Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 109
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Mol Plant Microbe Interact ; 37(4): 416-423, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38171485

ABSTRACT

Soybean cyst nematode (Heterodera glycines, soybean cyst nematode [SCN]) disease adversely affects the yield of soybean and leads to billions of dollars in losses every year. To control the disease, it is necessary to study the resistance genes of the plant and their mechanisms. Isoflavonoids are secondary metabolites of the phenylalanine pathway, and they are synthesized in soybean. They are essential in plant response to biotic and abiotic stresses. In this study, we reported that phenylalanine ammonia-lyase (PAL) genes GmPALs involved in isoflavonoid biosynthesis, can positively regulate soybean resistance to SCN. Our previous study demonstrated that the expression of GmPAL genes in the resistant cultivar Huipizhi (HPZ) heidou are strongly induced by SCN. PAL is the rate-limiting enzyme that catalyzes the first step of phenylpropanoid metabolism, and it responds to biotic or abiotic stresses. Here, we demonstrate that the resistance of soybeans against SCN is suppressed by PAL inhibitor l-α-(aminooxy)-ß-phenylpropionic acid (L-AOPP) treatment. Overexpression of eight GmPAL genes caused diapause of nematodes in transgenic roots. In a petiole-feeding bioassay, we identified that two isoflavones, daidzein and genistein, could enhance resistance against SCN and suppress nematode development. This study thus reveals GmPAL-mediated resistance against SCN, information that has good application potential. The role of isoflavones in soybean resistance provides new information for the control of SCN. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Disease Resistance , Gene Expression Regulation, Plant , Glycine max , Isoflavones , Phenylalanine Ammonia-Lyase , Plant Diseases , Tylenchoidea , Glycine max/genetics , Glycine max/parasitology , Tylenchoidea/physiology , Plant Diseases/parasitology , Plant Diseases/immunology , Plant Diseases/genetics , Animals , Phenylalanine Ammonia-Lyase/genetics , Phenylalanine Ammonia-Lyase/metabolism , Disease Resistance/genetics , Isoflavones/pharmacology , Isoflavones/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified
2.
Ann Clin Microbiol Antimicrob ; 23(1): 71, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39127671

ABSTRACT

Brucella spp. are facultative intracellular pathogens that cause zoonosis- brucellosis worldwide. There has been a trend of the re-emergence of brucellosis worldwide in recent years. The epidemic situation of brucellosis is serious in Xinjiang. To analyze the epidemic situation of Brucella spp. in Xinjiang among humans and animals, this study identified 144 Brucella isolates from Xinjiang using classical identification and 16 S rRNA sequencing. MLVA, drug resistance testing, and wgSNP detection were also performed. At the same time, analysis was conducted based on the published data of Brucella isolates worldwide. The results showed that the dominant species was B. melitensis biovar 3, which belonged to GT42 (MLVA-8 typing) and the East Mediterranean lineage. The correlation among isolates was high both in humans or animals. The isolates in Xinjiang exhibited higher polymorphism compared to other locations in China, with polymorphism increasing each year since 2010. No amikacin/kanamycin-resistant strains were detected, but six rifampicin-intermediate isolates were identified without rpoB gene variation. The NJ tree of the wgSNP results indicated that there were three main complexes of the B. melitensis epidemic in Xinjiang. Based on the results of this study, the prevention and control of brucellosis in Xinjiang should focus on B. melitensis, particularly strains belonging to B. melitensis bv.3 GT42 (MLVA-8 typing) and East Mediterranean lineage. Additionally, the rifampicin- and trimethoprim-sulfamethoxazole- resistance of isolates in Xinjiang should be closely monitored to avoid compromising the therapeutic efficacy and causing greater losses. These results provide essential data for the prevention and control of brucellosis in Xinjiang and China. Although the isolates from Xinjiang have significant characteristics among Chinese isolates and can reflect the epidemiological situation of brucellosis in China to some extent, this study cannot represent the characteristics of isolates from other regions.


