Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 234
Filter
Add more filters

Publication year range
1.
Brief Bioinform ; 25(4)2024 May 23.
Article in English | MEDLINE | ID: mdl-38819254

ABSTRACT

Single-cell RNA sequencing has revealed cellular heterogeneity in complex tissues, notably benefiting research on diseases such as cancer. However, the integration of single-cell data from small samples with extensive clinical features in bulk data remains underexplored. In this study, we introduce PIPET, an algorithmic method for predicting relevant subpopulations in single-cell data based on multivariate phenotypic information from bulk data. PIPET generates feature vectors for each phenotype from differentially expressed genes in bulk data and then identifies relevant cellular subpopulations by assessing the similarity between single-cell data and these vectors. Subsequently, phenotype-related cell states can be analyzed based on these subpopulations. In simulated datasets, PIPET showed robust performance in predicting multiclassification cellular subpopulations. Application of PIPET to lung adenocarcinoma single-cell RNA sequencing data revealed cellular subpopulations with poor survival and associations with TP53 mutations. Similarly, in breast cancer single-cell data, PIPET identified cellular subpopulations associated with the PAM50 clinical subtypes and triple-negative breast cancer subtypes. Overall, PIPET effectively identified relevant cellular subpopulations in single-cell data, guided by phenotypic information from bulk data. This approach comprehensively delineates the molecular characteristics of each cellular subpopulation, offering insights into disease-related subpopulations and guiding personalized treatment strategies.


Subject(s)
Algorithms , Phenotype , Single-Cell Analysis , Single-Cell Analysis/methods , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Sequence Analysis, RNA/methods , Computational Biology/methods , Mutation , Female , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology
2.
Nature ; 577(7789): 266-270, 2020 01.
Article in English | MEDLINE | ID: mdl-31827282

ABSTRACT

Acute myeloid leukaemia (AML) is a heterogeneous disease characterized by transcriptional dysregulation that results in a block in differentiation and increased malignant self-renewal. Various epigenetic therapies aimed at reversing these hallmarks of AML have progressed into clinical trials, but most show only modest efficacy owing to an inability to effectively eradicate leukaemia stem cells (LSCs)1. Here, to specifically identify novel dependencies in LSCs, we screened a bespoke library of small hairpin RNAs that target chromatin regulators in a unique ex vivo mouse model of LSCs. We identify the MYST acetyltransferase HBO1 (also known as KAT7 or MYST2) and several known members of the HBO1 protein complex as critical regulators of LSC maintenance. Using CRISPR domain screening and quantitative mass spectrometry, we identified the histone acetyltransferase domain of HBO1 as being essential in the acetylation of histone H3 at K14. H3 acetylated at K14 (H3K14ac) facilitates the processivity of RNA polymerase II to maintain the high expression of key genes (including Hoxa9 and Hoxa10) that help to sustain the functional properties of LSCs. To leverage this dependency therapeutically, we developed a highly potent small-molecule inhibitor of HBO1 and demonstrate its mode of activity as a competitive analogue of acetyl-CoA. Inhibition of HBO1 phenocopied our genetic data and showed efficacy in a broad range of human cell lines and primary AML cells from patients. These biological, structural and chemical insights into a therapeutic target in AML will enable the clinical translation of these findings.


Subject(s)
Histone Acetyltransferases/metabolism , Leukemia, Myeloid, Acute/metabolism , Neoplastic Stem Cells/metabolism , Animals , Cell Line, Tumor , Histone Acetyltransferases/chemistry , Histone Acetyltransferases/genetics , Humans , Leukemia, Myeloid, Acute/genetics , Mice , Mice, Inbred C57BL , Models, Molecular , Protein Structure, Tertiary
3.
Carcinogenesis ; 45(5): 288-299, 2024 May 19.
Article in English | MEDLINE | ID: mdl-38466106

