Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 174(3): 672-687.e27, 2018 07 26.
Article in English | MEDLINE | ID: mdl-30053426

ABSTRACT

TCR-signaling strength generally correlates with peptide-MHC binding affinity; however, exceptions exist. We find high-affinity, yet non-stimulatory, interactions occur with high frequency in the human T cell repertoire. Here, we studied human TCRs that are refractory to activation by pMHC ligands despite robust binding. Analysis of 3D affinity, 2D dwell time, and crystal structures of stimulatory versus non-stimulatory TCR-pMHC interactions failed to account for their different signaling outcomes. Using yeast pMHC display, we identified peptide agonists of a formerly non-responsive TCR. Single-molecule force measurements demonstrated the emergence of catch bonds in the activating TCR-pMHC interactions, correlating with exclusion of CD45 from the TCR-APC contact site. Molecular dynamics simulations of TCR-pMHC disengagement distinguished agonist from non-agonist ligands based on the acquisition of catch bonds within the TCR-pMHC interface. The isolation of catch bonds as a parameter mediating the coupling of TCR binding and signaling has important implications for TCR and antigen engineering for immunotherapy.


Subject(s)
Histocompatibility Antigens Class I/physiology , Lymphocyte Activation/physiology , Adult , Female , Humans , Kinetics , Ligands , Major Histocompatibility Complex/physiology , Male , Middle Aged , Molecular Dynamics Simulation , Oligopeptides , Peptides , Protein Binding/physiology , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell/physiology , Signal Transduction , Single Molecule Imaging , T-Lymphocytes/physiology
2.
Cell ; 172(3): 549-563.e16, 2018 01 25.
Article in English | MEDLINE | ID: mdl-29275860

ABSTRACT

The immune system can mount T cell responses against tumors; however, the antigen specificities of tumor-infiltrating lymphocytes (TILs) are not well understood. We used yeast-display libraries of peptide-human leukocyte antigen (pHLA) to screen for antigens of "orphan" T cell receptors (TCRs) expressed on TILs from human colorectal adenocarcinoma. Four TIL-derived TCRs exhibited strong selection for peptides presented in a highly diverse pHLA-A∗02:01 library. Three of the TIL TCRs were specific for non-mutated self-antigens, two of which were present in separate patient tumors, and shared specificity for a non-mutated self-antigen derived from U2AF2. These results show that the exposed recognition surface of MHC-bound peptides accessible to the TCR contains sufficient structural information to enable the reconstruction of sequences of peptide targets for pathogenic TCRs of unknown specificity. This finding underscores the surprising specificity of TCRs for their cognate antigens and enables the facile indentification of tumor antigens through unbiased screening.


Subject(s)
Adenocarcinoma/immunology , Antigens, Neoplasm/immunology , Colorectal Neoplasms/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Receptors, Antigen, T-Cell/immunology , Aged , Animals , Antigens, Neoplasm/chemistry , Cell Line, Tumor , Cells, Cultured , HEK293 Cells , HLA-A Antigens/chemistry , HLA-A Antigens/immunology , Humans , Male , Middle Aged , Peptide Library , Sf9 Cells , Spodoptera
3.
Immunity ; 54(3): 586-602.e8, 2021 03 09.
Article in English | MEDLINE | ID: mdl-33691136

ABSTRACT

To identify disease-relevant T cell receptors (TCRs) with shared antigen specificity, we analyzed 778,938 TCRß chain sequences from 178 non-small cell lung cancer patients using the GLIPH2 (grouping of lymphocyte interactions with paratope hotspots 2) algorithm. We identified over 66,000 shared specificity groups, of which 435 were clonally expanded and enriched in tumors compared to adjacent lung. The antigenic epitopes of one such tumor-enriched specificity group were identified using a yeast peptide-HLA A∗02:01 display library. These included a peptide from the epithelial protein TMEM161A, which is overexpressed in tumors and cross-reactive epitopes from Epstein-Barr virus and E. coli. Our findings suggest that this cross-reactivity may underlie the presence of virus-specific T cells in tumor infiltrates and that pathogen cross-reactivity may be a feature of multiple cancers. The approach and analytical pipelines generated in this work, as well as the specificity groups defined here, present a resource for understanding the T cell response in cancer.