Subject(s)
Anti-Bacterial Agents , Brucella melitensis , Brucellosis , Genotype , Brucellosis/epidemiology , Brucellosis/microbiology , Brucella melitensis/genetics , Brucella melitensis/drug effects , Brucella melitensis/isolation & purification , China/epidemiology , Humans , Animals , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Microbial Sensitivity Tests , RNA, Ribosomal, 16S/genetics , Phylogeny , Polymorphism, Genetic , Epidemics
3.
Dig Dis Sci ; 69(8): 2856-2874, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38824257

ABSTRACT

INTRODUCTION: Previous studies have demonstrated that Dual-specificity phosphatase 4 (DUSP4) plays an important role in the progression of different tumor types. However, the role and mechanism of DUSP4 in colorectal cancer (CRC) remain unclear. AIMS: We investigate the role and mechanisms of DUSP4 in CRC. METHODS: Immunohistochemistry was used to investigate DUSP4 expression in CRC tissues. Cell proliferation, apoptosis and migration assays were used to validate DUSP4 function in vitro and in vivo. RNA-sequence assay was used to identify the target genes of DUSP4. Human phosphokinase array and inhibitor assays were used to explore the downstream signaling of DUSP4. RESULTS: DUSP4 expression was upregulated in CRC tissues relative to normal colorectal tissues, and DUSP4 expression showed a significant positive correlation with CRC stage. Consistently, we found that DUSP4 was highly expressed in colorectal cancer cells compared to normal cells. DUSP4 knockdown inhibits CRC cell proliferation, migration and promotes apoptosis. Furthermore, the ectopic expression of DUSP4 enhanced CRC cell proliferation, migration and diminished apoptosis in vitro and in vivo. Human phosphokinase array data showed that ectopic expression of DUSP4 promotes CREB activation. RNA-sequencing data showed that PRKACB acts as a downstream target gene of DUSP4/CREB and enhances CREB activation through PKA/cAMP signaling. In addition, xenograft model results demonstrated that DUSP4 promotes colorectal tumor progression via PRKACB/CREB activation in vivo. CONCLUSION: These findings suggest that DUSP4 promotes CRC progression. Therefore, it may be a promising therapeutic target for CRC.


Subject(s)
Apoptosis , Cell Movement , Cell Proliferation , Colorectal Neoplasms , Cyclic AMP Response Element-Binding Protein , Dual-Specificity Phosphatases , Mitogen-Activated Protein Kinase Phosphatases , Humans , Colorectal Neoplasms/pathology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Dual-Specificity Phosphatases/genetics , Dual-Specificity Phosphatases/metabolism , Mitogen-Activated Protein Kinase Phosphatases/genetics , Mitogen-Activated Protein Kinase Phosphatases/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Cyclic AMP Response Element-Binding Protein/genetics , Animals , Female , Male , Cyclic AMP-Dependent Protein Kinase Catalytic Subunits/metabolism , Cyclic AMP-Dependent Protein Kinase Catalytic Subunits/genetics , Gene Expression Regulation, Neoplastic , Mice , Cell Line, Tumor , Mice, Nude , Middle Aged , Signal Transduction
4.
Phytochem Anal ; 35(4): 621-633, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38191170

ABSTRACT

INTRODUCTION: Steroidal saponins characterised by intricate chemical structures are the main active components of a well-known traditional Chinese medicine (TCM) Rhizoma Paridis. The metabolic profiles of steroidal saponins in vivo remain largely unexplored, despite their renowned antitumor, immunostimulating, and haemostatic activity. OBJECTIVE: To perform a comprehensive analysis of the chemical constituents of Rhizoma Paridis total saponins (RPTS) and their metabolites in rats after oral administration. METHOD: The chemical constituents of RPTS and their metabolites were analysed using ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS). RESULTS: A reliable UPLC-Q-TOF-MS/MS method was established, and a total of 142 compounds were identified in RPTS. Specifically, diosgenin-type saponins showed the diagnostic ions at m/z 415.32, 397.31, 283.25, 271.21, and 253.20, whereas pennogenin-type saponins exhibited the diagnostic ions at m/z 413.31, 395.30, and 251.20. Based on the characteristic fragments and standard substances, 15 specific metabolites were further identified in the faeces, urine, plasma, and bile of rats. The metabolic pathways of RPTS, including phase I reactions (de-glycosylation and oxidation) and phase II reactions (glucuronidation), were explored and summarised, and the enrichment of metabolites was characterised by multivariate statistical analysis. CONCLUSION: The intricate RPTS could be transformed into relatively simple metabolites in rats through de-glycosylation, which provides a reference for further metabolic studies and screening of active ingredients for TCM.