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental carcinogens accountable to developing skin cancers. Recently, we reported that exposure to benzo[a]pyrene (B[a]P), a common PAH, causes epigenetic and metabolic alterations in the initiation, promotion and progression of non-melanoma skin cancer (NMSC). As a follow-up investigation, this study examines how dietary triterpenoid ursolic acid (UA) regulates B[a]P-driven epigenetic and metabolic pathways in SKH-1 hairless mice. Our results show UA intercepts against B[a]P-induced tumorigenesis at different stages of NMSC. Epigenomic cytosines followed by guanine residues (CpG) methyl-seq data showed UA diminished B[a]P-mediated differentially methylated regions (DMRs) profiles. Transcriptomic RNA-seq revealed UA revoked B[a]P-induced differentially expressed genes (DEGs) of skin cancer-related genes, such as leucine-rich repeat LGI family member 2 (Lgi2) and kallikrein-related peptidase 13 (Klk13), indicating UA plays a vital role in B[a]P-mediated gene regulation and its potential consequences in NMSC interception. Association analysis of DEGs and DMRs found that the mRNA expression of KLK13 gene was correlated with the promoter CpG methylation status in the early-stage comparison group, indicating UA could regulate the KLK13 by modulating its promoter methylation at an early stage of NMSC. The metabolomic study showed UA alters B[a]P-regulated cancer-associated metabolisms like thiamin metabolism, ascorbate and aldarate metabolism during the initiation phase; pyruvate, citrate and thiamin metabolism during the promotion phase; and beta-alanine and pathothenate coenzyme A (CoA) biosynthesis during the late progression phase. Taken together, UA reverses B[a]P-driven epigenetic, transcriptomic and metabolic reprogramming, potentially contributing to the overall cancer interception against B[a]P-mediated NMSC.


Subject(s)
Benzo(a)pyrene , DNA Methylation , Epigenesis, Genetic , Mice, Hairless , Skin Neoplasms , Triterpenes , Ursolic Acid , Animals , Skin Neoplasms/chemically induced , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Skin Neoplasms/metabolism , Benzo(a)pyrene/toxicity , Triterpenes/pharmacology , Mice , Epigenesis, Genetic/drug effects , DNA Methylation/drug effects , Carcinogens, Environmental/toxicity , Gene Expression Regulation, Neoplastic/drug effects , Carcinogenesis/drug effects , Carcinogenesis/genetics , Carcinogenesis/chemically induced
4.
Oncologist ; 29(1): e15-e24, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37279780

ABSTRACT

BACKGROUND: Neoadjuvant trastuzumab/pertuzumab (HP) plus chemotherapy for HER2-positive breast cancer (BC) achieved promising efficacy. The additional cardiotoxicity still existed. Brecan study evaluated the efficacy and safety of neoadjuvant pegylated liposomal doxorubicin (PLD)/cyclophosphamide and sequential nab-paclitaxel based on HP (PLD/C/HP-nabP/HP). PATIENTS AND METHODS: Brecan was a single-arm phase II study. Eligible patients with stages IIA-IIIC HER2-positive BC received 4 cycles of PLD, cyclophosphamide, and HP, followed by 4 cycles of nab-paclitaxel and HP. Definitive surgery was scheduled after 21 days for patients completing treatment or experiencing intolerable toxicity. The primary endpoint was the pathological complete response (pCR). RESULTS: Between January 2020 and December 2021, 96 patients were enrolled. Ninety-five (99.0%) patients received 8 cycles of neoadjuvant therapy and all underwent surgery with 45 (46.9%) breast-conserving surgery and 51 (53.1%) mastectomy. The pCR was 80.2% (95%CI, 71.2%-87.0%). Four (4.2%) experienced left ventricular insufficiency with an absolute decline in LVEF (43%-49%). No congestive heart failure and ≥grade 3 cardiac toxicity occurred. The objective response rate was 85.4% (95%CI, 77.0%-91.1%), including 57 (59.4%) complete responses and 25 (26.0%) partial responses. The disease control rate was 99.0% (95%CI, 94.3%-99.8%). For overall safety, ≥grade 3 AEs occurred in 30 (31.3%) and mainly included neutropenia (30.2%) and asthenia (8.3%). No treatment-related deaths occurred. Notably, age of >30 (P = .01; OR = 5.086; 95%CI, 1.44-17.965) and HER2 IHC 3+ (P = .02; OR = 4.398; 95%CI, 1.286-15.002) were independent predictors for superior pCR (ClinicalTrials.gov Identifier NCT05346107). CONCLUSION: Brecan study demonstrated the encouraging safety and efficacy of neoadjuvant PLD/C/HP-nabP/HP, suggesting a potential therapeutic option in HER2-positive BC.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/pathology , Neoadjuvant Therapy/adverse effects , Receptor, ErbB-2/therapeutic use , Mastectomy , Treatment Outcome , Paclitaxel , Cyclophosphamide/therapeutic use , Trastuzumab/adverse effects , Antineoplastic Combined Chemotherapy Protocols/adverse effects
5.
BMC Plant Biol ; 24(1): 61, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38253992