Subject(s)
Carcinoma, Non-Small-Cell Lung/immunology , Epitope Mapping/methods , Epitopes, T-Lymphocyte/genetics , Lung Neoplasms/immunology , Receptors, Antigen, T-Cell, alpha-beta/genetics , T-Lymphocytes/immunology , Algorithms , Antigen Presentation , Antigens, Neoplasm/metabolism , Cells, Cultured , Cross Reactions , Epitopes, T-Lymphocyte/metabolism , HLA-A2 Antigen/metabolism , Humans , Protein Binding , T-Cell Antigen Receptor Specificity
4.
Nature ; 617(7962): 717-723, 2023 05.
Article in English | MEDLINE | ID: mdl-37225883

ABSTRACT

Flexible solar cells have a lot of market potential for application in photovoltaics integrated into buildings and wearable electronics because they are lightweight, shockproof and self-powered. Silicon solar cells have been successfully used in large power plants. However, despite the efforts made for more than 50 years, there has been no notable progress in the development of flexible silicon solar cells because of their rigidity1-4. Here we provide a strategy for fabricating large-scale, foldable silicon wafers and manufacturing flexible solar cells. A textured crystalline silicon wafer always starts to crack at the sharp channels between surface pyramids in the marginal region of the wafer. This fact enabled us to improve the flexibility of silicon wafers by blunting the pyramidal structure in the marginal regions. This edge-blunting technique enables commercial production of large-scale (>240 cm2), high-efficiency (>24%) silicon solar cells that can be rolled similarly to a sheet of paper. The cells retain 100% of their power conversion efficiency after 1,000 side-to-side bending cycles. After being assembled into large (>10,000 cm2) flexible modules, these cells retain 99.62% of their power after thermal cycling between -70 °C and 85 °C for 120 h. Furthermore, they retain 96.03% of their power after 20 min of exposure to air flow when attached to a soft gasbag, which models wind blowing during a violent storm.

5.
Nature ; 612(7941): 771-777, 2022 12.
Article in English | MEDLINE | ID: mdl-36477533

ABSTRACT

Human leucocyte antigen B*27 (HLA-B*27) is strongly associated with inflammatory diseases of the spine and pelvis (for example, ankylosing spondylitis (AS)) and the eye (that is, acute anterior uveitis (AAU))1. How HLA-B*27 facilitates disease remains unknown, but one possible mechanism could involve presentation of pathogenic peptides to CD8+ T cells. Here we isolated orphan T cell receptors (TCRs) expressing a disease-associated public ß-chain variable region-complementary-determining region 3ß (BV9-CDR3ß) motif2-4 from blood and synovial fluid T cells from individuals with AS and from the eye in individuals with AAU. These TCRs showed consistent α-chain variable region (AV21) chain pairing and were clonally expanded in the joint and eye. We used HLA-B*27:05 yeast display peptide libraries to identify shared self-peptides and microbial peptides that activated the AS- and AAU-derived TCRs. Structural analysis revealed that TCR cross-reactivity for peptide-MHC was rooted in a shared binding motif present in both self-antigens and microbial antigens that engages the BV9-CDR3ß TCRs. These findings support the hypothesis that microbial antigens and self-antigens could play a pathogenic role in HLA-B*27-associated disease.


Subject(s)
Autoimmunity , HLA-B Antigens , Peptides , Receptors, Antigen, T-Cell , Humans , Autoantigens/chemistry , Autoantigens/immunology , Autoantigens/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , HLA-B Antigens/immunology , HLA-B Antigens/metabolism , Peptides/chemistry , Peptides/immunology , Peptides/metabolism , Receptors, Antigen, T-Cell/chemistry , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Synovial Fluid/immunology , Spondylitis, Ankylosing/immunology , Uveitis, Anterior/immunology , Peptide Library , Cross Reactions , Amino Acid Motifs
6.
Nature ; 586(7831): 779-784, 2020 10.
Article in English | MEDLINE | ID: mdl-33087934

ABSTRACT

Antibodies that antagonize extracellular receptor-ligand interactions are used as therapeutic agents for many diseases to inhibit signalling by cell-surface receptors1. However, this approach does not directly prevent intracellular signalling, such as through tonic or sustained signalling after ligand engagement. Here we present an alternative approach for attenuating cell-surface receptor signalling, termed receptor inhibition by phosphatase recruitment (RIPR). This approach compels cis-ligation of cell-surface receptors containing ITAM, ITIM or ITSM tyrosine phosphorylation motifs to the promiscuous cell-surface phosphatase CD452,3, which results in the direct intracellular dephosphorylation of tyrosine residues on the receptor target. As an example, we found that tonic signalling by the programmed cell death-1 receptor (PD-1) results in residual suppression of T cell activation, but is not inhibited by ligand-antagonist antibodies. We engineered a PD-1 molecule, which we denote RIPR-PD1, that induces cross-linking of PD-1 to CD45 and inhibits both tonic and ligand-activated signalling. RIPR-PD1 demonstrated enhanced inhibition of checkpoint blockade compared with ligand blocking by anti-PD1 antibodies, and increased therapeutic efficacy over anti-PD1 in mouse tumour models. We also show that the RIPR strategy extends to other immune-receptor targets that contain activating or inhibitory ITIM, ITSM or ITAM motifs; for example, inhibition of the macrophage SIRPα 'don't eat me' signal with a SIRPα-CD45 RIPR molecule potentiates antibody-dependent cellular phagocytosis beyond that of SIRPα blockade alone. RIPR represents a general strategy for direct attenuation of signalling by kinase-activated cell-surface receptors.


Subject(s)
Leukocyte Common Antigens/metabolism , Phosphoric Monoester Hydrolases/metabolism , Receptors, Immunologic/antagonists & inhibitors , Animals , Antibodies, Monoclonal, Humanized/pharmacology , Carcinoma, Small Cell/drug therapy , Carcinoma, Small Cell/metabolism , Carcinoma, Small Cell/pathology , Cell Line, Tumor , Colonic Neoplasms/drug therapy , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Cross-Linking Reagents , Disease Models, Animal , Disease Progression , Female , HEK293 Cells , Humans , Leukocyte Common Antigens/antagonists & inhibitors , Leukocyte Common Antigens/chemistry , Ligands , Lymphocyte Activation/drug effects , Male , Mice , Nivolumab/pharmacology , Phosphorylation , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Signal Transduction/drug effects , T-Lymphocytes/cytology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology
7.
Small ; : e2310352, 2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38368257

ABSTRACT

Extensive research has focused on developing wide-bandgap metal compound-based passivating contacts as alternatives to conventional doped-silicon-layer-based passivating contacts to mitigate parasitic absorption losses in crystalline silicon (c-Si) solar cells. Herein, thermally-evaporated aluminum halides (AlX)-based electron-selective passivating contacts for c-Si solar cells are investigated. A low contact resistivity of 60.5 and 38.4 mΩ cm2 is obtained on the AlClx /n-type c-Si (n-Si) and AlFx /n-Si heterocontacts, respectively, thanks to the low work function of AlX. Power conversion efficiencies (PCEs) of 19.1% and 19.6% are achieved on proof-of-concept n-Si solar cells featuring a full-area AlClx /Al and AlFx /Al passivating contact, respectively. By further implementing an ultrathin SiO2 passivation interlayer and a pre-annealing treatment, the electron selectivity (especially the surface passivation) of AlX is significantly enhanced. Accordingly, a remarkable PCE of 21% is achieved on n-Si solar cells featuring a full-area SiO2 /AlFx /Al rear contact. AlFx -based electron-selective passivating contacts exhibit good thermal stability up to ≈400 °C and better long-term environmental stability. This work demonstrates the potential of AlFx -based electron-selective passivating contact for solar cells.

8.
Phys Chem Chem Phys ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38989787

ABSTRACT

The N-oxide strategy plays a crucial role in regulating the performance and safety of energetic materials. This study mainly addresses the question of how the N-oxide group affects the properties of azobistriazole and its derivatives. Our findings indicate that the N-oxide group can increase the density of the system, and its effect on the enthalpy of formation depends on the specific situation. The N-oxide groups can effectively improve the density and energetic properties. Some of the energetic derivatives containing N-oxide groups have a density as high as 2.097 g cm-3 (D3-NO(2)) and a detonation velocity as high as 10 275 m s-1 (C6-NO(2)). The effect of N-oxide groups on the enthalpy of formation depends on the specific circumstances. The effect of N-oxide groups on the stability of azobistriazole energetic derivatives is relatively complex. Among them, the N-oxide group on the triazole ring has an opposite effect on the bond dissociation enthalpy of functional groups. When the N-oxide group is on the 1,2,3-triazole ring, it can improve C-R (R is equal to C(NO2)3, NF2, NHNO2, NO2, and ONO2 respectively) bond dissociation enthalpy, and when it is on the 1,2,4-triazole ring, it will reduce the C-R bond dissociation enthalpy. When the N-oxide group is located on the azo bond, the bond dissociation enthalpy of the azo bond will be significantly reduced. This article systematically explores the effect of N-oxide groups on the properties of azobistriazole energetic derivatives, which will help people better utilize N-oxide groups to design and synthesize new energetic materials.

9.
J Org Chem ; 88(17): 12481-12492, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37590038

ABSTRACT

The worthwhile idea of whether amine-like catenated nitrogen compounds are stable enough to be used as high-energy materials was proposed and answered. Abstracting the NH3 structure into NR3 (R is the substituent) yields a new class of amine-like catenated nitrogen compounds. Most of the azole ring structures have a high nitrogen content and stability. Inspired by this idea, a series of new amine-like catenated nitrogen compounds (A1 to H5) were designed, and their basic energetic properties were calculated. The results showed that (1) amine-like molecular structures are often characterized by low density; however, the density of these compounds increases as the number of nitrogens in the azole ring increases; (2) these catenated nitrogen compounds generally have extremely high enthalpies of formation (882.91-2652.03 kJ/mol), and the detonation velocity of some compounds exceeds 9254.00 m/s; (3) the detonation performance of amine-like catenated nitrogen compounds designed based on imidazole and pyrazole rings is poor due to their low nitrogen content; and (4) the bond dissociation enthalpy of trigger bonds of most compounds is higher than 84 kJ/mol, indicating that these compounds have a certain thermodynamic stability. In summary, amine-like catenated nitrogen compounds have the potential to become energetic compounds with excellent detonation properties and should be considered to be synthesized by experimental chemists.

10.
Phys Chem Chem Phys ; 25(28): 18523-18544, 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37409442

ABSTRACT

Energetic compounds, as a type of special material, are widely used in the fields of national defense, aerospace and exploration. Their research and production have received growing attention. Thermal stability is a crucial factor for the safety of energetic materials. Azole-rich energetic compounds have emerged as a research hotspot in recent years owing to their excellent properties. Due to the aromaticity of unsaturated azoles, many azole-rich energetic compounds have significant thermal stability, which is one of the properties that researchers focus on. This review presents a comprehensive summary of the physicochemical and energetic properties of various energetic materials, highlighting the relationship between thermal stability and the structural, physicochemical, and energetic properties of azole-rich energetic compounds. To improve the thermal stability of compounds, five aspects can be considered, including functional group modification, bridging, preparation of energetic salts, energetic metal-organic frameworks (EMOFs) and co-crystals. It was demonstrated that increasing the strength and number of hydrogen bonds of azoles and expanding the π-π stacking area are the key factors to improve thermal stability, which provides a valuable way to develop energetic materials with higher energy and thermal stability.

11.
Foodborne Pathog Dis ; 20(1): 17-31, 2023 01.
Article in English | MEDLINE | ID: mdl-36576972

ABSTRACT

Giardia duodenum (G. duodenalis) can cause giardiasis and infect a variety of hosts. So far, there have been no detailed data regarding the positive rate of G. duodenalis in cattle in China. Here, a systematic literature review was carried out to investigate the epidemiology of bovine G. duodenalis in China. To perform the meta-analysis, the databases China National Knowledge Infrastructure, VIP Chinese Journal Databases, WanFang Databases, PubMed, and ScienceDirect were employed for screening studies related to the prevalence of G. duodenalis in cattle in China. The total prevalence of G. duodenalis in cattle was estimated to be 8.00% (95% confidence interval [CI]: 5.51-11.62). In the age subgroup, the prevalence of G. duodenalis in calves (11.72%; 95% CI: 7.75-17.73) was significantly higher than that in cattle of other age groups. An analysis based on seasons showed that the prevalence of G. duodenalis in cattle was higher in summer (9.69%; 95% CI: 2.66-35.30) than that in other seasons. The prevalence of G. duodenalis in cattle in 2016 or later was 11.62% (95% CI: 6.49-20.79), which was significantly higher than that before 2016 (3.65%; 95% CI: 2.17-6.12). The highest prevalence of G. duodenalis in cattle was 74.23% (95% CI: 69.76-78.45) recorded in South China. The NOAA's National Center for Environmental Information (https://gis.ncdc.noaa.gov/maps/ncei/cdo/monthly) was used to extract relevant geoclimatic data (latitude, longitude, elevation, temperature, precipitation, humidity, and climate). By analyzing the data of each subgroup, it was shown that age of cattle, sampling year, province, region, temperature, and climate were potential risk factors for giardiasis prevalence in cattle. Based on the analysis of common factors and geographical factors, it is recommended to strengthen effective management measures (e.g., ventilation and disinfection in warm and humid areas) and formulate relevant policies according to local conditions. Breeders should pay more attention to the detection of G. duodenalis in calves, to prevent giardiasis prevalence in cattle of different ages, thereby reducing the economic losses of animal husbandry in China.


Subject(s)
Cattle Diseases , Giardia lamblia , Giardiasis , Animals , Cattle , Giardiasis/epidemiology , Giardiasis/veterinary , Prevalence , Cattle Diseases/epidemiology , China/epidemiology , Feces , Genotype
12.
Int J Mol Sci ; 24(4)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36835326

ABSTRACT

It is an arduous and meaningful challenge to design and develop new energetic materials with lower sensitivity and higher energy. How to skillfully combine the characteristics of low sensitivity and high energy is the key problem in designing new insensitive high-energy materials. Taking a triazole ring as a framework, a strategy of N-oxide derivatives containing isomerized nitro and amino groups was proposed to answer this question. Based on this strategy, some 1,2,4-triazole N-oxide derivatives (NATNOs) were designed and explored. The electronic structure calculation showed that the stable existence of these triazole derivatives was due to the intramolecular hydrogen bond and other interactions. The impact sensitivity and the dissociation enthalpy of trigger bonds directly indicated that some compounds could exist stably. The crystal densities of all NATNOs were larger than 1.80 g/cm3, which met the requirement of high-energetic materials for crystal density. Some NATNOs (9748 m/s for NATNO, 9841 m/s for NATNO-1, 9818 m/s for NATNO-2, 9906 m/s for NATNO-3, and 9592 m/s for NATNO-4) were potential high detonation velocity energy materials. These study results not only indicate that the NATNOs have relatively stable properties and excellent detonation properties but also prove that the strategy of nitro amino position isomerization coupled with N-oxide is an effective means to develop new energetic materials.


Subject(s)
Explosive Agents , Oxides , Oxides/chemistry , Explosive Agents/chemistry , Triazoles/chemistry , Thermodynamics
13.
Int J Mol Sci ; 24(9)2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37175588

ABSTRACT

Exposure to ultraviolet (UV) light is known to cause skin aging, skin damage, cancer, and eye diseases, as well as polymer material aging. Therefore, significant attention has been devoted to the research and development of UV absorbers. Considering the robust hydrogen bonding and conjugated structure present in nitrogen-containing polycyclic compounds, these compounds have been selected as potential candidates for exploring ultraviolet absorption properties. After structural optimization and the simulation of ultraviolet absorption spectra, four tris-[1,2,4]-triazolo-[1,3,5]-triazine (TTTs) derivatives, namely TTTB, TTTD, TTTJ, and TTTL, were selected as the preferred compounds and synthesized. The structure of the compound was determined using various analytical techniques, including FTIR, 1HNMR, 13CNMR, HRMS, and XRD. Subsequently, composite films of polyvinyl chloride (PVC) and TTTs were produced using a simple solvent casting technique. The PVC films were subjected to UV age testing by exposing them to an ultraviolet aging chamber. The age-resistant performance of the fabricated films was evaluated using an ultraviolet spectrophotometer and Fourier infrared spectrum instrument. The findings suggest that TTTs exhibit a noteworthy capacity for absorbing ultraviolet radiation. The TTTL compound exhibits a superior UV absorption performance compared to commercially available UV absorbers such as UV-0 and UV-327 in the market.


Subject(s)
Nitrogen Compounds , Ultraviolet Rays , Polymers , Nitrogen
14.
Foodborne Pathog Dis ; 19(3): 179-191, 2022 03.
Article in English | MEDLINE | ID: mdl-35020482

ABSTRACT

Giardia duodenalis has a wide range of host species and is a common causative agent of diarrheal disease in humans and animals. This study conducted a systematic review and meta-analysis to evaluate the pooled prevalence of Giardia among dogs in China. We extracted 33 studies related to the prevalence of G. duodenalis in dogs, with samples taken from 2001 to 2021. The random-effect model was used to calculate pooled prevalence estimates with 95% confidence intervals, and the analyzed data were from 14 provinces in China. The estimated overall prevalence of G. duodenalis among dogs in China was 11.2%. The prevalence of Giardia was significantly higher in Northwestern China (35.7%) than in other regions. The prevalence in 2010 or later (11.8%) was significantly higher than in 2010 or before (6.9%). The estimated prevalence detected by microscopy (9.3%) was lower than molecular (12.3%) and serological (14.3%) ones. The prevalence was higher in dogs <1 year of age (12.2%) than that >1 year (5.4%). Among the genotype groups, the positive rate of assemblage A (5.2%) was significantly higher than that of other assemblages. Depending on the dog' type, the prevalence of G. duodenalis in stray dogs (3.5%) was lower than that in pet dogs (6.7%) and intensively breeding dogs (11.8%). In addition, no correlation was found between Giardia positive rate and the dogs' gender (p > 0.05). We also analyzed the effects of different geographic factor subgroups (longitude, latitude, precipitation, temperature, humidity, and altitude) on the prevalence of G. duodenalis in dogs in China. The results showed that giardiasis was widespread in dogs in China. It is suggested that corresponding control scheme and effective management measures should be formulated and applied to reduce the transmission of G. duodenalis according to the difference in geographical conditions in different areas.


Subject(s)
Giardia lamblia , Giardiasis , Animals , China/epidemiology , Dogs , Feces , Genotype , Giardia lamblia/genetics , Giardiasis/epidemiology , Giardiasis/veterinary , Prevalence
15.
Microb Pathog ; 158: 105096, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34273476

ABSTRACT

Cryptosporidiosis is an important zoonosis caused by Cryptosporidium. This disease causes a global public health problem. The cat is considered to be one of the potential hosts for transmitting Cryptosporidium to humans. In this study, a global meta-analysis for Cryptosporidium infection in cats was performed. The articles related to Cryptosporidium infection in cats were systematically searched in databases China National Knowledge Infrastructure (CNKI), Wanfang data, VIP Chinese Journal Database, PubMed, and ScienceDirect. Finally, 92 articles published from 1988 to 2021, which met the criteria of systematic review and meta-analysis, were collected. During the selected period, the overall prevalence of Cryptosporidium among cats was identified to be 6.0%. The prevalence of Cryptosporidium detected by microscopy, coproantigens, and molecular biology methods were 4.2%, 8.2%, and 5.0%, respectively. Among 9 species/genotypes (C. felis, C. parvum, C. muris, Cryptosporidium rat genotype IV, C. baileyi, C. ryanae, C. hominis, Cryptosporidium sp. rat genotype III and most closely related to Cryptosporidium sp. rat genotype III), the prevalence of C. parvum (4.2%) was significantly higher than that of other species/genotypes. Among five continents, the prevalence of Cryptosporidium in Africa (30.5%) was significantly higher than in other continents. We also analyzed the effects of different geographical factors (longitude, latitude, altitude, mean temperature, precipitation, and humidity) on Cryptosporidium infection among cats. The results showed that cryptosporidiosis was common in cats all over the world. This systematic review and meta-analysis has systematically introduced the global epidemiology of Cryptosporidium in cats and correlated risk factors. Health authorities, doctors, veterinarians and cat owners' awareness of the prevalence, risk factors and complications of Cryptosporidium are important for the development of effective prevention strategies for cryptosporidiosis.


Subject(s)
Cryptosporidiosis , Cryptosporidium , Animals , Cryptosporidiosis/epidemiology , Cryptosporidium/genetics , Feces , Genotype , Humans , Prevalence , Risk Factors , Zoonoses/epidemiology
16.
Proc Natl Acad Sci U S A ; 115(31): E7369-E7378, 2018 07 31.
Article in English | MEDLINE | ID: mdl-30021852

ABSTRACT

T cell receptors (TCRs) bind to peptide-major histocompatibility complex (pMHC) with low affinity (Kd ∼ µM), which is generally assumed to facilitate cross-reactive TCR "scanning" of ligands. To understand the relationship between TCR/pMHC affinity and cross-reactivity, we sought to engineer an additional weak interaction, termed "velcro," between the TCR and pMHC to probe the specificities of TCRs at relatively low and high affinities. This additional interaction was generated through an eight-amino acid peptide library covalently linked to the N terminus of the MHC-bound peptide. Velcro was selected through an affinity-based isolation and was subsequently shown to enhance the cognate TCR/pMHC affinity in a peptide-dependent manner by ∼10-fold. This was sufficient to convert a nonstimulatory ultra-low-affinity ligand into a stimulatory ligand. An X-ray crystallographic structure revealed how velcro interacts with the TCR. To probe TCR cross-reactivity, we screened TCRs against yeast-displayed pMHC libraries with and without velcro, and found that the peptide cross-reactivity profiles of low-affinity (Kd > 100 µM) and high-affinity (Kd ∼ µM) TCR/pMHC interactions are remarkably similar. The conservation of recognition of the TCR for pMHC across affinities reveals the nature of low-affinity ligands for which there are important biological functions and has implications for understanding the specificities of affinity-matured TCRs.


Subject(s)
Major Histocompatibility Complex , Oligopeptides/metabolism , Receptors, Antigen, T-Cell/metabolism , Cross Reactions , Humans , Peptide Library , Protein Engineering
17.
J Biol Chem ; 292(45): 18618-18627, 2017 11 10.
Article in English | MEDLINE | ID: mdl-28931605

ABSTRACT

Influenza A virus (IAV) causes an acute infection in humans that is normally eliminated by CD8+ cytotoxic T lymphocytes. Individuals expressing the MHC class I molecule HLA-A2 produce cytotoxic T lymphocytes bearing T-cell receptors (TCRs) that recognize the immunodominant IAV epitope GILGFVFTL (GIL). Most GIL-specific TCRs utilize α/ß chain pairs encoded by the TRAV27/TRBV19 gene combination to recognize this relatively featureless peptide epitope (canonical TCRs). However, ∼40% of GIL-specific TCRs express a wide variety of other TRAV/TRBV combinations (non-canonical TCRs). To investigate the structural underpinnings of this remarkable diversity, we determined the crystal structure of a non-canonical GIL-specific TCR (F50) expressing the TRAV13-1/TRBV27 gene combination bound to GIL-HLA-A2 to 1.7 Å resolution. Comparison of the F50-GIL-HLA-A2 complex with the previously published complex formed by a canonical TCR (JM22) revealed that F50 and JM22 engage GIL-HLA-A2 in markedly different orientations. These orientations are distinguished by crossing angles of TCR to peptide-MHC of 29° for F50 versus 69° for JM22 and by a focus by F50 on the C terminus rather than the center of the MHC α1 helix for JM22. In addition, F50, unlike JM22, uses a tryptophan instead of an arginine to fill a critical notch between GIL and the HLA-A2 α2 helix. The F50-GIL-HLA-A2 complex shows that there are multiple structurally distinct solutions to recognizing an identical peptide-MHC ligand with sufficient affinity to elicit a broad anti-IAV response that protects against viral escape and T-cell clonal loss.


Subject(s)
Antigens, Viral/metabolism , Epitopes, T-Lymphocyte/metabolism , HLA-A2 Antigen/metabolism , Immunodominant Epitopes/metabolism , Models, Molecular , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Viral Matrix Proteins/metabolism , Amino Acid Substitution , Antibody Affinity , Antibody Diversity , Antigen-Antibody Complex/chemistry , Antigen-Antibody Complex/genetics , Antigen-Antibody Complex/metabolism , Antigens, Viral/chemistry , Antigens, Viral/genetics , Clonal Deletion , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/genetics , HLA-A2 Antigen/chemistry , HLA-A2 Antigen/genetics , Humans , Hydrogen Bonding , Immunodominant Epitopes/chemistry , Immunodominant Epitopes/genetics , Influenza A virus/immunology , Influenza A virus/metabolism , Mutation , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Protein Conformation , Protein Conformation, alpha-Helical , Receptors, Antigen, T-Cell, alpha-beta/chemistry , Receptors, Antigen, T-Cell, alpha-beta/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , T-Cell Antigen Receptor Specificity , T-Lymphocytes, Cytotoxic/cytology , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/metabolism , T-Lymphocytes, Cytotoxic/virology , Viral Matrix Proteins/chemistry , Viral Matrix Proteins/genetics
18.
Microsc Microanal ; 23(5): 900-904, 2017 10.
Article in English | MEDLINE | ID: mdl-28809136

ABSTRACT

In this study, the cross-section of electron-selective titanium oxide (TiO2) contacts for n-type crystalline silicon solar cells were investigated by transmission electron microscopy. It was revealed that the excellent cell efficiency of 21.6% obtained on n-type cells, featuring SiO2/TiO2/Al rear contacts and after forming gas annealing (FGA) at 350°C, is due to strong surface passivation of SiO2/TiO2 stack as well as low contact resistivity at the Si/SiO2/TiO2 heterojunction. This can be attributed to the transformation of amorphous TiO2 to a conducting TiO2-x phase. Conversely, the low efficiency (9.8%) obtained on cells featuring an a-Si:H/TiO2/Al rear contact is due to severe degradation of passivation of the a-Si:H upon FGA.

19.
J Biol Chem ; 290(48): 29106-19, 2015 Nov 27.
Article in English | MEDLINE | ID: mdl-26429912

ABSTRACT

Cytomegalovirus (CMV) is a ubiquitous and persistent human pathogen that is kept in check by CD8(+) cytotoxic T lymphocytes. Individuals expressing the major histocompatibility complex (MHC) class I molecule HLA-A2 produce cytotoxic T lymphocytes bearing T cell receptors (TCRs) that recognize the immunodominant CMV epitope NLVPMVATV (NLV). The NLV-specific T cell repertoire is characterized by a high prevalence of TCRs that are frequently observed in multiple unrelated individuals. These public TCRs feature identical, or nearly identical, complementarity-determining region 3α (CDR3α) and/or CDR3ß sequences. The TCRs may express public CDR3α motifs alone, public CDR3ß motifs alone, or dual public CDR3αß motifs. In addition, the same public CDR3α motif may pair with different CDR3ß motifs (and the reverse), giving rise to highly diverse NLV-specific TCR repertoires. To investigate the structural underpinnings of this clonal diversity, we determined crystal structures of two public TCRs (C7 and C25) in complex with NLV·HLA-A2. These TCRs utilize completely different CDR3α and CDR3ß motifs that, in addition, can associate with multiple variable α and variable ß regions in NLV-specific T cell repertoires. The C7·NLV·HLA-A2 and C25·NLV·HLA-A2 complexes exhibit divergent TCR footprints on peptide-MHC such that C25 is more focused on the central portion of the NLV peptide than is C7. These structures combined with molecular modeling show how the public CDR3α motif of C25 may associate with different variable α regions and how the public CDR3α motif of C7 may pair with different CDR3ß motifs. This interchangeability of TCR V regions and CDR3 motifs permits multiple structural solutions to binding an identical peptide-MHC ligand and thereby the generation of a clonally diverse public T cell response to CMV.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cytomegalovirus/immunology , Epitopes, T-Lymphocyte/immunology , HLA-A2 Antigen/immunology , Immunity, Cellular , Receptors, Antigen, T-Cell/immunology , Adult , Amino Acid Motifs , Cytomegalovirus/genetics , Epitopes, T-Lymphocyte/genetics , HLA-A2 Antigen/genetics , Humans , Middle Aged , Receptors, Antigen, T-Cell/genetics
20.
J Biol Chem ; 288(32): 23597-606, 2013 Aug 09.
Article in English | MEDLINE | ID: mdl-23782692

ABSTRACT

Variable lymphocyte receptors (VLRs) are leucine-rich repeat proteins that mediate adaptive immunity in jawless vertebrates. VLRs were recently shown to recognize glycans, such as the tumor-associated Thomsen-Friedenreich antigen (TFα; Galß1-3GalNAcα), with a selectivity rivaling or exceeding that of lectins and antibodies. To understand the basis for TFα recognition by one such VLR (VLRB.aGPA.23), we measured thermodynamic parameters for the binding interaction and determined the structure of the VLRB.aGPA.23-TFα complex to 2.2 Å resolution. In the structure, four tryptophan residues form a tight hydrophobic cage encasing the TFα disaccharide that completely excludes buried water molecules. This cage together with hydrogen bonding of sugar hydroxyls to polar side chains explains the exquisite selectivity of VLRB.aGPA.23. The topology of the glycan-binding site of VLRB.aGPA.23 differs markedly from those of lectins or antibodies, which typically consist of long, convex grooves for accommodating the oligosaccharide. Instead, the TFα disaccharide is sandwiched between a variable loop and the concave surface of the VLR formed by the ß-strands of the leucine-rich repeat modules. Longer oligosaccharides are predicted to extend perpendicularly across the ß-strands, requiring them to bend to match the concavity of the VLR solenoid.


Subject(s)
Antigens, Tumor-Associated, Carbohydrate/chemistry , Fish Proteins/chemistry , Lampreys , Receptors, Antigen, T-Cell/chemistry , Animals , Antigens, Tumor-Associated, Carbohydrate/genetics , Antigens, Tumor-Associated, Carbohydrate/immunology , Fish Proteins/genetics , Fish Proteins/immunology , Protein Binding , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/immunology
SELECTION OF CITATIONS
SEARCH DETAIL