Subject(s)
Rats, Sprague-Dawley , Saponins , Tandem Mass Spectrometry , Animals , Saponins/analysis , Saponins/chemistry , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Male , Rats , Rhizome/chemistry , Drugs, Chinese Herbal/chemistry , Steroids/analysis
5.
Biochem Biophys Res Commun ; 689: 149230, 2023 12 31.
Article in English | MEDLINE | ID: mdl-37984176

ABSTRACT

Legionella pneumophila aspartate aminotransferase (Lpg0070) is a member of the transaminase and belongs to the pyridoxal 5'-phosphate (PLP)-dependent superfamily. It is responsible for the transfer of α-amino between aspartate and α-ketoglutarate to form glutamate and oxaloacetate. Here, we report the crystal structure of Lpg0070 at the resolution of 2.14 Å and 1.7 Å, in apo-form and PLP-bound, respectively. Our structural analysis revealed the specific residues involved in the PLP binding and free form against PLP-bound supported conformational changes before substrate recognition. In vitro enzyme activity proves that the absence of the N-terminal arm reduces the enzyme activity of Lpg0070. These data provide further evidence to support the N-terminal arm plays a crucial role in catalytic activity.


Subject(s)
Legionella pneumophila , Aspartate Aminotransferases/metabolism , Legionella pneumophila/metabolism , Binding Sites , Models, Molecular , Pyridoxal Phosphate/metabolism , Glutamic Acid/metabolism , Crystallography, X-Ray
6.
J Neuroinflammation ; 20(1): 208, 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37697347

ABSTRACT

Cellular senescence serves as a fundamental and underlying activity that drives the aging process, and it is intricately associated with numerous age-related diseases, including Alzheimer's disease (AD), a neurodegenerative aging-related disorder characterized by progressive cognitive impairment. Although increasing evidence suggests that senescent microglia play a role in the pathogenesis of AD, their exact role remains unclear. In this study, we quantified the levels of lactic acid in senescent microglia, and hippocampus tissues of naturally aged mice and AD mice models (FAD4T and APP/PS1). We found lactic acid levels were significantly elevated in these cells and tissues compared to their corresponding counterparts, which increased the level of pan histone lysine lactylation (Kla). We aslo identified all histone Kla sites in senescent microglia, and found that both the H3K18 lactylation (H3K18la) and Pan-Kla were significantly up-regulated in senescent microglia and hippocampus tissues of naturally aged mice and AD modeling mice. We demonstrated that enhanced H3K18la directly stimulates the NFκB signaling pathway by increasing binding to the promoter of Rela (p65) and NFκB1(p50), thereby upregulating senescence-associated secretory phenotype (SASP) components IL-6 and IL-8. Our study provides novel insights into the physiological function of Kla and the epigenetic regulatory mechanism that regulates brain aging and AD. Specifically, we have identified the H3K18la/NFκB axis as a critical player in this process by modulating IL-6 and IL-8. Targeting this axis may be a potential therapeutic strategy for delaying aging and AD by blunting SASP.


Subject(s)
Alzheimer Disease , Animals , Mice , Alzheimer Disease/genetics , Histones , Interleukin-6 , Interleukin-8 , Microglia , NF-kappa B , Signal Transduction , Brain , Aging , Lactic Acid
7.
Plant Biotechnol J ; 21(2): 419-432, 2023 02.
Article in English | MEDLINE | ID: mdl-36382925

ABSTRACT

Developing a new rice variety requires tremendous efforts and years of input. To improve the defect traits of the excellent varieties becomes more cost and time efficient than breeding a completely new variety. Kongyu 131 is a high-performing japonica variety with early maturity, high yield, wide adaptability and cold resistance, but the poor-lodging resistance hinders the industrial production of Kongyu 131 in the Northeastern China. In this study, we attempted to improve the lodging resistance of Kongyu 131 from perspectives of both gene and trait. On the one hand, by QTL analysis and fine mapping we discovered the candidate gene loci. The following CRISPR/Cas9 and transgenic complementation study confirmed that Sd1 dominated the lodging resistance and favourable allele was mined for precise introduction and improvement. On the other hand, the Sd1 allelic variant was identified in Kongyu 131 by sequence alignment, then introduced another excellent allelic variation by backcrossing. Then, the two new resulting Kongyu 131 went through the field evaluation under different environments, planting densities and nitrogen fertilizer conditions. The results showed that the plant height of upgraded Kongyu 131 was 17%-26% lower than Kongyu 131 without penalty in yield. This study demonstrated a precise and targeted way to update the rice genome and upgrade the elite rice varieties by improving only a few gene defects from the perspective of breeding.


