Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Angew Chem Int Ed Engl ; 60(2): 983-989, 2021 01 11.
Article in English | MEDLINE | ID: mdl-32990356

ABSTRACT

Deep-penetration fluorescence imaging in the second near-infrared (NIR-II) window heralds a new era of clinical surgery, in which high-resolution vascular/lymphatic anatomy and detailed cancerous tissues can be visualized in real time. Described here is a series of polymethine-based semiconducting polymers with intrinsic emission maxima in the NIR-IIa (1300-1400 nm) window and absorption maxima ranging from 1082 to 1290 nm. These polymers were prepared as semiconducting polymer dots (Pdots) in aqueous solutions with fluorescence quantum yields of 0.05-0.18 %, and they demonstrate promising applications in noninvasive through-skull brain imaging in live mice with remarkable spatial resolution as well as signal-to-background contrast. This study offers a platform for future design of NIR-IIa or even NIR-IIb emitting Pdots.


Subject(s)
Contrast Media/chemistry , Indoles/chemistry , Optical Imaging/methods , Quantum Dots/chemistry , Animals , Brain/diagnostic imaging , Density Functional Theory , Fluorescent Dyes/chemistry , Infrared Rays , Medulloblastoma/diagnostic imaging , Mice , Mice, Inbred C57BL , Semiconductors , Spectroscopy, Near-Infrared
2.
Anal Chem ; 92(1): 1493-1501, 2020 Jan 07.
Article in English | MEDLINE | ID: mdl-31815438

ABSTRACT

There have been enormous efforts for developing the next generations of fluorometric lateral flow immunochromatographic strip (ICTS) owing to the great advances in fluorescent materials in these years. Here we developed one type of fluorometric ICTS based on ultrabright semiconducting polymer dots (Pdots) in which the traffic light-like signals were created by energy transfer depending on the target concentration. This platform was successfully applied for qualitatively rapid screening and quantitatively precise analysis of prostate-specific antigen (PSA) in 10 min from merely one drop of the whole blood sample. This FRET-created traffic light ICTS possesses excellent specificity and an outstanding detection sensitivity of 0.32 ng/mL for PSA. Moreover, we conducted proof-of-concept experiments to demonstrate its potential for multiplexed detection of cancer biomarkers at the same time in an individual test strip by taking advantage of the traffic light signals. To the best of our knowledge, it is the first model of a traffic light-like immunoassay test strip based on Pdots with multiplexing ability. These results would pave an avenue for designing the next generation of point-of-care diagnostics.

3.
J Biol Chem ; 291(42): 22231-22243, 2016 Oct 14.
Article in English | MEDLINE | ID: mdl-27576691

ABSTRACT

Androgen receptor (AR) is a validated drug target for all stages of prostate cancer including metastatic castration-resistant prostate cancer (CRPC). All current hormone therapies for CRPC target the C-terminal ligand-binding domain of AR and ultimately all fail with resumed AR transcriptional activity. Within the AR N-terminal domain (NTD) is activation function-1 (AF-1) that is essential for AR transcriptional activity. Inhibitors of AR AF-1 would potentially block most AR mechanisms of resistance including constitutively active AR splice variants that lack the ligand-binding domain. Here we provide evidence that sintokamide A (SINT1) binds AR AF-1 region to specifically inhibit transactivation of AR NTD. Consistent with SINT1 targeting AR AF-1, it attenuated transcriptional activities of both full-length AR and constitutively active AR splice variants, which correlated with inhibition of growth of enzalutamide-resistant prostate cancer cells expressing AR splice variants. In vivo, SINT1 caused regression of CRPC xenografts and reduced expression of prostate-specific antigen, a gene transcriptionally regulated by AR. Inhibition of AR activity by SINT1 was additive to EPI-002, a known AR AF-1 inhibitor that is in clinical trials (NCT02606123). This implies that SINT1 binds to a site on AF-1 that is unique from EPI. Consistent with this suggestion, these two compounds showed differences in blocking AR interaction with STAT3. This work provides evidence that the intrinsically disordered NTD of AR is druggable and that SINT1 analogs may provide a novel scaffold for drug development for the treatment of prostate cancer or other diseases of the AR axis.


Subject(s)
Androgen Receptor Antagonists/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Neoplasm Proteins , Prostatic Neoplasms , Pyrrolidinones/pharmacology , Receptors, Androgen/biosynthesis , Transcriptional Activation/drug effects , Animals , Cell Line, Tumor , Male , Mice , Mice, Inbred NOD , Mice, SCID , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/metabolism , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , Protein Domains , Pyrrolidinones/pharmacokinetics , STAT3 Transcription Factor/metabolism
4.
BMC Biotechnol ; 15: 23, 2015 Apr 08.
Article in English | MEDLINE | ID: mdl-25880121

ABSTRACT

BACKGROUND: Helicobacter pylori neutrophil-activating protein (HP-NAP) is involved in H. pylori-induced gastric inflammation. Due to its immunogenic and immunomodulatory properties, HP-NAP has been used for developing vaccines against H. pylori infection and new drugs for cancer therapy. RESULTS: Here, we provide a simple process for high-yield production of HP-NAP by applying one-step negative chromatography to purify recombinant HP-NAP expressed in Escherichia coli (E. coli). In our E. coli expression system, recombinant HP-NAP constitutes nearly 70% of the total protein. Overexpressed recombinant HP-NAP is almost completely soluble upon cell lysis at pH 9.5. Under the optimal condition at pH 8.0, recombinant HP-NAP with purity higher than 95% can be obtained from E. coli by collecting the unbound fraction using diethylaminoethyl (DEAE) Sephadex resin in batch mode. The overall yield of HP-NAP from a 50-ml E. coli culture is ~19 mg. The purified HP-NAP folds into a multimer with a secondary structure of α-helix and is able to trigger the production of reactive oxygen species by neutrophils. CONCLUSIONS: Purification of recombinant HP-NAP overexpressed in E. coli using DEAE Sephadex negative mode batch chromatography is an efficient method for high-yield production of highly pure HP-NAP in its native state. The purified HP-NAP is useful for various clinical applications including vaccine development, diagnosis, and new drug development.


Subject(s)
Bacterial Proteins/isolation & purification , Bacterial Proteins/metabolism , Escherichia coli/genetics , Helicobacter pylori/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Chromatography , Helicobacter pylori/chemistry , Hydrogen-Ion Concentration , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Solubility
5.
Oncogene ; 42(28): 2207-2217, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37264081

ABSTRACT

Activation of the PI3K-mTOR pathway is central to breast cancer pathogenesis including resistance to many targeted therapies. The mTOR kinase forms two distinct complexes, mTORC1 and mTORC2, and understanding which is required for the survival of malignant cells has been limited by tools to selectively and completely impair either subcomplex. To address this, we used RMC-6272, a bi-steric molecule with a rapamycin-like moiety linked to an mTOR active-site inhibitor that displays >25-fold selectivity for mTORC1 over mTORC2 substrates. Complete suppression of mTORC1 by RMC-6272 causes apoptosis in ER+/HER2- breast cancer cell lines, particularly in those that harbor mutations in PIK3CA or PTEN, due to inhibition of the rapamycin resistant, mTORC1 substrate 4EBP1 and reduction of the pro-survival protein MCL1. RMC-6272 reduced translation of ribosomal mRNAs, MYC target genes, and components of the CDK4/6 pathway, suggesting enhanced impairment of oncogenic pathways compared to the partial mTORC1 inhibitor everolimus. RMC-6272 maintained efficacy in hormone therapy-resistant acquired cell lines and patient-derived xenografts (PDX), showed increased efficacy in CDK4/6 inhibitor treated acquired resistant cell lines versus their parental counterparts, and was efficacious in a PDX from a patient experiencing resistance to CDK4/6 inhibition. Bi-steric mTORC1-selective inhibition may be effective in overcoming multiple forms of therapy-resistance in ER+ breast cancers.


Subject(s)
Breast Neoplasms , Humans , Female , Mechanistic Target of Rapamycin Complex 1/metabolism , Breast Neoplasms/pathology , Multiprotein Complexes/metabolism , TOR Serine-Threonine Kinases/metabolism , Mechanistic Target of Rapamycin Complex 2/metabolism , Sirolimus/pharmacology , Sirolimus/therapeutic use , Drug Resistance , Cell Line, Tumor , Cell Proliferation
6.
J Clin Invest ; 133(21)2023 11 01.
Article in English | MEDLINE | ID: mdl-37909334

ABSTRACT

The PI3K/AKT/mTOR pathway is commonly dysregulated in cancer. Rapalogs exhibit modest clinical benefit, likely owing to their lack of effects on 4EBP1. We hypothesized that bi-steric mTORC1-selective inhibitors would have greater potential for clinical benefit than rapalogs in tumors with mTORC1 dysfunction. We assessed this hypothesis in tumor models with high mTORC1 activity both in vitro and in vivo. Bi-steric inhibitors had strong growth inhibition, eliminated phosphorylated 4EBP1, and induced more apoptosis than rapamycin or MLN0128. Multiomics analysis showed extensive effects of the bi-steric inhibitors in comparison with rapamycin. De novo purine synthesis was selectively inhibited by bi-sterics through reduction in JUN and its downstream target PRPS1 and appeared to be the cause of apoptosis. Hence, bi-steric mTORC1-selective inhibitors are a therapeutic strategy to treat tumors driven by mTORC1 hyperactivation.


Subject(s)
MTOR Inhibitors , Phosphatidylinositol 3-Kinases , Mechanistic Target of Rapamycin Complex 1/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Cell Line, Tumor , Sirolimus/pharmacology , Apoptosis , Cell Proliferation , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism
7.
Elife ; 112022 12 13.
Article in English | MEDLINE | ID: mdl-36511483

ABSTRACT

Advanced prostate malignancies are a leading cause of cancer-related deaths in men, in large part due to our incomplete understanding of cellular drivers of disease progression. We investigate prostate cancer cell dynamics at single-cell resolution from disease onset to the development of androgen independence in an in vivo murine model. We observe an expansion of a castration-resistant intermediate luminal cell type that correlates with treatment resistance and poor prognosis in human patients. Moreover, transformed epithelial cells and associated fibroblasts create a microenvironment conducive to pro-tumorigenic immune infiltration, which is partially androgen responsive. Androgen-independent prostate cancer leads to significant diversification of intermediate luminal cell populations characterized by a range of androgen signaling activity, which is inversely correlated with proliferation and mRNA translation. Accordingly, distinct epithelial populations are exquisitely sensitive to translation inhibition, which leads to epithelial cell death, loss of pro-tumorigenic signaling, and decreased tumor heterogeneity. Our findings reveal a complex tumor environment largely dominated by castration-resistant luminal cells and immunosuppressive infiltrates.


Subject(s)
Androgens , Prostatic Neoplasms , Male , Humans , Mice , Animals , Prostate/metabolism , Prostatic Neoplasms/pathology , Orchiectomy , Population Dynamics , Receptors, Androgen/metabolism , Disease Progression , Tumor Microenvironment
8.
ACS Sens ; 6(11): 4255-4264, 2021 11 26.
Article in English | MEDLINE | ID: mdl-34788538

ABSTRACT

Semiconducting polymer nanoparticles (Pdots) have been demonstrated to be a promising class of probes for use in fluorometric immunochromatographic test strips (ICTS). The advantages of Pdots in ICTSs include ultrahigh brightness, minimal nonspecific adsorption, and multicolor availability, which together contribute to the high sensitivity, good specificity, and multiplexing ability. These unique properties can therefore circumvent several significant challenges of commercial ICTSs, including insufficient specificity/sensitivity and difficulty in quantitative and multiplexed detection. Here, we developed a colorimetric and fluorescent bimodal readout ICTS based on gold-Pdot nanohybrids for the determination of carcinoembryonic antigen (CEA) and cytokeratin 19 fragment (CYFRA 21-1) expressed abnormally in human blood of non-small-cell lung cancer (NSCLS). The vivid color from Au nanomaterials can be used for rapid qualitative screening (colorimetry) in 15 min, while the bright fluorescence of Pdots is ideal for the advanced quantitative measurements of CEA and CYFRA21-1 concentrations in whole blood samples. This bimodal ICTS platform possesses phenomenal detection sensitivity of 0.07 and 0.12 ng/mL for CYFRA21-1 and CEA, respectively. The accuracy and reliability of this ICTS platform were further evaluated with clinical serum samples from NSCLS patients at different stages, showing good consistency with the results from electrochemiluminescence immunoassay.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Quantum Dots , Antigens, Neoplasm , Biomarkers, Tumor , Carcinoma, Non-Small-Cell Lung/diagnosis , Humans , Immunoassay , Keratin-19 , Lung Neoplasms/diagnosis , Polymers , Reproducibility of Results
9.
ACS Appl Bio Mater ; 3(6): 3846-3858, 2020 Jun 15.
Article in English | MEDLINE | ID: mdl-35025255

ABSTRACT

Bioimaging in the near-infrared window is of great importance to study the dynamic processes in vivo with deep penetration, high spatiotemporal resolution, and minimal tissue absorption, scattering, and autofluorescence. In spite of the huge progress on the synthesis of small organic fluorophores and inorganic nanomaterials with emissions beyond 900 nm, it remains a tough challenge to synthesize semiconducting polymers with fluorescence over this region. Here, we synthesized a series of heptamethine cyanine-based polymers with both absorption and emission in the near-infrared region. We prepared these polymers as semiconducting polymer dots (Pdots) in pure water with great biocompatibility. The fluorescence quantum yield of the Pdots can be as high as 14% with a full width at half-maximum of 53 nm, and their single-particle brightness is more than 20 times higher than commercial quantum dots or ∼300 times brighter than Food and Drug Administration (FDA)-approved indocyanine green (ICG) dyes. We further demonstrated the use of cyanine-based Pdots for specific cellular labeling and long-term tumor targeting in mice. We anticipate that these cyanine-based ultrabright Pdots could open up an avenue for next generations of near-infrared fluorescent agents.

10.
ACS Pharmacol Transl Sci ; 2(6): 453-467, 2019 Dec 13.
Article in English | MEDLINE | ID: mdl-32259077

ABSTRACT

Inhibition of the androgen receptor (AR) is the mainstay treatment for advanced prostate cancer. Ralaniten (formally EPI-002) prevents AR transcriptional activity by binding to its N-terminal domain (NTD) which is essential for transcriptional activity. Ralaniten acetate (EPI-506) the triacetate pro-drug of ralaniten, remains the only AR-NTD inhibitor to have entered clinical trials (NCT02606123). While well tolerated, the trial was ultimately terminated due to poor pharmacokinetic properties and resulting pill burden. Here we discovered that ralaniten was glucuronidated which resulted in decreased potency. Long-term treatment of prostate cancer cells with ralaniten results in upregulation of UGT2B enzymes with concomitant loss of potency. This has proven to be a useful model with which to facilitate the development of more potent second-generation AR-NTD inhibitors. Glucuronidated metabolites of ralaniten were also detected in the serum of patients in Phase 1 clinical trials. Therefore, we tested an analogue of ralaniten (EPI-045) which was resistant to glucuronidation and demonstrated superiority to ralaniten in our resistant model. These data support that analogues of ralaniten designed to mitigate glucuronidation may optimize clinical responses to AR-NTD inhibitors.

11.
PLoS One ; 12(3): e0173632, 2017.
Article in English | MEDLINE | ID: mdl-28328957

ABSTRACT

Helicobacter pylori neutrophil-activating protein (HP-NAP) is involved in H. pylori-associated gastric inflammation. HP-NAP is also a vaccine candidate, a possible drug target, and a potential diagnostic marker for H. pylori-associated diseases. Previously, we purified recombinant HP-NAP by one-step diethylaminoethyl (DEAE) negative mode chromatography by collecting the unbound fraction at pH 8.0 at 4°C. It remains unclear why HP-NAP does not bind to DEAE resins at the pH above its isoelectric point during the purification. To investigate how pH affects the surface net charge of HP-NAP and its binding to DEAE resins during the purification, recombinant HP-NAP expressed in Escherichia coli was subjected to DEAE negative mode chromatography at pH ranging from 7.0 to 9.0 at 25°C and the surface charge of purified HP-NAP was determined by capillary electrophoresis. A minimal amount of HP-NAP was detected in the elution fraction of DEAE Sepharose resin at pH 8.5, whereas recombinant HP-NAP was detected in the elution fraction of DEAE Sephadex resin only at pH 7.0 and 8.0. The purified recombinant HP-NAP obtained from the unbound fractions was not able to bind to DEAE resins at pH 7.0 to 9.0. In addition, the surface charge of the purified HP-NAP was neutral at pH 7.0 to 8.0 and was either neutral or slightly negative at pH 8.5 and 9.0. However, recombinant HP-NAP purified from gel-filtration chromatography was able to bind to DEAE Sepharose resin at pH 7.0 to 9.0 and DEAE Sephadex resin at pH 7.0. At pH 8.5 and 9.0, only the negatively charged species of HP-NAP were found. Thus, recombinant HP-NAP with different charge status can be differentially purified by DEAE negative mode chromatography and gel-filtration chromatography. Furthermore, the charge distribution on the surface of HP-NAP, the presence of impure proteins, and the overall net charge of the resins all affect the binding of HP-NAP to DEAE resins during the negative purification.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/isolation & purification , Helicobacter pylori/chemistry , Bacterial Proteins/immunology , Chromatography, Gel , Chromatography, Ion Exchange , DEAE-Dextran , Electrochemistry , Electrophoresis, Capillary , Ethanolamines , Helicobacter Infections/diagnosis , Helicobacter Infections/immunology , Helicobacter pylori/immunology , Helicobacter pylori/pathogenicity , Humans , Hydrogen-Ion Concentration , Ion Exchange Resins , Neutrophils/immunology , Recombinant Proteins/chemistry , Recombinant Proteins/immunology , Recombinant Proteins/isolation & purification , Sepharose
12.
Cancer Cell ; 32(4): 474-489.e6, 2017 10 09.
Article in English | MEDLINE | ID: mdl-29017058

ABSTRACT

Androgen receptor (AR) signaling is a distinctive feature of prostate carcinoma (PC) and represents the major therapeutic target for treating metastatic prostate cancer (mPC). Though highly effective, AR antagonism can produce tumors that bypass a functional requirement for AR, often through neuroendocrine (NE) transdifferentiation. Through the molecular assessment of mPCs over two decades, we find a phenotypic shift has occurred in mPC with the emergence of an AR-null NE-null phenotype. These "double-negative" PCs are notable for elevated FGF and MAPK pathway activity, which can bypass AR dependence. Pharmacological inhibitors of MAPK or FGFR repressed the growth of double-negative PCs in vitro and in vivo. Our results indicate that FGF/MAPK blockade may be particularly efficacious against mPCs with an AR-null phenotype.


Subject(s)
Fibroblast Growth Factors/physiology , Prostatic Neoplasms/pathology , Receptors, Androgen/physiology , Signal Transduction/physiology , Androgen Antagonists/therapeutic use , Animals , Cell Differentiation , Cell Line, Tumor , Fibroblast Growth Factors/antagonists & inhibitors , Humans , Inhibitor of Differentiation Protein 1/physiology , MAP Kinase Signaling System/drug effects , Male , Mice , Neoplasm Metastasis , Prostatic Neoplasms/drug therapy , Receptors, Fibroblast Growth Factor/antagonists & inhibitors , Receptors, Fibroblast Growth Factor/physiology
13.
J Vis Exp ; (112)2016 06 18.
Article in English | MEDLINE | ID: mdl-27404433

ABSTRACT

Helicobacter pylori neutrophil-activating protein (HP-NAP) is a major virulence factor of Helicobacter pylori (H. pylori). It plays a critical role in H. pylori-induced gastric inflammation by activating several innate leukocytes including neutrophils, monocytes, and mast cells. The immunogenic and immunomodulatory properties of HP-NAP make it a potential diagnostic and vaccine candidate for H. pylori and a new drug candidate for cancer therapy. In order to obtain substantial quantities of purified HP-NAP used for its clinical applications, an efficient method to purify this protein with high yield and purity needs to be established. In this protocol, we have described a method for one-step negative chromatographic purification of recombinant HP-NAP overexpressed in Escherichia coli (E. coli) by using diethylaminoethyl (DEAE) ion-exchange resins (e.g., Sephadex) in batch mode. Recombinant HP-NAP constitutes nearly 70% of the total protein in E. coli and is almost fully recovered in the soluble fraction upon cell lysis at pH 9.0. Under the optimal condition at pH 8.0, the majority of HP-NAP is recovered in the unbound fraction while the endogenous proteins from E. coli are efficiently removed by the resin. This purification method using negative mode batch chromatography with DEAE ion-exchange resins yields functional HP-NAP from E. coli in its native form with high yield and purity. The purified HP-NAP could be further utilized for the prevention, treatment, and prognosis of H. pylori-associated diseases as well as cancer therapy.


Subject(s)
Helicobacter pylori , Neutrophils , Bacterial Proteins , Chromatography , Escherichia coli , Monocytes
14.
J Endod ; 42(5): 711-6, 2016 May.
Article in English | MEDLINE | ID: mdl-26975415

ABSTRACT

INTRODUCTION: CD44 is a cell-surface glycoprotein involved in various cellular functions. Recent studies have suggested that CD44 is involved in early mineralization of odontoblasts. Hyaluronic acid (HA) is the principal ligand for receptor CD44. Whether and how HA regulated the mineralization process of dental pulp cells were investigated. METHODS: The effects of high-molecular-weight HA on differentiation and mineral deposition of dental pulp cells were tested by using alkaline phosphatase (ALP) activity assay and alizarin red S staining. Osteogenesis real-time polymerase chain reaction array, quantitative polymerase chain reaction, and Western blotting were performed to identify downstream molecules involved in the mineralization induction of HA. CD44 was knocked down and examined to confirm whether the mineralization effect of HA was mediated by receptor CD44. Immunohistochemistry was used to understand the localization patterns of CD44 and the identified downstream proteins in vivo. RESULTS: Pulse treatment of HA enhanced ALP activity and mineral deposition in dental pulp cells. Tissue-nonspecific ALP, bone morphogenetic protein 7 (BMP7), and type XV collagen (Col15A1) were upregulated via the HA-CD44 pathway in vitro. Immunohistochemistry of tooth sections showed that the staining pattern of BMP7 was very similar to that of CD44. CONCLUSIONS: Results of this study indicated that high-molecular-weight HA enhanced early mineralization of dental pulp cells mediated via CD44. The process involved important mineralization-associated molecules including tissue-nonspecific ALP, BMP7, and Col15A1. The findings may help develop new strategies in regenerative endodontics.


Subject(s)
Dental Pulp/cytology , Dental Pulp/drug effects , Dental Pulp/metabolism , Hyaluronan Receptors/pharmacology , Hyaluronic Acid/pharmacology , Tooth Calcification/drug effects , Adult , Alkaline Phosphatase/drug effects , Alkaline Phosphatase/metabolism , Anthraquinones , Blotting, Western , Bone Morphogenetic Protein 7/drug effects , Bone Morphogenetic Protein 7/metabolism , Calcification, Physiologic/drug effects , Cell Culture Techniques , Cell Differentiation/drug effects , Collagen/drug effects , Collagen/metabolism , Gene Expression Regulation , Gene Knockdown Techniques , Humans , Hyaluronan Receptors/genetics , Hyaluronan Receptors/metabolism , Hyaluronic Acid/administration & dosage , Integrin-Binding Sialoprotein/drug effects , Integrin-Binding Sialoprotein/metabolism , Matrix Metalloproteinase 13/drug effects , Matrix Metalloproteinase 13/metabolism , Molar, Third/cytology , Odontoblasts/drug effects , Osteogenesis , Real-Time Polymerase Chain Reaction , Up-Regulation
15.
Clin Cancer Res ; 22(17): 4466-77, 2016 Sep 01.
Article in English | MEDLINE | ID: mdl-27140928

ABSTRACT

PURPOSE: Persistent androgen receptor (AR) transcriptional activity is clinically evident in castration-resistant prostate cancer (CRPC). Therefore, AR remains as a viable therapeutic target for CRPC. All current hormonal therapies target the C-terminus ligand-binding domain (LBD) of AR. By using EPI to target AR activation function-1 (AF-1), in the N-terminal domain that is essential for AR transactivation, we evaluate the ability of EPI to overcome several clinically relevant AR-related mechanisms of resistance. EXPERIMENTAL DESIGN: To study the effect of EPI on AR transcriptional activity against overexpressed coactivators, such as SRC1-3 and p300, luciferase reporter assays were performed using LNCaP cells. AR-negative COS-1 cells were employed for reporter assays to examine whether the length of polyglutamine tract affects inhibition by EPI. The effect of EPI on constitutively active AR splice variants was studied in LNCaP95 cells, which express AR-V7 variant. To evaluate the effect of EPI on the proliferation of LNCaP95 cells, we performed in vitro BrdUrd incorporation assay and in vivo studies using xenografts in mice. RESULTS: EPI effectively overcame several molecular alterations underlying aberrant AR activity, including overexpressed coactivators, AR gain-of-function mutations, and constitutively active AR-V7. EPI inhibited AR transcriptional activity regardless of the length of polyglutamine tract. Importantly, EPI significantly inhibited the in vitro and in vivo proliferation of LNCaP95 prostate cancer cells, which are androgen independent and enzalutamide resistant. CONCLUSIONS: These findings support EPI as a promising therapeutic agent to treat CRPC, particularly against tumors driven by constitutively active AR splice variants that are resistant to LBD-targeting drugs. Clin Cancer Res; 22(17); 4466-77. ©2016 AACRSee related commentary by Sharp et al., p. 4280.


Subject(s)
Androgen Receptor Antagonists/pharmacology , Benzhydryl Compounds/pharmacology , Chlorohydrins/pharmacology , Drug Resistance, Neoplasm , Prostatic Neoplasms, Castration-Resistant/metabolism , Receptors, Androgen/metabolism , Animals , Apoptosis/drug effects , COS Cells , Cell Line, Tumor , Chlorocebus aethiops , Disease Models, Animal , Gene Expression Regulation, Neoplastic/drug effects , Humans , Male , Mice , Mutation , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Protein Binding , RNA Splicing , Receptors, Androgen/genetics , Signal Transduction/drug effects , Transcriptional Activation , Xenograft Model Antitumor Assays
16.
Biomedicine (Taipei) ; 5(3): 15, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26264479

ABSTRACT

(-)-Epigallocatechin-3-gallate (EGCG) is the most abundant catechin with various biological activities found in tea. In this study, the effects of EGCG on the metabolism and toxicity of acetaminophen in rat liver were investigated. Male Sprague-Dawley rats were fed a controlled diet without or with EGCG (0.54 %, w/w) for 1 week and were then intraperitoneally injected with acetaminophen (1 g/kg body weight) and killed after 12 h. Concentrations of acetaminophen and its conjugates in plasma and liver were then determined. The cytochrome P450 (CYP) and phase II enzymes activities were also evaluated. Rats fed the EGCG diet had lower plasma alanine aminotransferase and aspartate aminotransferase activities, as indices of hepatotoxicity, after acetaminophen treatment. Morphological damage by acetaminophen was lower in rats fed the EGCG diet. In addition, EGCG significantly reduced hepatic activities of midazolam 1-hydroxylation (CYP3A), nitrophenol 6-hydroxylase (CYP2E1), UDP-glucurosyltransferase, and sulfotransferase. Finally, EGCG feeding reduced acetaminophen-glucuronate and acetaminophen-glutathione contents in plasma and liver. These results indicate that EGCG feeding may reduce the metabolism and toxicity of acetaminophen in rats.

17.
Res Dev Disabil ; 35(8): 1878-84, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24802054

ABSTRACT

Poor writing is common in children with Attention Deficit Hyperactivity Disorder (ADHD). However, the writing performance of children with ADHD has been rarely formally explored in Taiwan, so the purpose of this study was to investigate writing features of children with ADHD in Taiwan. There were 25 children with ADHD and 25 normal children involved in a standardization writing assessment - Written Language Test for Children, to assess their performance at the dictation, sentence combination, adding/deducting redical, cloze and sentence making subtests. The results showed that except for the score of the sentence combining subtest, the score of children with ADHD was lower than the normal student in the rest of the subtests. Almost 60% of ADHD children's scores were below the 25th percentile numbers, but only 20% for normal children. Thus, writing problems were common for children with ADHD in Taiwan, too. First, children with ADHD performed worse than normal children on the dictation and cloze subtests, showing the weaker abilities of retrieving correct characters from their mental lexicon. Second, children with ADHD performed worse on the adding/deducting redical subtest than normal children did. Finally, at the language level, the score of children with ADHD on the sentence combination subtest was not lower than normal children, implicating their normal grammatic competence. It is worth mentioning that Taiwanese children with ADHD ignore the details of characters when they are writing, a finding that is common across languages.


Subject(s)
Attention Deficit Disorder with Hyperactivity/psychology , Handwriting , Reading , Semantics , Writing , Asian People/psychology , Attention Deficit Disorder with Hyperactivity/rehabilitation , Child , Female , Humans , Impulsive Behavior , Language Development Disorders/psychology , Language Development Disorders/rehabilitation , Male , Motivation , Psychomotor Performance , Taiwan , Wechsler Scales
18.
PLoS One ; 9(9): e107991, 2014.
Article in English | MEDLINE | ID: mdl-25268119

ABSTRACT

Androgen ablation therapy causes a temporary reduction in tumor burden in patients with advanced prostate cancer. Unfortunately the malignancy will return to form lethal castration-recurrent prostate cancer (CRPC). The androgen receptor (AR) remains transcriptionally active in CRPC in spite of castrate levels of androgens in the blood. AR transcriptional activity resides in its N-terminal domain (NTD). Possible mechanisms of continued AR transcriptional activity may include, at least in part, expression of constitutively active splice variants of AR that lack the C-terminal ligand-binding domain (LBD). Current therapies that target the AR LBD, would not be effective against these AR variants. Currently no drugs are clinically available that target the AR NTD which should be effective against these AR variants as well as full-length AR. Niphatenones were originally isolated and identified in active extracts from Niphates digitalis marine sponge. Here we begin to characterize the mechanism of niphatenones in blocking AR transcriptional activity. Both enantiomers had similar IC50 values of 6 µM for inhibiting the full-length AR in a functional transcriptional assay. However, (S)-niphatenone had significantly better activity against the AR NTD compared to (R)-niphatenone. Consistent with niphatenones binding to and inhibiting transactivation of AR NTD, niphatenones inhibited AR splice variant. Niphatenone did not affect the transcriptional activity of the related progesterone receptor, but slightly decreased glucocorticoid receptor (GR) activity and covalently bound to GR activation function-1 (AF-1) region. Niphatenone blocked N/C interactions of AR without altering either AR protein levels or its intracellular localization in response to androgen. Alkylation with glutathione suggests that niphatenones are not a feasible scaffold for further drug development.


Subject(s)
Androgen Receptor Antagonists/pharmacology , Antineoplastic Agents, Hormonal/pharmacology , Glyceryl Ethers/pharmacology , Cell Line, Tumor , Humans , Inhibitory Concentration 50 , Male , Metribolone/pharmacology , Prostatic Neoplasms/drug therapy , Protein Structure, Tertiary , Receptors, Androgen/chemistry , Receptors, Androgen/physiology , Stereoisomerism , Transcriptional Activation/drug effects
19.
Mol Cancer Ther ; 12(5): 621-31, 2013 May.
Article in English | MEDLINE | ID: mdl-23443807

ABSTRACT

Androgen receptor is a ligand-activated transcription factor and a validated drug target for all stages of prostate cancer. Antiandrogens compete with physiologic ligands for androgen receptor ligand-binding domain (LBD). High-throughput screening of a marine natural product library for small molecules that inhibit androgen receptor transcriptional activity yielded the furanoditerpenoid spongia-13(16),-14-dien-19-oic acid, designated terpene 1 (T1). Characterization of T1 and the structurally related semisynthetic analogues (T2 and T3) revealed that these diterpenoids have antiandrogen properties that include inhibition of both androgen-dependent proliferation and androgen receptor transcriptional activity by a mechanism that involved competing with androgen for androgen receptor LBD and blocking essential N/C interactions required for androgen-induced androgen receptor transcriptional activity. Structure-activity relationship analyses revealed some chemical features of T1 that are associated with activity and yielded T3 as the most potent analogue. In vivo, T3 significantly reduced the weight of seminal vesicles, which are an androgen-dependent tissue, thereby confirming the on-target activity of T3. The ability to create analogues of diterpenoids that have varying antiandrogen activity represents a novel class of chemical compounds for the analysis of androgen receptor ligand-binding properties and therapeutic development.


Subject(s)
Androgen Receptor Antagonists/pharmacology , Diterpenes/pharmacology , Receptors, Androgen/metabolism , Androgen Receptor Antagonists/chemistry , Androgens/metabolism , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Diterpenes/chemistry , Dose-Response Relationship, Drug , Gene Expression Regulation, Neoplastic/drug effects , Humans , Male , Mice , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Protein Binding , Protein Interaction Domains and Motifs , Receptors, Androgen/chemistry , Transcription, Genetic
20.
PLoS One ; 8(4): e60786, 2013.
Article in English | MEDLINE | ID: mdl-23577158

ABSTRACT

Helicobacter pylori neutrophil-activating protein (HP-NAP), a major virulence factor of Helicobacter pylori (H. pylori), is capable of activating human neutrophils to produce reactive oxygen species (ROS) and secrete inammatory mediators. HP-NAP is a vaccine candidate, a possible drug target, and a potential in vitro diagnostic marker for H. pylori infection. HP-NAP has also been shown to be a novel therapeutic agent for the treatment of allergic asthma and bladder cancer. Hence, an efficient way to obtain pure HP-NAP needs to be developed. In this study, one-step anion-exchange chromatography in negative mode was applied to purify the recombinant HP-NAP expressed in Bacillus subtilis (B. subtilis). This purification technique was based on the binding of host cell proteins and/or impurities other than HP-NAP to DEAE Sephadex resins. At pH 8.0, almost no other proteins except HP-NAP passed through the DEAE Sephadex column. More than 60% of the total HP-NAP with purity higher than 91% was recovered in the flow-through fraction from this single-step DEAE Sephadex chromatography. The purified recombinant HP-NAP was further demonstrated to be a multimeric protein with a secondary structure of α-helix and capable of activating human neutrophils to stimulate ROS production. Thus, this one-step negative chromatography using DEAE Sephadex resin can efficiently yield functional HP-NAP from B. subtilis in its native form with high purity. HP-NAP purified by this method could be further utilized for the development of new drugs, vaccines, and diagnostics for H. pylori infection.


Subject(s)
Bacillus subtilis/genetics , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Chromatography, Ion Exchange/methods , Bacterial Proteins/chemistry , Bacterial Proteins/pharmacology , Gene Expression , Humans , Neutrophils/drug effects , Neutrophils/metabolism , Reactive Oxygen Species/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL