ABSTRACT
Sperm motility is crucial for successful fertilization. Highly decorated doublet microtubules (DMTs) form the sperm tail skeleton, which propels the movement of spermatozoa. Using cryo-electron microscopy (cryo-EM) and artificial intelligence (AI)-based modeling, we determined the structures of mouse and human sperm DMTs and built an atomic model of the 48-nm repeat of the mouse sperm DMT. Our analysis revealed 47 DMT-associated proteins, including 45 microtubule inner proteins (MIPs). We identified 10 sperm-specific MIPs, including seven classes of Tektin5 in the lumen of the A tubule and FAM166 family members that bind the intra-tubulin interfaces. Interestingly, the human sperm DMT lacks some MIPs compared with the mouse sperm DMT. We also discovered variants in 10 distinct MIPs associated with a subtype of asthenozoospermia characterized by impaired sperm motility without evident morphological abnormalities. Our study highlights the conservation and tissue/species specificity of DMTs and expands the genetic spectrum of male infertility.
Subject(s)
Artificial Intelligence , Infertility, Male , Male , Humans , Cryoelectron Microscopy , Sperm Motility/genetics , Semen , Spermatozoa , Microtubules/metabolism , Sperm Tail/chemistry , Sperm Tail/metabolism , Microtubule Proteins/chemistry , Infertility, Male/genetics , Infertility, Male/metabolismABSTRACT
The mammalian cerebrum performs high-level sensory perception, motor control and cognitive functions through highly specialized cortical and subcortical structures1. Recent surveys of mouse and human brains with single-cell transcriptomics2-6 and high-throughput imaging technologies7,8 have uncovered hundreds of neural cell types distributed in different brain regions, but the transcriptional regulatory programs that are responsible for the unique identity and function of each cell type remain unknown. Here we probe the accessible chromatin in more than 800,000 individual nuclei from 45 regions that span the adult mouse isocortex, olfactory bulb, hippocampus and cerebral nuclei, and use the resulting data to map the state of 491,818 candidate cis-regulatory DNA elements in 160 distinct cell types. We find high specificity of spatial distribution for not only excitatory neurons, but also most classes of inhibitory neurons and a subset of glial cell types. We characterize the gene regulatory sequences associated with the regional specificity within these cell types. We further link a considerable fraction of the cis-regulatory elements to putative target genes expressed in diverse cerebral cell types and predict transcriptional regulators that are involved in a broad spectrum of molecular and cellular pathways in different neuronal and glial cell populations. Our results provide a foundation for comprehensive analysis of gene regulatory programs of the mammalian brain and assist in the interpretation of noncoding risk variants associated with various neurological diseases and traits in humans.
Subject(s)
Cerebrum/cytology , Cerebrum/metabolism , Regulatory Sequences, Nucleic Acid/genetics , Animals , Atlases as Topic , Chromatin/chemistry , Chromatin/genetics , Chromatin/metabolism , Chromatin Assembly and Disassembly , Gene Expression Regulation , Genetic Predisposition to Disease/genetics , Humans , Male , Mice , Mice, Inbred C57BL , Nervous System Diseases/genetics , Neuroglia/classification , Neuroglia/metabolism , Neurons/classification , Neurons/metabolism , Sequence Analysis, DNA , Single-Cell AnalysisABSTRACT
Epidemiologic associations estimated from observational data are often confounded by genetics due to pervasive pleiotropy among complex traits. Many studies either neglect genetic confounding altogether or rely on adjusting for polygenic scores (PGS) in regression analysis. In this study, we unveil that the commonly employed PGS approach is inadequate for removing genetic confounding due to measurement error and model misspecification. To tackle this challenge, we introduce PENGUIN, a principled framework for polygenic genetic confounding control based on variance component estimation. In addition, we present extensions of this approach that can estimate genetically unconfounded associations using GWAS summary statistics alone as input and between multiple generations of study samples. Through simulations, we demonstrate superior statistical properties of PENGUIN compared to the existing approaches. Applying our method to multiple population cohorts, we reveal and remove substantial genetic confounding in the associations of educational attainment with various complex traits and between parental and offspring education. Our results show that PENGUIN is an effective solution for genetic confounding control in observational data analysis with broad applications in future epidemiologic association studies.
Subject(s)
Genome-Wide Association Study , Multifactorial Inheritance , Multifactorial Inheritance/genetics , Humans , Genome-Wide Association Study/methods , Models, Genetic , Confounding Factors, EpidemiologicABSTRACT
Phase separation (PS) drives the formation of biomolecular condensates that are emerging biological structures involved in diverse cellular processes. Recent studies have unveiled PS-induced formation of several transcriptional factor (TF) condensates that are transcriptionally active, but how strongly PS promotes gene activation remains unclear. Here, we show that the oncogenic TF fusion Yes-associated protein 1-Mastermind like transcriptional coactivator 2 (YAP-MAML2) undergoes PS and forms liquid-like condensates that bear the hallmarks of transcriptional activity. Furthermore, we examined the contribution of PS to YAP-MAML2-mediated gene expression by developing a chemogenetic tool that dissolves TF condensates, allowing us to compare phase-separated and non-phase-separated conditions at identical YAP-MAML2 protein levels. We found that a small fraction of YAP-MAML2-regulated genes is further affected by PS, which include the canonical YAP target genes CTGF and CYR61, and other oncogenes. On the other hand, majority of YAP-MAML2-regulated genes are not affected by PS, highlighting that transcription can be activated effectively by diffuse complexes of TFs with the transcriptional machinery. Our work opens new directions in understanding the role of PS in selective modulation of gene expression, suggesting differential roles of PS in biological processes.
Subject(s)
Phase Separation , Transcriptome , Transcription Factors/metabolism , Adaptor Proteins, Signal Transducing/metabolism , OncogenesABSTRACT
Brown adipose tissue (BAT) is the main site of nonshivering thermogenesis which plays an important role in thermogenesis and energy metabolism. However, the regulatory factors that inhibit BAT activity remain largely unknown. Here, cardiotrophin-like cytokine factor 1 (CLCF1) is identified as a negative regulator of thermogenesis in BAT. Adenovirus-mediated overexpression of CLCF1 in BAT greatly impairs the thermogenic capacity of BAT and reduces the metabolic rate. Consistently, BAT-specific ablation of CLCF1 enhances the BAT function and energy expenditure under both thermoneutral and cold conditions. Mechanistically, adenylate cyclase 3 (ADCY3) is identified as a downstream target of CLCF1 to mediate its role in regulating thermogenesis. Furthermore, CLCF1 is identified to negatively regulate the PERK-ATF4 signaling axis to modulate the transcriptional activity of ADCY3, which activates the PKA substrate phosphorylation. Moreover, CLCF1 deletion in BAT protects the mice against diet-induced obesity by promoting BAT activation and further attenuating impaired glucose and lipid metabolism. Therefore, our results reveal the essential role of CLCF1 in regulating BAT thermogenesis and suggest that inhibiting CLCF1 signaling might be a potential therapeutic strategy for improving obesity-related metabolic disorders.
Subject(s)
Adipose Tissue, Brown , Energy Metabolism , Animals , Mice , Adenoviridae , Interleukins , Obesity/genetics , Thermogenesis/geneticsABSTRACT
Primate-specific genes (PSGs) tend to be expressed in the brain and testis. This phenomenon is consistent with brain evolution in primates but is seemingly contradictory to the similarity of spermatogenesis among mammals. Here, using whole-exome sequencing, we identified deleterious variants of X-linked SSX1 in six unrelated men with asthenoteratozoospermia. SSX1 is a PSG expressed predominantly in the testis, and the SSX family evolutionarily expanded independently in rodents and primates. As the mouse model could not be used for studying SSX1, we used a non-human primate model and tree shrews, which are phylogenetically similar to primates, to knock down (KD) Ssx1 expression in the testes. Consistent with the phenotype observed in humans, both Ssx1-KD models exhibited a reduced sperm motility and abnormal sperm morphology. Further, RNA sequencing indicated that Ssx1 deficiency influenced multiple biological processes during spermatogenesis. Collectively, our experimental observations in humans and cynomolgus monkey and tree shrew models highlight the crucial role of SSX1 in spermatogenesis. Notably, three of the five couples who underwent intra-cytoplasmic sperm injection treatment achieved a successful pregnancy. This study provides important guidance for genetic counseling and clinical diagnosis and, significantly, describes the approaches for elucidating the functions of testis-enriched PSGs in spermatogenesis.
Subject(s)
Asthenozoospermia , Tupaia , Animals , Male , Macaca fascicularis , Primates , Semen , Sperm Motility , TupaiidaeABSTRACT
The macronutrient phosphorus is essential for plant growth and development. Plants have evolved multiple strategies to increase the efficiency of phosphate (Pi) acquisition to protect themselves from Pi starvation. However, the crosstalk between Pi homeostasis and plant development remains to be explored. Here, we report that overexpressing microRNA399 (miR399) in maize (Zea mays) is associated with premature senescence after pollination. Knockout of ZmPHO2 (Phosphate 2), a miR399 target, resulted in a similar premature senescence phenotype. Strikingly, we discovered that INDETERMINATE1 (ID1), a floral transition regulator, inhibits the transcription of ZmMIR399 genes by directly binding to their promoters, alleviating the repression of ZmPHO2 by miR399 and ultimately contributing to the maintenance of Pi homeostasis in maize. Unlike ZmMIR399 genes, whose expression is induced by Pi deficiency, ID1 expression was independent of the external inorganic orthophosphate status, indicating that ID1 is an autonomous regulator of Pi homeostasis. Furthermore, we show that ZmPHO2 was under selection during maize domestication and cultivation, resulting in a more sensitive response to Pi starvation in temperate maize than in tropical maize. Our study reveals a direct functional link between Pi-deprivation sensing by the miR399-ZmPHO2 regulatory module and plant developmental regulation by ID1.
Subject(s)
Phosphates , Zea mays , Zea mays/genetics , Zea mays/metabolism , Phosphates/metabolism , Phosphorus/metabolism , Plants/metabolism , Homeostasis/genetics , Gene Expression Regulation, Plant/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/metabolismABSTRACT
Lineage-specific epigenomic changes during human corticogenesis have been difficult to study owing to challenges with sample availability and tissue heterogeneity. For example, previous studies using single-cell RNA sequencing identified at least 9 major cell types and up to 26 distinct subtypes in the dorsal cortex alone1,2. Here we characterize cell-type-specific cis-regulatory chromatin interactions, open chromatin peaks, and transcriptomes for radial glia, intermediate progenitor cells, excitatory neurons, and interneurons isolated from mid-gestational samples of the human cortex. We show that chromatin interactions underlie several aspects of gene regulation, with transposable elements and disease-associated variants enriched at distal interacting regions in a cell-type-specific manner. In addition, promoters with increased levels of chromatin interactivity-termed super-interactive promoters-are enriched for lineage-specific genes, suggesting that interactions at these loci contribute to the fine-tuning of transcription. Finally, we develop CRISPRview, a technique that integrates immunostaining, CRISPR interference, RNAscope, and image analysis to validate cell-type-specific cis-regulatory elements in heterogeneous populations of primary cells. Our findings provide insights into cell-type-specific gene expression patterns in the developing human cortex and advance our understanding of gene regulation and lineage specification during this crucial developmental window.
Subject(s)
Cells/classification , Cells/metabolism , Cerebral Cortex/cytology , Cerebral Cortex/embryology , Epigenome , Epigenomics , Organogenesis/genetics , CRISPR-Cas Systems , Cell Lineage/genetics , Cells, Cultured , Chromatin/genetics , Chromatin/metabolism , DNA Transposable Elements , Histones/chemistry , Histones/metabolism , Humans , Imaging, Three-Dimensional , Methylation , Multifactorial Inheritance/genetics , Polymorphism, Single Nucleotide/genetics , Promoter Regions, Genetic/genetics , Regulatory Elements, Transcriptional , Reproducibility of Results , Transcription, GeneticABSTRACT
This work presents a detailed determination of site-specific N-glycan distributions of the recombinant influenza glycoproteins hemagglutinin (HA) and neuraminidase. Variation in glycosylation among recombinant glycoproteins is not predictable and can depend on details of the biomanufacturing process as well as details of protein structure. In this study, recombinant influenza proteins were analyzed from eight strains of four different suppliers. These include five HA and three neuraminidase proteins, each produced from a HEK293 cell line. Digestion was conducted using a series of complex multienzymatic methods designed to isolate glycopeptides containing single N-glycosylated sites. Site-specific glycosylation profiles of intact glycopeptides were produced using a recently developed method and comparisons were made using spectral similarity scores. Variation in glycan abundances and distribution was most pronounced between different strains of virus (similarity score = 383 out of 999), whereas digestion replicates and injection replicates showed relatively little variation (similarity score = 957). Notably, glycan distributions for homologous regions of influenza glycoprotein variants showed low variability. Due to the multiple possible sources of variation and inherent analytical difficulties in site-specific glycan determinations, variations were individually examined for multiple factors, including differences in supplier, production batch, protease digestion, and replicate measurement. After comparing all glycosylation distributions, four distinguishable classes could be identified for the majority of sites. Finally, attempts to identify glycosylation distributions on adjacent potential N-glycosylated sites of one HA variant were made. Only the second site (NnST) was found to be occupied using two rarely used proteases in proteomics, subtilisin and esperase, both of which did selectively cleave these adjacent sites.