Subject(s)
Oryza , Oryza/genetics , Plant Breeding , Phenotype , Alleles
8.
Cell Commun Signal ; 21(1): 316, 2023 11 03.
Article in English | MEDLINE | ID: mdl-37924113

ABSTRACT

G protein-coupled receptors (GPCRs) play a key role in regulating the homeostasis of the internal environment and are closely associated with tumour progression as major mediators of cellular signalling. As a diverse and multifunctional group of proteins, the G protein signalling regulator (RGS) family was proven to be involved in the cellular transduction of GPCRs. Growing evidence has revealed dysregulation of RGS proteins as a common phenomenon and highlighted the key roles of these proteins in human cancers. Furthermore, their differential expression may be a potential biomarker for tumour diagnosis, treatment and prognosis. Most importantly, there are few systematic reviews on the functional/mechanistic characteristics and clinical application of RGS family members at present. In this review, we focus on the G-protein signalling regulator (RGS) family, which includes more than 20 family members. We analysed the classification, basic structure, and major functions of the RGS family members. Moreover, we summarize the expression changes of each RGS family member in various human cancers and their important roles in regulating cancer cell proliferation, stem cell maintenance, tumorigenesis and cancer metastasis. On this basis, we outline the molecular signalling pathways in which some RGS family members are involved in tumour progression. Finally, their potential application in the precise diagnosis, prognosis and treatment of different types of cancers and the main possible problems for clinical application at present are discussed. Our review provides a comprehensive understanding of the role and potential mechanisms of RGS in regulating tumour progression. Video Abstract.


Subject(s)
Neoplasms , RGS Proteins , Humans , Signal Transduction , GTP-Binding Proteins/chemistry , GTP-Binding Proteins/metabolism , RGS Proteins/metabolism , Receptors, G-Protein-Coupled/metabolism
9.
Luminescence ; 38(9): 1678-1685, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37455261

ABSTRACT

Ochratoxin A (OTA) is a toxic metabolite commonly found in various foods and feedstuffs. Accurate and sensitive detection of OTA is needed for food safety and human health. Based on a common OTA-binding aptamer (OTABA), two structure-switching OTABAs, namely OTABA4 and OTABA3, were designed by configuring a split G-quadruplex and a split G-triplex, respectively, at the two ends of OTABA to construct aptasensors for the detection of OTA. The OTABA, G-quadruplex, and G-triplex all can capture the thioflavin T (ThT) probe, thereby enhancing the fluorescence intensity of ThT. Bonding with OTA could change the conformations of OTABA and G-quadruplex or G-triplex regions, resulting in the release of the captured ThT and diminution of its fluorescence intensity. Dual conformation changes in structure-switching OTABA synergistically amplified the fluorescence signal and improved the sensitivity of the aptasensor, especially for that with OTABA3. The detection limits of the OTABA4-ThT and OTABA3-ThT systems for OTA were 0.28 and 0.059 ng ml-1 , with a 1.4-fold and 6.7-fold higher sensitivity than that of the original OTABA-ThT system, respectively. They performed well in corn and peanut samples and met the requirements of the food safety inspections.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , G-Quadruplexes , Ochratoxins , Humans , Aptamers, Nucleotide/chemistry , Ochratoxins/analysis , Ochratoxins/chemistry , Food Contamination/analysis , Biosensing Techniques/methods , Limit of Detection
10.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(4): 423-428, 2023 Apr 10.
Article in Zh | MEDLINE | ID: mdl-36972936

ABSTRACT

OBJECTIVE: To explore the genetic basis for 7 families with gonadal mosaicism for Duchenne muscular dystrophy (DMD). METHODS: For the 7 families presented at the CITIC Xiangya Reproductive and Genetic Hospital from September 2014 to March 2022, clinical data were collected. Preimplantation genetic testing for monogenic disorders (PGT-M) was carried out for the mother of the proband from family 6. Peripheral venous blood samples of the probands, their mothers and other patients from the families, amniotic fluid samples from families 1 ~ 4 and biopsied cells of embryos cultured in vitro from family 6 were collected for the extraction of genomic DNA. Multiplex ligation-dependent probe amplification (MLPA) was carried out for the DMD gene, and short tandem repeat (STR)/single nucleotide polymorphism (SNP)-based haplotypes were constructed for the probands, other patients, fetuses and embryos. RESULTS: The results of MLPA showed that the probands and the fetuses/probands' brothers in families 1 ~ 4, 5, 7 had carried the same DMD gene variants, whilst the probands' mothers were all normal. The proband in family 6 carried the same DMD gene variant with only 1 embryo (9 in total) cultured in vitro, and the DMD gene of the proband's mother and the fetus obtained through the PGT-M were normal. STR-based haplotype analysis showed that the probands and the fetuses/probands' brothers in families 1 ~ 3 and 5 have inherited the same maternal X chromosome. SNP-based haplotype analysis showed that the proband from family 6 has inherited the same maternal X chromosome with only 1 embryo (9 in total) cultured in vitro. The fetuses in families 1 and 6 (via PGT-M) were both confirmed to be healthy by follow up, whilst the mothers from families 2 and 3 had chosen induced labor. CONCLUSION: Haplotype analysis based on STR/SNP is an effective method for judging gonad mosaicism. Gonad mosaicisms should be suspected for women who have given births to children with DMD gene variants but with a normal peripheral blood genotype. Prenatal diagnosis and reproductive intervention may be adapted to reduce the births of further affected children in such families.


Subject(s)
Muscular Dystrophy, Duchenne , Male , Pregnancy , Child , Humans , Female , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/diagnosis , Dystrophin/genetics , Mosaicism , Exons , Prenatal Diagnosis/methods , Nucleotides
11.
Yi Chuan ; 45(1): 88-95, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36927641

ABSTRACT

Duchenne/Becker muscular dystrophy (DMD/BMD) is one of the most common progressive muscular dystrophy diseases with X-linked recessive inheritance. It is mainly caused by the deletion, duplication and point mutation of DMD gene. In rare cases, it is also caused by the destruction of DMD gene by chromosomal structural rearrangement. Here, we report a case of Duchenne/Becker Muscular dystrophy (DMD/BMD) with typical symptoms but unknown genetic defects after MLPA and next generation sequencing tests in other hospitals. Interestingly, we find a pericentric inversion of X chromosome (Chr.X: g. [31939463-31939465del; 31939466-131765063 inv; 131765064-131765067del]) in this patient. We then use the karyotyping, FISH, long-read sequencing and Sanger sequencing technologies to characterize the chromosome rearrangement. We find that this chromosomal aberration disrupt both the DMD gene and the HS6ST2 gene. The patient present with typical DMD symptoms such as muscle weakness, but no obvious symptoms of Paganini-Miozzo syndrome. Our results suggest that the destruction of DMD gene by structural rearrangement is also one of the important causes of DMD. Therefore, we suggest to provide further genetic testing for those DMD patients with unknown genetic defects through routine genetic testing. Cost-effective karyotyping and FISH should be considered firstly to identify chromosome rearrangements. Long-read sequencing followed by Sanger sequencing could be useful to locate the precise breakpoints. The genetic diagnosis of this case made it possible for reproductive intervention in the patient's family.


Subject(s)
Muscular Dystrophy, Duchenne , Humans , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/diagnosis , Dystrophin/genetics , Genetic Testing , Gene Rearrangement/genetics , X Chromosome , Sulfotransferases/genetics
12.
Microb Pathog ; 164: 105402, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35038548

ABSTRACT

Brucella spp. are facultative intracellular pathogens that can persistently colonize animal host cells and cause zoonotic brucellosis. Brucellosis affects public health and safety and even affects economic development. Our lab found that a Brucella strain isolated from Marmota himalayana exhibited amikacin resistance. To annotate and analyze the potential resistance genes in this strain, we utilized sequencing platforms in this study and cloned potential resistance genes. The findings showed that the isolated strain belonged to B. abortus biovar 1 and was similar to B. abortus 2308. The isolate had amikacin resistance genes encoding aminoglycoside 3'-phosphotransferase. Based on the results of genome analysis, the isolated strain may have obtained amikacin resistance genes from Salmonella spp. through Tn3 family transposons. Notably, this study establishes a foundation for further research on the resistance mechanism of Brucella spp. and provides data that may be useful for the prevention and control of drug-resistant Brucella strains.


Subject(s)
Brucella abortus , Brucellosis , Amikacin/pharmacology , Animals , Brucella abortus/genetics , Marmota
13.
Environ Sci Technol ; 56(12): 8384-8394, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35666658

ABSTRACT

Bisphenol A (BPA) and its analogs are frequently detected in human daily necessities and environmental media. Placental thyroid hormone plays an important role in fetal development. Herein, we followed the adverse outcome pathway (AOP) to explore the toxic mechanisms of BPA and its analogs toward placental thyroid hormone receptor (TR). First, the TOX21 database was used, and the interactions between BPA analogs and the ligand-binding domains (LBDs) of two subtypes of TR (TRα and TRß) were subjected to in silico screening using molecular docking (MD) and molecular dynamics simulation (MDS). Fluorescence spectra and circular dichroism (CD) showed that BPA and its analogs interfere with TRs as a molecular initiation event (MIE), including static fluorescence quenching and secondary structural content changes in TR-LBDs. Key events (KEs) of the AOP, including the toxicity induced in placental chorionic trophoblast cells (HTR-8/SVneo) by an inverted U-shaped dose effect and changes in ROS levels, were tested in vitro. BPA, BPB, and BPAF significantly changed the expression level of TRß, and only BPAF significantly downregulated the expression level of TRα. In conclusion, our study contributes to the health risk assessment of BPA and its analogs regarding placental adverse outcomes (AOs).


Subject(s)
Receptors, Thyroid Hormone , Trophoblasts , Benzhydryl Compounds/toxicity , Female , Humans , Molecular Docking Simulation , Phenols , Placenta/metabolism , Pregnancy , Receptors, Thyroid Hormone/metabolism , Thyroid Hormone Receptors beta , Trophoblasts/metabolism
14.
Ecotoxicol Environ Saf ; 246: 114140, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36209526

ABSTRACT

Gestation is a sensitive window to nitrogen dioxide (NO2) exposure, which may disturb fetal lung development and lung function later in life. Animal and epidemiological studies indicated that long noncoding RNAs (lncRNAs) participate in abnormal lung development induced by environmental pollutant exposure. In the present study, pregnant C57BL/6J mice were exposed to 2.5 ppm NO2 (mimicking indoor occupational exposure) or clean air, and lncRNAs expression profiles in the lungs of offspring mice were determined by lncRNA-seq on embryonic day 13.5 (E13.5), E18.5, postnatal day 1 (P1), and P14. The lung histopathology examination of offspring was performed, followed by weighted gene coexpression network analysis (WGCNA), prediction of lncRNAs-target genes, and the biological processes enrichment analysis of lncRNAs. Our results indicated that maternal NO2 exposure induced hypoalveolarization on P14 and differentially expressed lncRNAs showed a time-series pattern. Following WGCNA and enrichment analysis, 2 modules participated in development-related pathways. Importantly, the expressions of related genes were altered, some of which were confirmed to be related to abnormal vascular development and even lung diseases. The research points out that the maternal NO2 exposure leads to abnormal lung development in offspring that might be related to altered lncRNAs expression profiles with time-series-pattern.


Subject(s)
Environmental Pollutants , RNA, Long Noncoding , Animals , Female , Humans , Mice , Pregnancy , Gene Expression Profiling/methods , Lung/metabolism , Maternal Exposure , Mice, Inbred C57BL , Nitrogen Dioxide/toxicity , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
15.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 39(9): 925-931, 2022 Sep 10.
Article in Zh | MEDLINE | ID: mdl-36082559

ABSTRACT

OBJECTIVE: To summarize the genetic characteristics of 671 Chinese pedigrees affected with Duchenne/Becker muscular dystrophy (DMD/BMD). METHODS: Clinical data of the pedigrees were collected. Multiplex PCR, multiple ligation dependent probe amplification (MLPA), next generation sequencing (NGS), Sanger sequencing and long read sequencing were used to detect the variant of DMD gene in the probands and their mothers, and prenatal diagnosis was provided for high risk pregnant women. RESULTS: Among 178 pedigrees analyzed by multiplex PCR, 44 variants of the DMD gene were detected, with the genetic diagnosis attained in 110 pedigrees. Among 493 pedigrees analyzed by MLPA in combination with NGS or Sanger sequencing, 294 pathogenic/possible pathogenic variants were identified, among which 45 were unreported previously, and the genetic diagnosis attained in 484 pedigrees. Structural variants of the DMD gene were identified in two pedigrees by long-read sequencing. Among 444 probands, 341 have inherited the DMD gene variant from their mothers (76.8%). Among 390 women with a high-risk, 339 have opted to have natural pregnancy and 51 chose preimplantation genetic testing for monogenetic disease (PGT-M). The detection rate of neonatal patients and carriers following natural pregnancy was significantly higher than that for PGT-M. CONCLUSION: Combined application of MLPA, NGS, Sanger sequencing and long-read sequencing is an effective strategy to detect DMD/BMD. PGT-M can effectively reduce the risk of fetuses. Above finding has expanded the spectrum of DMD gene variants and provided a basis for reproductive intervention for pregnancies with a high risk for DMD/BMD.


Subject(s)
Muscular Dystrophy, Duchenne , China , Dystrophin/genetics , Exons , Female , Genetic Testing , Humans , Infant, Newborn , Multiplex Polymerase Chain Reaction , Muscular Dystrophy, Duchenne/diagnosis , Muscular Dystrophy, Duchenne/genetics , Mutation , Pedigree , Pregnancy , Prenatal Diagnosis
16.
Arch Microbiol ; 203(6): 3089-3099, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33792738

ABSTRACT

Bacillus is an excellent organic matter degrader, and it has exhibited various abilities required for lignocellulose degradation. Several B. velezensis strains encode lignocellulosases, however their ability to efficiently transform biomass has not been appreciated. In the present study, through the comparative genomic analysis of the whole genome sequences of 21 B. velezensis strains, CAZyome related to lignocellulose degradation was identified and their similarities and differences were compared. Subsequently, the secretome of B. velezensis LC1 by liquid chromatography-tandem mass spectrometry (LC-MS/MS) were identified and confirmed that a considerable number of proteins were involved in lignocellulose degradation. Moreover, after 6-day treatment, the degradation efficiency of the B. velezensis LC1 toward cellulose, hemicellulose and lignin were 59.90%, 75.44% and 23.41%, respectively, the hydrolysate was subjected to ethanol fermentation with Saccharomyces cerevisiae and Escherichia coli KO11, yielded 10.44 g/L ethanol after 96 h. These results indicate that B. velezensis LC1 has the ability to effectively degrade bamboo lignocellulose and has the potential to be used in bioethanol production.


Subject(s)
Bacillus , Biofuels , Genome, Bacterial , Lignin , Bacillus/genetics , Bacillus/metabolism , Biofuels/microbiology , Chromatography, Liquid , Fermentation , Genome, Bacterial/genetics , Lignin/metabolism , Tandem Mass Spectrometry
17.
Acta Biochim Biophys Sin (Shanghai) ; 53(7): 805-814, 2021 Jul 05.
Article in English | MEDLINE | ID: mdl-34009234

ABSTRACT

Collagen is the main component of the extracellular matrix. Hydroxylation of proline residues on collagen, catalyzed by collagen prolyl 4-hydroxylase (C-P4H), is essential for the stability of the collagen triple helix. Vertebrate C-P4H is an α2ß2 tetramer with three isoenzymes differing in the catalytic α-subunits, which are encoded by P4HA1, P4HA2, and P4HA3 genes. In contrast, ß-subunit is encoded by a single gene P4HB. The expressions of P4HAs and P4HB are regulated by multiple cellular factors, including cytokines, transcription factors, and microRNAs. P4HAs and P4HB are highly expressed in many tumors and participate in cancer progression. Several inhibitors of P4HAs and P4HB have been confirmed to have anti-tumor effects, suggesting that targeting C-P4H is a feasible strategy for cancer treatment. Here, we summarize recent progresses on the function and expression of regulatory mechanisms of C-P4H in cancer progression and point out the potential development of therapeutic strategies in targeting C-P4H in the future.


Subject(s)
Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Neoplasm Proteins/metabolism , Neoplasms/enzymology , Prolyl Hydroxylases/biosynthesis , Humans , Neoplasm Proteins/genetics , Neoplasms/genetics , Neoplasms/pathology , Prolyl Hydroxylases/genetics
18.
Biochem Biophys Res Commun ; 523(2): 375-381, 2020 03 05.
Article in English | MEDLINE | ID: mdl-31870551

ABSTRACT

Patients with metastatic melanoma have a poorer prognosis. Prion protein (PrP) in melanoma is known to play an important role in cancer cell migration and invasion by interacting with filamin A (FLNa), a cytolinker protein. To investigate if PrP may contribute to cancer cell mobility independent of its binding to FLNa, we knocked out PRNP in M2 melanoma cell, which lacked FLNa expression. We found that deletion of PRNP in M2 significantly reduced its motility. When PRNP was deleted, the level of Akt was decreased. As a consequence, phosphorylation of small heat shock protein (hsp27) was also reduced, which resulted in polymerization of F-actin rendering the cells less migratory. Accordingly, when PrP was re-expressed in PRNP null M2 cells, the mobility of the recurred cells was rescued, so were the expression levels of Akt and phosphorylated hsp27, resulting in a decrease in the polymerization of F-actin. These results revealed that PrP can play a FLNa independent role in cytoskeletal organization and tumor cell migration by modulating Akt-hsp27-F-actin axis.


Subject(s)
Heat-Shock Proteins/metabolism , Melanoma/metabolism , Molecular Chaperones/metabolism , Prion Proteins/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Actins/metabolism , Cell Line, Tumor , Cell Movement/physiology , Filamins/deficiency , Filamins/genetics , Filamins/metabolism , Gene Knockout Techniques , Gene Silencing , Humans , Melanoma/genetics , Melanoma/pathology , Neoplasm Invasiveness/pathology , Neoplasm Invasiveness/physiopathology , Prion Proteins/deficiency , Prion Proteins/genetics , Signal Transduction , p38 Mitogen-Activated Protein Kinases/metabolism
19.
Genome ; 63(8): 397-405, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32384250

ABSTRACT

Brucella spp., facultative intracellular pathogens that can persistently colonize animal host cells and cause zoonosis, affect public health and safety. A Brucella strain was isolated from yak in Qinghai Province. To detect whether this isolate could cause an outbreak of brucellosis and to reveal its genetic characteristics, several typing and whole-genome sequencing methods were applied to identify its species and genetic characteristics. Phylogenetic analysis based on MLVA and whole-genome sequencing revealed the genetic characteristics of the isolated strain. The results showed that the isolated strain is a B. suis biovar 1 smooth strain, and this isolate was named B. suis QH05. The results of comparative genomics and MLVA showed that B. suis QH05 is not a vaccine strain. Comparison with other B. suis strains isolated from humans and animals indicated that B. suis QH05 may be linked to specific animal and human sources. In conclusion, B. suis QH05 does not belong to the Brucella epidemic species in China, and as the first isolation of B. suis from yak, this strain expands the host range of B. suis.


Subject(s)
Brucella suis/isolation & purification , Cattle/microbiology , Animals , Bacterial Vaccines/classification , Bacterial Vaccines/genetics , Brucella suis/classification , Brucella suis/genetics , Brucellosis/epidemiology , Brucellosis/microbiology , Brucellosis/veterinary , China/epidemiology , Epidemics , Fetus/microbiology , Genome, Bacterial , Molecular Sequence Annotation , Species Specificity
20.
Vasc Med ; 25(5): 436-442, 2020 10.
Article in English | MEDLINE | ID: mdl-32558619

ABSTRACT

This study aimed to investigate the expression and diagnostic value of miR-106b-5p in asymptomatic carotid artery stenosis (CAS) patients, and further explore its predictive value for the occurrence of cerebral ischemic events (CIE). A total of 58 asymptomatic CAS cases and 61 healthy controls were recruited. Quantitative RT-PCR was applied for the measurement of the miR-106b-5p level. The receiver operating characteristic (ROC) curve was plotted to assess the diagnostic value of miR-106b-5p for CAS. Kaplan-Meier methods and Cox regression analysis were performed to assess the predictive value of miR-106b-5p for the occurrence of CIE. In patients with asymptomatic CAS, miR-106b-5p was highly expressed. The miR-106b-5p level showed a significant association with dyslipidemia, hypertension, and the degree of carotid stenosis. miR-106b-5p had a relative accuracy in differentiating patients with asymptomatic CAS from healthy individuals, with a sensitivity of 89.7% and specificity of 83.6% at the cutoff value of 0.198. Patients with high miR-106b-5p expression experienced more CIE. miR-106b-5p was highly expressed in patients with asymptomatic CAS. Our present results provide evidence for miR-106b-5p as a promising biomarker for CAS diagnosis, and for predicting the risk of future CIE in patients with asymptomatic CAS.


Subject(s)
Brain Ischemia/etiology , Carotid Stenosis/blood , Circulating MicroRNA/blood , MicroRNAs/blood , Aged , Asymptomatic Diseases , Biomarkers/blood , Brain Ischemia/diagnosis , Carotid Stenosis/complications , Carotid Stenosis/diagnosis , Case-Control Studies , Female , Humans , Male , Middle Aged , Predictive Value of Tests , Prognosis , Risk Assessment , Risk Factors , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL