unknown. We herein report HME was cytotoxic, more potent than cisplatin, and proapoptotic to various human bladder transitional carcinoma cell lines. Of note, HME blocked STAT3 activation, evidenced by HME-elicited reduction in tyrosine 705-phosphorylated STAT3 levels constitutively expressed or induced by interleukin-6. Significantly, HME-induced cytotoxicity was abrogated in cells expressing a dominant-active STAT3 mutant (STAT3-C), confirming STAT3 blockage as a pivotal mechanism of HME's cytotoxic action. We further revealed that survivin was downregulated by HME, while its levels were rescued in STAT3-C-expressing cells. Moreover, survivin overexpression abolished HME-induced cytotoxicity, illustrating survivin as a central downstream mediator of STAT3 targeted by HME. Lastly, HME was shown to lower tyrosine 416-phosphorylated SRC levels, suggesting that HME inhibits STAT3 by repressing the activation of SRC, a STAT3 upstream kinase. In conclusion, we present the first evidence of HME's anti-bladder cancer effect, likely proceeding by evoking apoptosis through suppression of the antiapoptotic SRC/STAT3/survivin signaling axis.


Subject(s)
Antineoplastic Agents , Carcinoma , Urinary Bladder Neoplasms , Humans , Survivin/metabolism , Urinary Bladder/pathology , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/pathology , Apoptosis , STAT3 Transcription Factor/metabolism , Cell Proliferation
11.
Molecules ; 27(24)2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36557836

ABSTRACT

Formic acid is a common chemical raw material, the effective detection of which is of importance to food safety and environmental quality. In this work, the lanthanide functionalized dual-emission metal-organic framework (TH25) was prepared as a ratiometric fluorescent sensor for formic acid. This ratiometric sensor has a good detection performance with high selectivity, sensitivity, and reproducibility. Together with a low limit of detection of 2.1 ppm, these characters promise the ability to sense at low levels as well as a practical detection ability. This work provides ideas for the design and synthesis of effective chemical sensors for organic acids.


Subject(s)
Lanthanoid Series Elements , Metal-Organic Frameworks , Reproducibility of Results , Coloring Agents , Formates , Fluorescent Dyes
12.
Inorg Chem ; 2021 Jul 23.
Article in English | MEDLINE | ID: mdl-34296855

ABSTRACT

Developing high-performance catalysts toward the Fenton reaction is important for environmental protection and sustainable development, yet it is still challenging. The high-spin states of first-row transition metal atoms with tetrahedral coordination provide a flexible electronic environment to activate the catalyst and elevate its catalytic activity. As a type of material with adjustable structures, metal-organic frameworks (MOFs) are excellent candidate catalysts as they can accurately regulate the coordination configurations of metal ions. In this paper, we investigate and summarize the direct formation of bimetallic carboxylate Li/Co-MOFs with tetrahedral coordination metal centers in a mixed H2O/polar organic solvent system. The induction of Li(I) ions is manifested in the generation of hydroxides during the dissociation of the Co(II) solvation structure to trigger the tetrahedral coordination behavior of Co(II). These Li/Co-MOFs containing high-spin Co(II) centers can serve as highly efficient Fenton-like catalysts for organics. This study provides a promising strategy for rational design of MOF-based catalysts with high-spin metal centers for application in environment governance.

13.
Rapid Commun Mass Spectrom ; 34 Suppl 1: e8578, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31499585

ABSTRACT

RATIONALE: Accumulating evidence has linked prolonged exposure to heavy metals to cancer occurrence in the urinary system. However, the specific biological mechanisms responsible for the association of heavy metals with the unusually high incidence of upper tract urothelial carcinoma in Taiwan are complex and incompletely understood. METHODS: To elucidate the specific biological mechanism and identify molecular indicators of the unusually high association of upper tract urothelial carcinoma with heavy metal exposure, protein expression following the treatment of T24 human bladder carcinoma and RT4 human bladder papilloma cell line models with arsenic (As) and cadmium (Cd) was studied. Proteomic changes in these cell models were integrated with data from a human bladder cancer (BLCA) tissue proteome to identify possible protein indicators of heavy metal exposure. RESULTS: After mass spectrometry based proteomic analysis and verification by Western blotting procedures, we identified 66 proteins that were up-regulated and 92 proteins that were down-regulated in RT4 cell extracts after treatment with As or Cd. Some 52 proteins were up-regulated and 136 proteins were down-regulated in T24 cell extracts after treatment with Cd. We further confirmed that down-expression of the PML (promyelocytic leukemia) protein was sustained for at least 75 days after exposure of bladder cells to As. Dysregulation of these cellular proteins by As was associated with three biological pathways. Immunohistochemical analyses of paraffin-embedded BLCA tissue slides confirmed that PML protein expression was decreased in BLCA tumor cells compared with adjacent noncancerous epithelial cells. CONCLUSIONS: These data suggest that PML may play an important role in the pathogenesis of BLCA and may be an indicator of heavy metal exposure in bladder cells.


Subject(s)
Arsenic/adverse effects , Cadmium/adverse effects , Proteins/analysis , Urinary Bladder Neoplasms/chemically induced , Urinary Bladder Neoplasms/diagnosis , Biomarkers, Tumor/analysis , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Humans , Protein Interaction Maps , Proteins/metabolism , Proteomics , Signal Transduction , Taiwan/epidemiology , Tandem Mass Spectrometry , Urinary Bladder/drug effects , Urinary Bladder/pathology , Urinary Bladder Neoplasms/epidemiology , Urinary Bladder Neoplasms/metabolism
14.
Inorg Chem ; 59(14): 9857-9865, 2020 Jul 20.
Article in English | MEDLINE | ID: mdl-32589021

ABSTRACT

Uranium is one of the principal raw materials in the nuclear industry, but if released into the natural environment, it also poses latent health risks to mankind. Therefore, there is an urgent need to develop a strategy that can concurrently detect and adsorb uranium to realize the sustainable development of nuclear power and protect the environment. In this work, a fluorescent zinc-based metal-organic framework (HNU-50) was designed and synthesized for the effective detection and extraction of U(VI). The amide groups on N-pyridin-4-ylpyridine-4-carboxamide ligands and two uncoordinated carboxyl oxygen atoms on pyromellitic acid ligands in HNU-50 provide potential uranium-binding sites. Consequently, HNU-50 is competent of selectively and efficiently catching uranyl ions, achieving an optimum adsorption capacity of 632 mg/g. Additionally, the adsorption of U(VI) results in fluorescence quenching of HNU-50, thus allowing sensitive and selective detection of U(VI) by fluorescence change. Note that HNU-50 exhibits a considerably low detection limit of 1.2 × 10-8 M for U(VI) in aqueous solution, which is below the World Health Organization maximum pollution standards for potable water (6.3 × 10-8 M).

15.
Inorg Chem ; 59(3): 1778-1784, 2020 Feb 03.
Article in English | MEDLINE | ID: mdl-31950823

ABSTRACT

A uranium-based metal-organic framework, [(UO2)(H2DTATC)] (HNU-39, H4DTATC = 5,5'-(9,10-dihydroxy-4a,9,9a,10-tetrahydroanthracene-9,10-diyl)diisophthalic acid) was successfully prepared by a hydrothermal method. The structure of HNU-39 comprises UO8 hexagonal bipyramids linked by doubly protonated DTATC ligands, forming a ribbon arrangement. It is worth noting that the DTATC ligand was transformed in situ from 5,5'-(anthracene-9,10-diyl)diisophthalic acid (H4DPATC) during the synthesis of HNU-39. Research on fluorescence properties has shown that HNU-39 exhibits fluorescence turn-on response under alkaline conditions and could be used as a potential pH sensor. Moreover, HNU-39 can also be successfully applied for pH sensing in real samples from a sewage treatment plant. The sensing mechanism can be interpreted as OH- ions reacting with the protons in the organic ligand of HNU-39.

16.
Mol Cell Proteomics ; 16(5): 799-811, 2017 05.
Article in English | MEDLINE | ID: mdl-28235782

ABSTRACT

Multiple (selected) reaction monitoring (MRM/SRM) of peptides is a growing technology for target protein quantification because it is more robust, precise, accurate, high-throughput, and multiplex-capable than antibody-based techniques. The technique has been applied clinically to the large-scale quantification of multiple target proteins in different types of fluids. However, previous MRM-based studies have placed less focus on sample-preparation workflow and analytical performance in the precise quantification of proteins in saliva, a noninvasively sampled body fluid. In this study, we evaluated the analytical performance of a simple and robust multiple reaction monitoring (MRM)-based targeted proteomics approach incorporating liquid chromatography with mass spectrometry detection (LC-MRM/MS). This platform was used to quantitatively assess the biomarker potential of a group of 56 salivary proteins that have previously been associated with human cancers. To further enhance the development of this technology for assay of salivary samples, we optimized the workflow for salivary protein digestion and evaluated quantification performance, robustness and technical limitations in analyzing clinical samples. Using a clinically well-characterized cohort of two independent clinical sample sets (total n = 119), we quantitatively characterized these protein biomarker candidates in saliva specimens from controls and oral squamous cell carcinoma (OSCC) patients. The results clearly showed a significant elevation of most targeted proteins in saliva samples from OSCC patients compared with controls. Overall, this platform was capable of assaying the most highly multiplexed panel of salivary protein biomarkers, highlighting the clinical utility of MRM in oral cancer biomarker research.


Subject(s)
Biomarkers, Tumor/metabolism , Chromatography, Liquid/methods , Mass Spectrometry/methods , Mouth Neoplasms/metabolism , Salivary Proteins and Peptides/metabolism , Calibration , Case-Control Studies , Humans , Limit of Detection , Mouth Neoplasms/diagnosis , Neoplasms, Squamous Cell/diagnosis , Neoplasms, Squamous Cell/metabolism , Reproducibility of Results
17.
Inorg Chem ; 56(22): 14147-14156, 2017 Nov 20.
Article in English | MEDLINE | ID: mdl-29091408

ABSTRACT

Two novel three-dimensional interpenetrated uranyl-organic frameworks, (NH4)4[(UO2)4(L1)3]·6H2O (1) and [(UO2)2(H2O)2L2]·2H2O (2), where L1 = tetrakis(3-carboxyphenyl)silicon and L2 = tetrakis(4-carboxyphenyl)silicon, were synthesized by a combination of two isomeric tetrahedral silicon-centered ligands with 3-connected triangular [(UO2)(COO)3]- and 4-connected dinuclear [(UO2)2(COO)4] units, respectively. Structural analyses indicate that 1 possesses a 2-fold interpenetrating anion bor network, while 2 exhibits a 3-fold interpenetrated 4,4-connected neutral network with pts topology. Both compounds were characterized by thermogravimetric analysis and IR, UV-vis, and photoluminescence spectroscopy. A relativistic density functional theory (DFT) investigation on 10 model compounds of 1 and 2 shows good agreement of the structural parameters, stretching vibrational frequencies, and absorption with experimental results; the time-dependent DFT calculations unravel that low-energy absorption bands originate from ligand-to-uranium charge transfer.

18.
Inorg Chem ; 56(3): 1669-1678, 2017 Feb 06.
Article in English | MEDLINE | ID: mdl-28118014

ABSTRACT

The hydrothermal reaction of uranyl ions with (5-methyl-1,3-phenylene)diphosphonic acid (H4MPDP) in the presence of additives such as nitric acid, N-bearing species, and heterometal ions yielded five new uranyl organic hybrids: (H3O)[(UO2)5(H2O)4(H3DPB)2(H2DPB)(HDPB)]·2H2O (1), (Hphen)(phen)[(UO2)3(H2DPB)(HDPB)] (2), (H2dipy)[(UO2)3(MPDP)2] (3), Zn(bipy)(UO2)(MPDP) (4), and Co(bipy)(UO2)(MPDP)·H2O (5) (H5DPB = 3,5-diphosphonobenzoic acid; phen = 1,10-phenanthroline; dipy = 4,4'-bipyridine; bipy = 2,2'-bipyridine). Single-crystal X-ray diffraction (XRD) demonstrates that 1 and 2 are 3D frameworks constructed of uranyl centers and carboxyphosphonate DPB ligands; the latter were formed via the in situ oxidation of H4MPDP. In the homometallic uranyl diphosphonate 3, less common UO6 square bipyramids connected by MPDP ligands were incorporated to form the 2D assembly. A further introduction of heterometal ions produced two heterobimetallic uranyl phosphonates 4 and 5. Both of them show layered structures, formed by UO6 square bipyramids linked by MPDP ligands with heterometal-centered polyhedra decorated on the sides of the layers. It is found that the pH and heterometal ions have significant effects on the structures of the complexes. In addition to the syntheses and XRD characterization, the spectroscopic properties of these uranyl complexes were also addressed. To complement the experimental results, density functional theory calculations were carried out on several model complexes that feature a homo- or heterobimetallic molecular skeleton. Geometrical/electronic structures, IR spectra, and electronic absorptions were discussed.

19.
Chemistry ; 22(33): 11652-9, 2016 Aug 08.
Article in English | MEDLINE | ID: mdl-27374008

ABSTRACT

A Mn(II) phosphonate of the general formula [Mn(H2 L)2 (H2 O)2 (H2 bibp)] adopts a layered motif with protonated H2 bibp(2+) cations embedded in the channels (H4 L=thiophene-2-phosphonic acid; bibp=4,4'-bis(1-imidazolyl)biphenyl). The title compound exhibits excellent adsorptive removal of methyl orange (MO) dye from aqueous solution. Its advantageous features include fast adsorption, high uptake capacity, selective removal, and reusability, which are of great significance for practical application in wastewater treatment. Meanwhile, the compound displays rapid photochromism upon irradiation with visible light at room temperature. Extensive research has demonstrated that such behavior is based on a ligand-to-ligand charge-transfer (LLCT) mechanism. The irradiated sample possesses an ultra-long-lived charge-separated state. Moreover, not only is the compound the first Mn-based photochromic MOF, but it is also one of the very few examples showing LLCT with non-photochromic components.

20.
Chemistry ; 22(43): 15451-15457, 2016 Oct 17.
Article in English | MEDLINE | ID: mdl-27611499

ABSTRACT

Rational selection and modification of rare earth metal centers and photoactive organic linkers enables designable multiphotofunctionality to come to fruition in new hybrid coordination polymer materials. By using a viologen-functionalized diphosphonate linker, two terbium phosphonate compounds (Tb-1 and Tb-2) have been constructed, which display reversible photochromic reactions in response to UV light and soft X-ray irradiation. In addition, the photo-induced electron-transfer reaction can modulate the luminescent emission to thus realize photoluminescence switching behavior. Furthermore, both terbium phosphonates can serve as highly sensitive sensors to probe Cu2+ in solution through their luminescence. Thus, they represent the first photochromic examples of lanthanide phosphonate-based materials with photomodulated luminescence and sensitive detection of metal ions.

SELECTION OF CITATIONS
SEARCH DETAIL