ABSTRACT

BACKGROUND: Leaf coloration in plants, attributed to anthocyanin compounds, plays a crucial role in various physiological functions, and also for pharmaceutical and horticultural uses. However, the molecular mechanisms governing leaf coloration and the physiological significance of anthocyanins in leaves remain poorly understood. RESULTS: In this study, we investigated leaf color variation in two closely related mulberry genotypes, one with purplish-red young leaves (EP) and another with normal leaf color (EW). We integrated transcriptomic and metabolomic approaches to gain insights into the metabolic and genetic basis of purplish-red leaf development in mulberry. Our results revealed that flavonoid biosynthesis, particularly the accumulation of delphinidin-3-O-glucoside, is a key determinant of leaf color. Additionally, the up-regulation of CHS genes and transcription factors, including MYB family members, likely contributes to the increased flavonoid content in purplish-red leaves. CONCLUSION: These findings enhance our understanding of the molecular mechanisms responsible for the purplish coloration observed in mulberry leaves and also offer supporting evidence for the hypothesis that anthocyanins serve a protective function in plant tissues until the processes of light absorption and carbon fixation reach maturity, thereby ensuring a balanced equilibrium between energy capture and utilization.


Subject(s)
Morus , Morus/genetics , Anthocyanins , Genotype , Flavonoids , Plant Leaves/genetics
6.
Small ; : e2406511, 2024 Oct 24.
Article in English | MEDLINE | ID: mdl-39449218

ABSTRACT

The distinct molecular states - single molecule, assembly, and aggregate - of two ionic macromolecules, TPPE-APOSS and TPE-APOSS, are easily distinguishable through their tunable fluorescence emission wavelengths, which reflect variations in intermolecular distances. Both ionic macromolecules contain aggregation-induced emission (AIE) active moieties whose emission wavelengths are directly correlated to their mutual distances in solution: far away from each other as individual molecules, maintaining a tunable and relatively long distance in electrostatic interactions-controlled blackberry-type assemblies (microphase separation), or approaching van der Waals close distance in aggregates (macrophase separation). Furthermore, within the blackberry assemblies, the emission wavelength decreases monotonically with increasing assembly size, indicative of shorter intermolecular distances at nanoscale. The emission changes of TPPE-APOSS blackberry assemblies can even be visually distinguishable by eyes when their sizes and intermolecular distances are tuned. Molecular dynamics simulations further revealed that macromolecules are confined in various conformations by controllable intermolecular distances within the blackberry structure, thereby resulting in fluorescence emission with tunable wavelength.

7.
Blood ; 139(6): 845-858, 2022 02 10.
Article in English | MEDLINE | ID: mdl-34724565

ABSTRACT

The histone acetyltransferase HBO1 (MYST2, KAT7) is indispensable for postgastrulation development, histone H3 lysine 14 acetylation (H3K14Ac), and the expression of embryonic patterning genes. In this study, we report the role of HBO1 in regulating hematopoietic stem cell function in adult hematopoiesis. We used 2 complementary cre-recombinase transgenes to conditionally delete Hbo1 (Mx1-Cre and Rosa26-CreERT2). Hbo1-null mice became moribund due to hematopoietic failure with pancytopenia in the blood and bone marrow 2 to 6 weeks after Hbo1 deletion. Hbo1-deleted bone marrow cells failed to repopulate hemoablated recipients in competitive transplantation experiments. Hbo1 deletion caused a rapid loss of hematopoietic progenitors. The numbers of lineage-restricted progenitors for the erythroid, myeloid, B-, and T-cell lineages were reduced. Loss of HBO1 resulted in an abnormally high rate of recruitment of quiescent hematopoietic stem cells (HSCs) into the cell cycle. Cycling HSCs produced progenitors at the expense of self-renewal, which led to the exhaustion of the HSC pool. Mechanistically, genes important for HSC functions were downregulated in HSC-enriched cell populations after Hbo1 deletion, including genes essential for HSC quiescence and self-renewal, such as Mpl, Tek(Tie-2), Gfi1b, Egr1, Tal1(Scl), Gata2, Erg, Pbx1, Meis1, and Hox9, as well as genes important for multipotent progenitor cells and lineage-specific progenitor cells, such as Gata1. HBO1 was required for H3K14Ac through the genome and particularly at gene loci required for HSC quiescence and self-renewal. Our data indicate that HBO1 promotes the expression of a transcription factor network essential for HSC maintenance and self-renewal in adult hematopoiesis.


Subject(s)
Cell Self Renewal , Hematopoietic Stem Cells , Histone Acetyltransferases , Animals , Cells, Cultured , Cellular Senescence , Gene Deletion , Hematopoiesis , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Histone Acetyltransferases/genetics , Histone Acetyltransferases/metabolism , Mice, Inbred C57BL
8.
Chemistry ; : e202402891, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39196966

ABSTRACT

The visible light-induced decarboxylative cascade reaction of fluoroalkyl carboxylic acids has been achieved for the efficient synthesis of fluorinated compounds. However, most of the transformations rely on noble iridium metal complex. Herein, a visible light-induced metal-free decarboxylative cascade reaction of fluoroalkyl carboxylic acids has been realized. This protocol features simple operation, transition metal free, and good functional group tolerance.