Subject(s)
Neuraminidase , Polysaccharides , Recombinant Proteins , Glycosylation , Humans , HEK293 Cells , Recombinant Proteins/metabolism , Polysaccharides/metabolism , Neuraminidase/metabolism , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Glycoproteins/metabolism , Glycopeptides/metabolismABSTRACT
Porcine circovirus type 3 (PCV3) is closely associated with various diseases, such as the porcine dermatitis, nephropathy syndrome, and multisystemic clinicopathological diseases. PCV3-associated diseases are increasingly recognized as severe diseases in the global swine industry. Ring finger protein 2 (RNF2), an E3 ubiquitin ligase exclusively located in the nucleus, contributes to various biological processes. This ligase interacts with the PCV3 Cap. However, its role in PCV3 replication remains unclear. This study confirmed that the nuclear localization signal domain of the Cap and the RNF2 N-terminal RING domain facilitate the interaction between the Cap and RNF2. Furthermore, RNF2 promoted the binding of K48-linked polyubiquitination chains to lysine at positions 139 and 140 (K139 and K140) of the PCV3 Cap, thereby degrading the Cap. RNF2 knockdown and overexpression increased or decreased PCV3 replication, respectively. Moreover, the RING domain-deleted RNF2 mutant eliminated the RNF2-induced degradation of the PCV3 Cap and RNF2-mediated inhibition of viral replication. This indicates that both processes were associated with its E3 ligase activity. Our findings demonstrate that RNF2 can interact with and degrade the PCV3 Cap via its N-terminal RING domain in a ubiquitination-dependent manner, thereby inhibiting PCV3 replication.IMPORTANCEPorcine circovirus type 3 is a recently described pathogen that is prevalent worldwide, causing substantial economic losses to the swine industry. However, the mechanisms through which host proteins regulate its replication remain unclear. Here, we demonstrate that ring finger protein 2 inhibits porcine circovirus type 3 replication by interacting with and degrading the Cap of this pathogen in a ubiquitination-dependent manner, requiring its N-terminal RING domain. Ring finger protein 2-mediated degradation of the Cap relies on its E3 ligase activity and the simultaneous existence of K139 and K140 within the Cap. These findings reveal the mechanism by which this protein interacts with and degrades the Cap to inhibit porcine circovirus type 3 replication. This consequently provides novel insights into porcine circovirus type 3 pathogenesis and facilitates the development of preventative measures against this pathogen.
Subject(s)
Capsid Proteins , Circovirus , Ubiquitin-Protein Ligases , Ubiquitination , Virus Replication , Circovirus/genetics , Circovirus/metabolism , Circovirus/physiology , Animals , Swine , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Capsid Proteins/metabolism , Capsid Proteins/genetics , Humans , HEK293 Cells , Proteolysis , Cell Line , Swine Diseases/virology , Swine Diseases/metabolism , Circoviridae Infections/virology , Circoviridae Infections/metabolism , Protein BindingABSTRACT
Avian metapneumovirus subgroup C (aMPV/C), an important pathogen causing acute respiratory infection in chickens and turkeys, contributes to substantial economic losses in the poultry industry worldwide. aMPV/C has been reported to induce autophagy, which is beneficial to virus replication. Sequestosome 1 (SQSTM1/P62), a selective autophagic receptor, plays a crucial role in viral replication by clearing ubiquitinated proteins. However, the relationship between SQSTM1-mediated selective autophagy and aMPV/C replication is unclear. In this study, we found that the expression of SQSTM1 negatively regulates aMPV/C replication by reducing viral protein expression and viral titers. Further studies revealed that the interaction between SQSTM1 and aMPV/C M2-2 protein is mediated via the Phox and Bem1 (PB1) domain of the former, which recognizes a ubiquitinated lysine at position 67 of the M2-2 protein, and finally degrades M2-2 via SQSTM1-mediated selective autophagy. Collectively, our results reveal that SQSTM1 degrades M2-2 via a process of selective autophagy to suppress aMPV/C replication, thereby providing novel insights for the prevention and control of aMPV/C infection.IMPORTANCEThe selective autophagy plays an important role in virus replication. As an emerging pathogen of avian respiratory virus, clarification of the effect of SQSTM1, a selective autophagic receptor, on aMPV/C replication in host cells enables us to better understand the viral pathogenesis. Previous study showed that aMPV/C infection reduced the SQSTM1 expression accompanied by virus proliferation, but the specific regulatory mechanism between them was still unclear. In this study, we demonstrated for the first time that SQSTM1 recognizes the 67th amino acid of M2-2 protein by the interaction between them, followed by M2-2 degradation via the SQSTM1-mediated selective autophagy, and finally inhibits aMPV/C replication. This information supplies the mechanism by which SQSTM1 negatively regulates viral replication, and provides new insights for preventing and controlling aMPV/C infection.
Subject(s)
Autophagy , Birds , Metapneumovirus , Proteolysis , Sequestosome-1 Protein , Viral Proteins , Virus Replication , Animals , Humans , HEK293 Cells , Metapneumovirus/classification , Metapneumovirus/growth & development , Paramyxoviridae Infections/metabolism , Paramyxoviridae Infections/veterinary , Paramyxoviridae Infections/virology , Protein Binding , Sequestosome-1 Protein/chemistry , Sequestosome-1 Protein/metabolism , Vero Cells , Viral Proteins/chemistry , Viral Proteins/metabolism , Birds/virologyABSTRACT
Due to climate change, drought has become a major threat to rice (Oryza sativa L.) growth and yield worldwide. Understanding the genetic basis of drought tolerance in rice is therefore of great importance. Here, we identified a microRNA, miR1432, which regulates rice drought tolerance by targeting the CALMODULIN-LIKE2 (OsCaML2) gene. Mutation of MIR1432 or suppression of miR1432 expression significantly impaired seed germination and seedling growth under drought-stress conditions. Molecular analysis demonstrated that miR1432 affected rice drought tolerance by directly targeting OsCaML2, which encodes an EF-hand chiral calcium-binding protein. Overexpression of a miR1432-resistant form of OsCaML2 (OEmCaML2) phenocopied the mir1432 mutant and miR1432 suppression plants. Furthermore, the suppression of miR1432 severely affected the expression of genes involved in responses to stimulation, metabolism and signal transduction, especially the mitogen-activated protein kinase (MAPK) pathway and hormone transduction pathway in rice under drought stress. Thus, our findings show that the miR1432-OsCaML2 module plays an important role in the regulation of rice drought tolerance, suggesting its potential utilization in developing molecular breeding strategies that improve crop drought tolerance.
Subject(s)
Calmodulin , Droughts , Gene Expression Regulation, Plant , MicroRNAs , Oryza , Plant Proteins , Stress, Physiological , Oryza/genetics , Oryza/physiology , MicroRNAs/genetics , MicroRNAs/metabolism , Calmodulin/genetics , Calmodulin/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics , Mutation/genetics , Plants, Genetically Modified , Seedlings/genetics , Seedlings/physiology , Seedlings/growth & development , Adaptation, Physiological/genetics , Germination/geneticsABSTRACT
Evidence for metastable dynamics and its role in brain function is emerging at a fast pace and is changing our understanding of neural coding by putting an emphasis on hidden states of transient activity. Clustered networks of spiking neurons have enhanced synaptic connections among groups of neurons forming structures called cell assemblies; such networks are capable of producing metastable dynamics that is in agreement with many experimental results. However, it is unclear how a clustered network structure producing metastable dynamics may emerge from a fully local plasticity rule, i.e., a plasticity rule where each synapse has only access to the activity of the neurons it connects (as opposed to the activity of other neurons or other synapses). Here, we propose a local plasticity rule producing ongoing metastable dynamics in a deterministic, recurrent network of spiking neurons. The metastable dynamics co-exists with ongoing plasticity and is the consequence of a self-tuning mechanism that keeps the synaptic weights close to the instability line where memories are spontaneously reactivated. In turn, the synaptic structure is stable to ongoing dynamics and random perturbations, yet it remains sufficiently plastic to remap sensory representations to encode new sets of stimuli. Both the plasticity rule and the metastable dynamics scale well with network size, with synaptic stability increasing with the number of neurons. Overall, our results show that it is possible to generate metastable dynamics over meaningful hidden states using a simple but biologically plausible plasticity rule which co-exists with ongoing neural dynamics.
Subject(s)
Action Potentials , Models, Neurological , Nerve Net , Neuronal Plasticity , Neurons , Synapses , Neuronal Plasticity/physiology , Nerve Net/physiology , Action Potentials/physiology , Neurons/physiology , Synapses/physiology , Animals , Cerebral Cortex/physiology , Computational Biology , Humans , Computer SimulationABSTRACT
Surface ligand chemistry is vital to control the synthesis, diminish surface defects, and improve the electronic coupling of quantum dots (QDs) toward emerging applications in optoelectronic devices. Here, we successfully develop highly homogeneous and dispersed AgBiS2 QDs, focus on the control of interdot spacing, and substitute the long-chain ligands with ammonium iodide in solution. This results in improved electronic coupling of AgBiS2 QDs with excellent surface passivation, which greatly facilitates carrier transport within the QD films. Based on the stable AgBiS2 QD dispersion with the optimal ligand state, a homogeneous and densely packed QD film is prepared by a facile one-step coating process, delivering a champion power conversion efficiency of approximately 8% in the QD solar cells with outstanding shelf life stability. The proposed surface engineering strategy holds the potential to become a universal preprocessing step in the realm of high-performance QD optoelectronic devices.
ABSTRACT
We report the comparison of mass-spectral-based abundances of tryptic glycopeptides to fluorescence abundances of released labeled glycans and the effects of mass and charge state and in-source fragmentation on glycopeptide abundances. The primary glycoforms derived from Rituximab, NISTmAb, Evolocumab, and Infliximab were high-mannose and biantennary complex galactosylated and fucosylated N-glycans. Except for Evolocumab, in-source ions derived from the loss of HexNAc or HexNAc-Hex sugars are prominent for other therapeutic IgGs. After excluding in-source fragmentation of glycopeptide ions from the results, a linear correlation was observed between fluorescently labeled N-glycan and glycopeptide abundances over a dynamic range of 500. Different charge states of human IgG-derived glycopeptides containing a wider variety of abundant attached glycans were also investigated to examine the effects of the charge state on ion abundances. These revealed a linear dependence of glycopeptide abundance on the mass of the glycan with higher charge states favoring higher-mass glycans. Findings indicate that the mass spectrometry-based bottom-up approach can provide results as accurate as those of glycan release studies while revealing the origin of each attached glycan. These site-specific relative abundances are conveniently displayed and compared using previously described glycopeptide abundance distribution spectra "GADS" representations. Mass spectrometry data are available from the MAssIVE repository (MSV000093562).
Subject(s)
Immunoglobulin G , Tandem Mass Spectrometry , Humans , Glycosylation , Glycopeptides/analysis , Polysaccharides/chemistry , IonsABSTRACT
Photoelectrochemical water splitting on n-type semiconductors is highly dependent on catalysis of the rate-determining reaction of O2 evolution. Conventionally, in electrochemistry and photoelectrochemistry O2 evolution is catalyzed by metal oxide catalysts like IrO2 and RuO2, whereas noble metals such as Pt are considered unsuitable for this purpose. However, our study finds that Pt, in its single-atom form, exhibits exceptional cocatalytic properties for photoelectrochemical water oxidation on a TiO2 photoanode, in contrast to Pt in a nanoparticle form. The decoration of Pt single atoms onto TiO2 yields a remarkable current density of 5.89 mA cm-2 at 1.23 VRHE, surpassing bare TiO2 (or Pt nanoparticle decorated TiO2) by 2.52 times. Notably, this enhancement remains consistent over a wide pH range. By accompanying theoretical work, we assign this significant enhancement to an improved charge transfer and separation efficiency along with accelerated kinetics in the oxygen evolution reaction facilitated by the presence of Pt single atoms on the TiO2 surface.
ABSTRACT
Zeolites, the most technically important crystalline microporous materials, are indispensable cornerstones of chemical engineering because of their remarkable catalytic properties and adsorption capabilities. Numerous studies have demonstrated that the hierarchical engineering of zeolites can maximize accessible active sites and improve mass transport, which significantly decreases the internal diffusion limits to achieve the desired performance. However, the construction of hierarchical zeolites with ordered alignments and size-controlled substructures in a convenient way is highly challenging. Herein, we develop a facile procedure using two common structure-directing agents, tetrapropylammonium hydroxide (TPAOH) and tetraethylammonium hydroxide (TEAOH), to synthesize hierarchically aligned ZSM-5 (Hie-ZSM-5) crystals with a-axis alignment substructures of controllable size. The control of the substructure size (α) in the range of 10-60 nm and the corresponding similarity (r = α/ß, where ß is the size of Hie-ZSM-5) ranging from 0.004 to 0.033 can be tuned by varying the Si/Al ratios (40-120). A systematic investigation of the overall crystallization process, using time-dependent XRD, SEM, TEM, and solid-state magic-angle spinning NMR (13C, 27Al, 29Si) methods, enable us to construct a solid mechanism for the generation of Hie-ZSM-5. Most importantly, directional transport in the unique structures of Hie-ZSM-5 efficiently enhances mass diffusion, as well as catalytic activity and stability. These findings improve our understanding of the zeolite crystallization process and inspire novel methods for the rational design of hierarchical zeolites.
ABSTRACT
BACKGROUND: Degenerative cervical myelopathy (DCM) is a progressive chronic spinal cord injury estimated to affect 1 in 50 adults. Without standardised guidance, clinical research studies have selected outcomes at their discretion, often underrepresenting the disease and limiting comparability between studies. Utilising a standard minimum data set formed via multi-stakeholder consensus can address these issues. This combines processes to define a core outcome set (COS)-a list of key outcomes-and core data elements (CDEs), a list of key sampling characteristics required to interpret the outcomes. Further "how" these outcomes should be measured and/or reported is then defined in a core measurement set (CMS). This can include a recommendation of a standardised time point at which outcome data should be reported. This study defines a COS, CDE, and CMS for DCM research. METHODS AND FINDINGS: A minimum data set was developed using a series of modified Delphi processes. Phase 1 involved the setup of an international DCM stakeholder group. Phase 2 involved the development of a longlist of outcomes, data elements, and formation into domains. Phase 3 prioritised the outcomes and CDEs using a two-stage Delphi process. Phase 4 determined the final DCM minimal data set using a consensus meeting. Using the COS, Phase 5 finalised definitions of the measurement construct for each outcome. In Phase 6, a systematic review of the literature was performed, to scope and define the psychometric properties of measurement tools. Phase 7 used a modified Delphi process to inform the short-listing of candidate measurement tools. The final measurement set was then formed through a consensus meeting (Phase 8). To support implementation, the data set was then integrated into template clinical research forms (CRFs) for use in future clinical trials (Phase 9). In total, 28 outcomes and 6 domains (Pain, Neurological Function, Life Impact, Radiology, Economic Impact, and Adverse Events) were entered into the final COS. Thirty two outcomes and 4 domains (Individual, Disease, Investigation, and Intervention) were entered into the final CDE. Finally, 4 outcome instruments (mJOA, NDI, SF-36v2, and SAVES2) were identified for the CMS, with a recommendation for trials evaluating outcomes after surgery, to include baseline measurement and at 6 months from surgery. CONCLUSIONS: The AO Spine RECODE-DCM has produced a minimum data set for use in DCM clinical trials today. These are available at https://myelopathy.org/minimum-dataset/. While it is anticipated the CDE and COS have strong and durable relevance, it is acknowledged that new measurement tools, alongside an increasing transition to study patients not undergoing surgery, may necessitate updates and adaptation, particularly with respect to the CMS.
Subject(s)
Cervical Vertebrae , Consensus , Delphi Technique , Spinal Cord Diseases , Humans , Cervical Vertebrae/surgery , Spinal Cord Diseases/surgery , Outcome Assessment, Health Care/methods , Treatment Outcome , Research DesignABSTRACT
BACKGROUND: We sought to describe patterns of delivery of adjuvant (aRT) and salvage RT (sRT) in patients who underwent RP after receiving neoadjuvant androgen receptor pathway inhibitor (ARPI) before radical prostatectomy (RP) for high-risk localized prostate cancer (HRLPC). METHODS: Two hundred eighteen patients treated on phase 2 neoadjuvant trials between 2006 and 2018 at two academic centers were evaluated. aRT and sRT were defined as receipt of RT with a PSA of ≤0.1 or >0.1 ng/mL, respectively. Primary outcomes were biochemical recurrence (BCR), defined as time from aRT/sRT to a PSA rising to >0.1 ng/mL, and metastasis-free survival (MFS) after RT. RESULTS: Twenty-three (11%) and 55 (25%) patients received aRT and sRT respectively. Median PSA at start of aRT and sRT was 0.01 and 0.16 ng/mL, and median duration from RP to RT was 5 and 14 months, respectively. All aRT patients had NCCN high-risk disease, 30% were pN1 and 43% had positive surgical margins; 52% had prostate bed RT. Fifty-one percent of sRT patients had biopsy Gleason 9-10, 29% were pT2 and 9% had positive surgical margins; 63% had RT to the prostate bed/pelvis. At a median follow-up of 5.3 and 3.0 years after aRT and sRT, 3-year freedom from BCR was 55% and 47%, and 3-year MFS was 56% and 53%, respectively. CONCLUSIONS: aRT was infrequently used in patients who received neoadjuvant ARPI before RP for HRLPC. Outcomes of aRT and sRT were similar but generally poor. Studies evaluating intensified systemic therapy approaches with postoperative RT in this high-risk population are needed.
Subject(s)
Prostate-Specific Antigen , Prostatic Neoplasms , Male , Humans , Prostate/pathology , Prostatic Neoplasms/pathology , Neoadjuvant Therapy , Radiotherapy, Adjuvant , Margins of Excision , Prostatectomy , Adjuvants, Pharmaceutic , Salvage Therapy , Neoplasm Recurrence, Local/surgery , Retrospective StudiesABSTRACT
BACKGROUND: Patients with localized, unfavorable intermediate-risk and high-risk prostate cancer have an increased risk of relapse after radical prostatectomy (RP). The authors previously reported on part 1 of this phase 2 trial testing neoadjuvant apalutamide, abiraterone, prednisone, plus leuprolide (AAPL) or abiraterone, prednisone, and leuprolide (APL) for 6 months followed by RP. The results demonstrated favorable pathologic responses (tumor <5 mm) in 20.3% of patients (n = 24 of 118). Herein, the authors report the results of part 2. METHODS: For part 2, patients were randomized 1:1 to receive either AAPL for 12 months (arm 2A) or observation (arm 2B), stratified by neoadjuvant therapy and pathologic tumor classification. The primary end point was 3-year biochemical progression-free survival. Secondary end points included safety and testosterone recovery (>200 ng/dL). RESULTS: Overall, 82 of 118 patients (69%) enrolled in part 1 were randomized to part 2. A higher proportion of patients who were not randomized to adjuvant therapy had a favorable prostatectomy pathologic response (32.3% in nonrandomized patients compared with 17.1% in randomized patients). In the intent-to-treat analysis, the 3-year biochemical progression-free survival rate was 81% for arm 2A and 72% for arm 2B (hazard ratio, 0.81; 90% confidence interval, 0.43-1.49). Of the randomized patients, 81% had testosterone recovery in the AAPL group compared with 95% in the observation group, with a median time to recovery of <12 months in both arms. CONCLUSIONS: In this study, because 30% of patients declined adjuvant treatment, part B was underpowered to detect differences between arms. Future perioperative studies should be biomarker-directed and include strategies for investigator and patient engagement to ensure compliance with protocol procedures.