9.
Chemistry ; 30(60): e202402359, 2024 Oct 28.
Article in English | MEDLINE | ID: mdl-39173118

ABSTRACT

Macroion-counterion interaction is essential for regulating the solution behaviors of hydrophilic macroions, as simple models for polyelectrolytes. Here, we explore the interaction between uranyl peroxide molecular cluster Li68K12(OH)20[UO2(O2)OH]60 (U60) and multivalent counterions. Different from interaction with monovalent counterions that shows a simple one-step process, isothermal titration calorimetry, combined with light/X-ray scattering measurements and electron microscopy, confirm a two-step process for their interaction with multivalent counterions: an ion-pairing between U60 and the counterion with partial breakage of hydration shells followed by strong U60-U60 attraction, leading to the formation of large nanosheets with severe breakage and reconstruction of hydration shells. The detailed studies on macroion-counterion interaction can be nicely correlated to the microscopic (self-assembly) and macroscopic (gelation or phase separation) phase transitions in the dilute U60 aqueous solutions induced by multivalent counterions.

10.
Cell Commun Signal ; 22(1): 375, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39054537

ABSTRACT

BACKGROUND: Olanzapine (OLZ) reverses chronic stress-induced anxiety. Chronic stress promotes cancer development via abnormal neuro-endocrine activation. However, how intervention of brain-body interaction reverses chronic stress-induced tumorigenesis remains elusive. METHODS: KrasLSL-G12D/WT lung cancer model and LLC1 syngeneic tumor model were used to study the effect of OLZ on cancer stemness and anxiety-like behaviors. Cancer stemness was evaluated by qPCR, western-blotting, immunohistology staining and flow-cytometry analysis of stemness markers, and cancer stem-like function was assessed by serial dilution tumorigenesis in mice and extreme limiting dilution analysis in primary tumor cells. Anxiety-like behaviors in mice were detected by elevated plus maze and open field test. Depression-like behaviors in mice were detected by tail suspension test. Anxiety and depression states in human were assessed by Hospital Anxiety and Depression Scale (HADS). Chemo-sensitivity of lung cancer was assessed by in vivo syngeneic tumor model and in vitro CCK-8 assay in lung cancer cell lines. RESULTS: In this study, we found that OLZ reversed chronic stress-enhanced lung tumorigenesis in both KrasLSL-G12D/WT lung cancer model and LLC1 syngeneic tumor model. OLZ relieved anxiety and depression-like behaviors by suppressing neuro-activity in the mPFC and reducing norepinephrine (NE) releasing under chronic stress. NE activated ADRB2-cAMP-PKA-CREB pathway to promote CLOCK transcription, leading to cancer stem-like traits. As such, CLOCK-deficiency or OLZ reverses NE/chronic stress-induced gemcitabine (GEM) resistance in lung cancer. Of note, tumoral CLOCK expression is positively associated with stress status, serum NE level and poor prognosis in lung cancer patients. CONCLUSION: We identify a new mechanism by which OLZ ameliorates chronic stress-enhanced tumorigenesis and chemoresistance. OLZ suppresses mPFC-NE-CLOCK axis to reverse chronic stress-induced anxiety-like behaviors and lung cancer stemness. Decreased NE-releasing prevents activation of ADRB2-cAMP-PKA-CREB pathway to inhibit CLOCK transcription, thus reversing lung cancer stem-like traits and chemoresistance under chronic stress.


Subject(s)
Neoplastic Stem Cells , Norepinephrine , Olanzapine , Animals , Olanzapine/pharmacology , Mice , Humans , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Norepinephrine/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/drug therapy , Male , Cell Line, Tumor , CLOCK Proteins/metabolism , CLOCK Proteins/genetics , Stress, Psychological/drug therapy , Stress, Psychological/complications , Mice, Inbred C57BL , Anxiety/drug therapy , Cyclic AMP Response Element-Binding Protein/metabolism , Carcinogenesis/drug effects , Depression/drug therapy
11.
Inorg Chem ; 63(33): 15331-15339, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39106045

ABSTRACT

We report a complex coacervate formed by a 2.5 nm-diameter, rigid uranyl peroxide molecular cluster (Li68K12(OH)20)[UO2(O2)OH]60, U6060-) and SrCl2 salt in dilute aqueous solutions, including its location in the phase diagram, composition, rheological features, and critical conditions for phase transitions. In this coacervate, the Sr2+ cations are a major building component, and the coacervate phase covers a substantial region of the phase diagram. This coacervate demonstrates features that differ from traditional coacervates formed by oppositely charged long-chain polyelectrolytes, especially in its formation mechanism, dehydration, enhancement of mechanical strength with increasing ionic strength, and the change of salt partition preference into the coacervate and supernatant phases with ionic strength.

12.
Cell Biol Toxicol ; 40(1): 4, 2024 01 25.
Article in English | MEDLINE | ID: mdl-38267572

ABSTRACT

Arsenic (As) is a prevalent and hazardous environmental toxicant associated with cancer and various health problems, which has been shown suppressive effects on dendritic cells (DCs). Autophagy is essential for the innate and adaptive immune responses of DCs, and the transcription factors TFEB and TFE3 are key regulators of autophagic and lysosomal target genes. However, the detrimental alterations of the autophagy-lysosome pathway in As-exposed DCs and the possible coordinating roles of TFEB and TFE3 in the immune dysfunction of this cell are less understood. In this paper, we found that As exposure significantly impaired lysosomal number, lysosomal acidic environment, and lysosomal membrane permeabilization, which might lead to blocked autophagic flux in cultured DCs. Furthermore, our results confirmed that TFEB or TFE3 knockdown exacerbated the disorders of lysosome and the blockade of autophagic flux in As-exposed DCs, and also enhanced the inhibitory expression of co-stimulatory molecules Cd80 and Cd83; adhesion molecule Icam1; cytokines TNF-α, IL-1ß, and IL-6; chemokine receptor Ccr7; and antigen-presenting molecules MHC II and MHC I. By contrast, overexpression of TFEB or TFE3 partially alleviated the above-mentioned impairment of DCs by inorganic As exposure. In conclusion, these findings reveal a previously unappreciated inhibition of lysosome-mediated degradation and damage of lysosomal membrane integrity leading to dysregulated autophagy and impaired immune functions of DCs by arsenicals, and also suggest TFEB and TFE3 as potential therapeutic targets for ameliorating As toxicity.


Subject(s)
Arsenic , Arsenicals , Arsenic/toxicity , Autophagy , Lysosomes , Dendritic Cells , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors
13.
Macromol Rapid Commun ; 45(9): e2300689, 2024 May.
Article in English | MEDLINE | ID: mdl-38288905

ABSTRACT

Polyionic liquid hydrogels attract increasing attention due to their unique properties and potential applications. However, research on amino acid-based polyionic liquid hydrogels is still in its infancy stage. Moreover, the effect of amino acid types on the properties of hydrogels is rarely studied to date. In this work, amino acid-based polyionic liquid hydrogels (D/L-PCAA hydrogels) are synthesized by copolymerizing vinyl choline-amino acid ionic liquids and acrylic acids using Al3+ as a crosslinking agent and bacterial cellulose (BC) as a reinforcing agent. The effects of amino acid types on mechanical and antimicrobial properties are systematically investigated. D-arginine-based hydrogel (D-PCArg) shows the highest tensile strength (220.7 KPa), D-phenylalanine-based hydrogel (D-PCPhe) exhibits the highest elongation at break (1346%), and L-aspartic acid-based hydrogel (L-PCAsp) has the highest elastic modulus (206.9 KPa) and toughness (1.74 MJ m-3). D/L-PCAsp hydrogels demonstrate stronger antibacterial capacity against Escherichia coli and Staphylococcus aureus, and D/L-PCPhe hydrogels possess higher antifungal activity against Cryptococcus neoformans. Moreover, the resultant hydrogels exhibit prominent hemocompatibility and low toxicity, as well as excellent self-healing capabilities (86%) and conductivity (2.8 S m-1). These results indicate that D/L-PCAA hydrogel provides a promise for applications in wound dressings.


Subject(s)
Amino Acids , Anti-Bacterial Agents , Escherichia coli , Hydrogels , Ionic Liquids , Staphylococcus aureus , Hydrogels/chemistry , Hydrogels/pharmacology , Hydrogels/chemical synthesis , Escherichia coli/drug effects , Amino Acids/chemistry , Amino Acids/pharmacology , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis , Ionic Liquids/chemistry , Ionic Liquids/pharmacology , Microbial Sensitivity Tests , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/chemical synthesis , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemical synthesis
14.
Phys Chem Chem Phys ; 26(2): 1156-1165, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38099437

ABSTRACT

Hollow MoS2 cubes and spheres were synthesized by a one-step hydrothermal method with the hard template method. The structure and morphology were characterized, and their electrochemical properties were studied. It is concluded that the specific capacitance of the hollow MoS2 cubes (335.7 F g-1) is higher than that of the hollow MoS2 spheres (256.1 F g-1). The symmetrical supercapacitors were assembled, and the results indicate that the specific capacitance of the device composed of hollow MoS2 spheres (32.9 F g-1) is slightly lower than that of the hollow MoS2 cube (37.4 F g-1) device. Furthermore, the symmetrical supercapacitor (MoS2-cube//MoS2-cube) provides a maximum energy density of 4.93 W h kg-1, which is greater than that of the symmetrical capacitor (MoS2-sphere//MoS2-sphere, 3.65 W h kg-1). This may indicate that hollow molybdenum disulfide cubes with substructures have more efficient charge transfer capabilities and better capacitance characteristics than hollow spheres. After 8000 cycles, the coulombic efficiency of the two symmetrical capacitors is close to 100%. The capacity retention of the MoS2 sphere device (95.2%) is slightly higher than that of the MoS2 cube device (90.1%). These results show that the pore structure, specific surface, and active site of MoS2 with different hollow structures have a greater impact on its electrochemical properties.

15.
Nature ; 560(7717): 253-257, 2018 08.
Article in English | MEDLINE | ID: mdl-30069049

ABSTRACT

Acetylation of histones by lysine acetyltransferases (KATs) is essential for chromatin organization and function1. Among the genes coding for the MYST family of KATs (KAT5-KAT8) are the oncogenes KAT6A (also known as MOZ) and KAT6B (also known as MORF and QKF)2,3. KAT6A has essential roles in normal haematopoietic stem cells4-6 and is the target of recurrent chromosomal translocations, causing acute myeloid leukaemia7,8. Similarly, chromosomal translocations in KAT6B have been identified in diverse cancers8. KAT6A suppresses cellular senescence through the regulation of suppressors of the CDKN2A locus9,10, a function that requires its KAT activity10. Loss of one allele of KAT6A extends the median survival of mice with MYC-induced lymphoma from 105 to 413 days11. These findings suggest that inhibition of KAT6A and KAT6B may provide a therapeutic benefit in cancer. Here we present highly potent, selective inhibitors of KAT6A and KAT6B, denoted WM-8014 and WM-1119. Biochemical and structural studies demonstrate that these compounds are reversible competitors of acetyl coenzyme A and inhibit MYST-catalysed histone acetylation. WM-8014 and WM-1119 induce cell cycle exit and cellular senescence without causing DNA damage. Senescence is INK4A/ARF-dependent and is accompanied by changes in gene expression that are typical of loss of KAT6A function. WM-8014 potentiates oncogene-induced senescence in vitro and in a zebrafish model of hepatocellular carcinoma. WM-1119, which has increased bioavailability, arrests the progression of lymphoma in mice. We anticipate that this class of inhibitors will help to accelerate the development of therapeutics that target gene transcription regulated by histone acetylation.


Subject(s)
Benzenesulfonates/pharmacology , Cellular Senescence/drug effects , Histone Acetyltransferases/antagonists & inhibitors , Hydrazines/pharmacology , Lymphoma/drug therapy , Lymphoma/pathology , Sulfonamides/pharmacology , Acetylation/drug effects , Animals , Benzenesulfonates/therapeutic use , Cell Proliferation/drug effects , Cells, Cultured , Drug Development , Fibroblasts , Gene Expression Regulation, Neoplastic/drug effects , Histone Acetyltransferases/deficiency , Histone Acetyltransferases/genetics , Histones/chemistry , Histones/metabolism , Hydrazines/therapeutic use , Lymphoma/enzymology , Lymphoma/genetics , Lysine/chemistry , Lysine/metabolism , Male , Mice , Mice, Inbred C57BL , Models, Molecular , Sulfonamides/therapeutic use
16.
BMC Vet Res ; 20(1): 252, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851737

ABSTRACT

BACKGROUND: The insulin/insulin-like signalling (IIS) pathway is common in mammals and invertebrates, and the IIS pathway is unknown in Fasciola gigantica. In the present study, the IIS pathway was reconstructed in F. gigantica. We defined the components involved in the IIS pathway and investigated the transcription profiles of these genes for all developmental stages of F. gigantica. In addition, the presence of these components in excretory and secretory products (ESPs) was predicted via signal peptide annotation. RESULTS: The core components of the IIS pathway were detected in F. gigantica. Among these proteins, one ligand (FgILP) and one insulin-like molecule binding protein (FgIGFBP) were analysed. Interestingly, three receptors (FgIR-1/FgIR-2/FgIR-3) were detected, and a novel receptor, FgIR-3, was screened, suggesting novel functions. Fg14-3-3ζ, Fgirs, and Fgpp2a exhibited increased transcription in 42-day-old juveniles and 70-day-old juveniles, while Fgilp, Fgigfb, Fgsgk-1, Fgakt-1, Fgir-3, Fgpten, and Fgaap-1 exhibited increased transcription in metacercariae. FgILP, FgIGFBP, FgIR-2, FgIR-3, and two transcription factors (FgHSF-1 and FgSKN-1) were predicted to be present in FgESPs, indicating their exogenous roles. CONCLUSIONS: This study helps to elucidate the signal transduction pathway of IIS in F. gigantica, which will aid in understanding the interaction between flukes and hosts, as well as in understanding fluke developmental regulation, and will also lay a foundation for further characterisation of the IIS pathways of trematodes.


Subject(s)
Fasciola , Helminth Proteins , Insulin , Signal Transduction , Animals , Fasciola/genetics , Fasciola/metabolism , Insulin/metabolism , Helminth Proteins/metabolism , Helminth Proteins/genetics
17.
BMC Med Inform Decis Mak ; 24(1): 141, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802861

ABSTRACT

BACKGROUND: Acute pulmonary thromboembolism (PTE) is a common cardiovascular disease and recognizing low prognosis risk patients with PTE accurately is significant for clinical treatment. This study evaluated the value of federated learning (FL) technology in PTE prognosis risk assessment while ensuring the security of clinical data. METHODS: A retrospective dataset consisted of PTE patients from 12 hospitals were collected, and 19 physical indicators of patients were included to train the FL-based prognosis assessment model to predict the 30-day death event. Firstly, multiple machine learning methods based on FL were compared to choose the superior model. And then performance of models trained on the independent (IID) and non-independent identical distributed(Non-IID) datasets was calculated and they were tested further on Real-world data. Besides, the optimal model was compared with pulmonary embolism severity index (PESI), simplified PESI (sPESI), Peking Union Medical College Hospital (PUMCH). RESULTS: The area under the receiver operating characteristic curve (AUC) of logistic regression(0.842) outperformed convolutional neural network (0.819) and multi layer perceptron (0.784). Under IID, AUC of model trained using FL(Fed) on the training, validation and test sets was 0.852 ± 0.002, 0.867 ± 0.012 and 0.829 ± 0.004. Under Real-world, AUC of Fed was 0.855 ± 0.005, 0.882 ± 0.003 and 0.835 ± 0.005. Under IID and Real-world, AUC of Fed surpassed centralization model(NonFed) (0.847 ± 0.001, 0.841 ± 0.001 and 0.811 ± 0.001). Under Non-IID, although AUC of Fed (0.846 ± 0.047) outperformed NonFed (0.841 ± 0.001) on validation set, it (0.821 ± 0.016 and 0.799 ± 0.031) slightly lagged behind NonFed (0.847 ± 0.001 and 0.811 ± 0.001) on the training and test sets. In practice, AUC of Fed (0.853, 0.884 and 0.842) outshone PESI (0.812, 0.789 and 0.791), sPESI (0.817, 0.770 and 0.786) and PUMCH(0.848, 0.814 and 0.832) on the training, validation and test sets. Additionally, Fed (0.842) exhibited higher AUC values across test sets compared to those trained directly on the clients (0.758, 0.801, 0.783, 0.741, 0.788). CONCLUSIONS: In this study, the FL based machine learning model demonstrated commendable efficacy on PTE prognostic risk prediction, rendering it well-suited for deployment in hospitals.


Subject(s)
Machine Learning , Pulmonary Embolism , Humans , Prognosis , Male , Female , Middle Aged , Retrospective Studies , Risk Assessment , Aged , Acute Disease
18.
Surg Today ; 54(2): 186-194, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37516998

ABSTRACT

PURPOSE: To evaluate the clinical efficacy of immediate breast reconstruction with free or pedicled laparoscopically harvested omental flaps (LHOFs). METHODS: Between March 2011 and 2021, 82 patients who underwent immediate breast reconstruction with free or pediculated omental flaps were enrolled. Breast total or partial mastectomy, laparoscopic greater omentum harvest, and breast reconstruction were carried out in an orderly manner. Postoperative operative results, cosmetic outcomes, and complications were investigated. RESULTS: Seventeen cases of free LHOF and 65 cases of pedicled LHOF were performed. Cosmetic results were mostly satisfactory (61% excellent, 35% good), with a soft breast that was natural in appearance. Satisfaction investigation showed that 96.2% of patients were satisfied with the reconstructed breast. Uneventful follow-up showed no abdominal complications at the donor site, and the surface skin displayed no swelling. No major complications were found, except for three cases of necrosis. One patient developed slight hematoma. Two patients were found to have local recurrence, and one had distant metastasis. Twenty-four patients accepted radiotherapy, but no size reduction was noted after radiotherapy. We followed the patients to determine their survival status. All patients were alive, except for 1 in the free LHOF group who died 31.2 months after surgery. CONCLUSION: Immediate breast reconstruction with LHOF provides a soft reconstructed breast with relatively little donor-site deformity and is useful for breast tumor-specific immediate reconstruction.


Subject(s)
Breast Neoplasms , Mammaplasty , Humans , Female , Retrospective Studies , Mastectomy/methods , Follow-Up Studies , Breast Neoplasms/surgery , Breast Neoplasms/etiology , Surgical Flaps , Mammaplasty/methods , Treatment Outcome
19.
Eur Arch Otorhinolaryngol ; 281(1): 207-217, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37589753

ABSTRACT

PURPOSE: Endoscopic sinus surgery (ESS) is now frequently used to treat chronic sinusitis with nasal polyps (CRSwNP), but postoperative recurrence plagues many patients. We aimed to assess the value of the systemic inflammation response index (SIRI) and the systemic immune-inflammatory index (SII) for the prediction of postoperative recurrence in patients with CRSwNP. METHODS: A total of 143 patients with CRSwNP and 76 age- and sex-matched healthy subjects were enrolled. Patients were divided into the recurrence group and the non-recurrence group according to the recurrence of CRSwNP. Univariate and multivariate analyses showed independent risk factors for the recurrence. A receiver operating characteristic curve analysis was conducted to assess the predictive accuracy of the variables and determine the optimal cut-off values. Finally, a survival analysis was conducted. RESULTS: Univariate analysis revealed that age, sex, CRP, EOS, SIRI, SII, NLR, ELR, and Lund-Mackay CT scores were significant predictors of the recurrence of CRSwNP. Multivariate analysis confirmed that SIRI (OR = 1.310, p < 0.001) and Lund-Mackay CT scores (OR = 1.396, p < 0.001) were independent predictors. SIRI (AUC = 0.761, 95% CI: 0.685-0.836) had a certain value in predicting the recurrence of CRSwNP. CONCLUSION: SIRI is a potential predictive marker of the postoperative recurrence of CRSwNP.


Subject(s)
Nasal Polyps , Rhinitis , Rhinosinusitis , Sinusitis , Humans , Retrospective Studies , Nasal Polyps/complications , Nasal Polyps/surgery , Nasal Polyps/epidemiology , Rhinitis/complications , Rhinitis/surgery , Rhinitis/epidemiology , Sinusitis/complications , Sinusitis/surgery , Sinusitis/epidemiology , Chronic Disease , Inflammation , China/epidemiology
20.
J Appl Clin Med Phys ; 25(3): e14298, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38373294

ABSTRACT

PURPOSE: Diagnosing Renal artery stenosis (RAS) presents challenges. This research aimed to develop a deep learning model for the computer-aided diagnosis of RAS, utilizing multimodal fusion technology based on ultrasound scanning images, spectral waveforms, and clinical information. METHODS: A total of 1485 patients received renal artery ultrasonography from Peking Union Medical College Hospital were included and their color doppler sonography (CDS) images were classified according to anatomical site and left-right orientation. The RAS diagnosis was modeled as a process involving feature extraction and multimodal fusion. Three deep learning (DL) models (ResNeSt, ResNet, and XCiT) were trained on a multimodal dataset consisted of CDS images, spectrum waveform images, and individual basic information. Predicted performance of different models were compared with senior physician and evaluated on a test dataset (N = 117 patients) with renal artery angiography results. RESULTS: Sample sizes of training and validation datasets were 3292 and 169 respectively. On test data (N = 676 samples), predicted accuracies of three DL models were more than 80% and the ResNeSt achieved the accuracy 83.49% ± 0.45%, precision 81.89% ± 3.00%, and recall 76.97% ± 3.7%. There was no significant difference between the accuracy of ResNeSt and ResNet (82.84% ± 1.52%), and the ResNeSt was higher than the XCiT (80.71% ± 2.23%, p < 0.05). Compared to the gold standard, renal artery angiography, the accuracy of ResNest model was 78.25% ± 1.62%, which was inferior to the senior physician (90.09%). Besides, compared to the multimodal fusion model, the performance of single-modal model on spectrum waveform images was relatively lower. CONCLUSION: The DL multimodal fusion model shows promising results in assisting RAS diagnosis.


Subject(s)
Deep Learning , Renal Artery Obstruction , Humans , Renal Artery Obstruction/diagnostic imaging , Angiography , Ultrasonography, Doppler, Color/methods
SELECTION OF CITATIONS
SEARCH DETAIL