Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.118
Filter
Add more filters

Publication year range
1.
Plant Cell ; 35(5): 1474-1495, 2023 04 20.
Article in English | MEDLINE | ID: mdl-36781400

ABSTRACT

The major antioxidant L-ascorbic acid (AsA) plays important roles in plant growth, development, and stress responses. However, the importance of AsA concentration and the regulation of AsA metabolism in plant reproduction remain unclear. In Arabidopsis (Arabidopsis thaliana) anthers, the tapetum monolayer undergoes cell differentiation to support pollen development. Here, we report that a transcription factor, DEFECTIVE IN TAPETAL DEVELOPMENT AND FUNCTION 1 (TDF1), inhibits tapetal cell division leading to cell differentiation. We identified SKEWED5-SIMILAR 18 (SKS18) as a downstream target of TDF1. Enzymatic assays showed that SKS18, annotated as a multicopper oxidase-like protein, has ascorbate oxidase activity, leading to AsA oxidation. We also show that VITAMIN C DEFECTIVE1 (VTC1), an AsA biosynthetic enzyme, is negatively controlled by TDF1 to maintain proper AsA contents. Consistently, either knockout of SKS18 or VTC1 overexpression raised AsA concentrations, resulting in extra tapetal cells, while SKS18 overexpression in tdf1 or the vtc1-3 tdf1 double mutant mitigated their defective tapetum. We observed that high AsA concentrations caused lower accumulation of reactive oxygen species (ROS) in tapetal cells. Overexpression of ROS scavenging genes in tapetum restored excess cell divisions. Thus, our findings demonstrate that TDF1-regulated AsA balances cell division and cell differentiation in the tapetum through governing ROS homeostasis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Reactive Oxygen Species/metabolism , Ascorbic Acid , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cell Division , Cell Differentiation/genetics , Homeostasis , Gene Expression Regulation, Plant
2.
Plant J ; 118(2): 506-518, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38169508

ABSTRACT

Thermosensitive genic female sterility (TGFS) is a promising property to be utilized for hybrid breeding. Here, we identified a rice TGFS line, tfs2, through an ethyl methyl sulfone (EMS) mutagenesis strategy. This line showed sterility under high temperature and became fertile under low temperature. Few seeds were produced when the tfs2 stigma was pollinated, indicating that tfs2 is female sterile. Gene cloning and genetic complementation showed that a point mutation from leucine to phenylalanine in HEI10 (HEI10tfs2), a crossover formation protein, caused the TGFS trait of tfs2. Under high temperature, abnormal univalents were formed, and the chromosomes were unequally segregated during meiosis, similar to the reported meiotic defects in oshei10. Under low temperature, the number of univalents was largely reduced, and the chromosomes segregated equally, suggesting that crossover formation was restored in tfs2. Yeast two-hybrid assays showed that HEI10 interacted with two putative protein degradation-related proteins, RPT4 and SRFP1. Through transient expression in tobacco leaves, HEI10 were found to spontaneously aggregate into dot-like foci in the nucleus under high temperature, but HEI10tfs2 failed to aggregate. In contrast, low temperature promoted HEI10tfs2 aggregation. This result suggests that protein aggregation at the crossover position contributes to the fertility restoration of tfs2 under low temperature. In addition, RPT4 and SRFP1 also aggregated into dot-like foci, and these aggregations depend on the presence of HEI10. These findings reveal a novel mechanism of fertility restoration and facilitate further understanding of HEI10 in meiotic crossover formation.


Subject(s)
Infertility , Oryza , Crossing Over, Genetic , Point Mutation , Oryza/genetics , Plant Breeding
3.
Blood ; 141(7): 766-786, 2023 02 16.
Article in English | MEDLINE | ID: mdl-36322939

ABSTRACT

Extramedullary infiltration (EMI) is a concomitant manifestation that may indicate poor outcome of acute myeloid leukemia (AML). The underlying mechanism remains poorly understood and therapeutic options are limited. Here, we employed single-cell RNA sequencing on bone marrow (BM) and EMI samples from a patient with AML presenting pervasive leukemia cutis. A complement C1Q+ macrophage-like leukemia subset, which was enriched within cutis and existed in BM before EMI manifestations, was identified and further verified in multiple patients with AML. Genomic and transcriptional profiling disclosed mutation and gene expression signatures of patients with EMI that expressed high levels of C1Q. RNA sequencing and quantitative proteomic analysis revealed expression dynamics of C1Q from primary to relapse. Univariate and multivariate analysis demonstrated adverse prognosis significance of C1Q expression. Mechanistically, C1Q expression, which was modulated by transcription factor MAF BZIP transcription factor B, endowed leukemia cells with tissue infiltration ability, which could establish prominent cutaneous or gastrointestinal EMI nodules in patient-derived xenograft and cell line-derived xenograft models. Fibroblasts attracted migration of the C1Q+ leukemia cells through C1Q-globular C1Q receptor recognition and subsequent stimulation of transforming growth factor ß1. This cell-to-cell communication also contributed to survival of C1Q+ leukemia cells under chemotherapy stress. Thus, C1Q served as a marker for AML with adverse prognosis, orchestrating cancer infiltration pathways through communicating with fibroblasts and represents a compelling therapeutic target for EMI.


Subject(s)
Complement C1q , Leukemia, Myeloid, Acute , Humans , Proteomics , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Bone Marrow/metabolism , Prognosis , Chronic Disease , Recurrence
4.
EMBO J ; 39(24): e105896, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33140861

ABSTRACT

COVID-19 is characterized by dysregulated immune responses, metabolic dysfunction and adverse effects on the function of multiple organs. To understand host responses to COVID-19 pathophysiology, we combined transcriptomics, proteomics, and metabolomics to identify molecular markers in peripheral blood and plasma samples of 66 COVID-19-infected patients experiencing a range of disease severities and 17 healthy controls. A large number of expressed genes, proteins, metabolites, and extracellular RNAs (exRNAs) exhibit strong associations with various clinical parameters. Multiple sets of tissue-specific proteins and exRNAs varied significantly in both mild and severe patients suggesting a potential impact on tissue function. Chronic activation of neutrophils, IFN-I signaling, and a high level of inflammatory cytokines were observed in patients with severe disease progression. In contrast, COVID-19-infected patients experiencing milder disease symptoms showed robust T-cell responses. Finally, we identified genes, proteins, and exRNAs as potential biomarkers that might assist in predicting the prognosis of SARS-CoV-2 infection. These data refine our understanding of the pathophysiology and clinical progress of COVID-19.


Subject(s)
COVID-19/blood , COVID-19/pathology , Biomarkers/blood , COVID-19/immunology , COVID-19/virology , Female , Genomics/methods , Humans , Lipoproteins/metabolism , Male , Metabolomics/methods , SARS-CoV-2/physiology , Severity of Illness Index , Viral Load
5.
Plant Biotechnol J ; 22(7): 2020-2032, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38421616

ABSTRACT

P/TGMS (Photo/thermo-sensitive genic male sterile) lines are crucial resources for two-line hybrid rice breeding. Previous studies revealed that slow development is a general mechanism for sterility-fertility conversion of P/TGMS in Arabidopsis. However, the difference in P/TGMS genes between rice and Arabidopsis suggests the presence of a distinct P/TGMS mechanism in rice. In this study, we isolated a novel P/TGMS line, ostms19, which shows sterility under high-temperature conditions and fertility under low-temperature conditions. OsTMS19 encodes a novel pentatricopeptide repeat (PPR) protein essential for pollen formation, in which a point mutation GTA(Val) to GCA(Ala) leads to ostms19 P/TGMS phenotype. It is highly expressed in the tapetum and localized to mitochondria. Under high temperature or long-day photoperiod conditions, excessive ROS accumulation in ostms19 anthers during pollen mitosis disrupts gene expression and intine formation, causing male sterility. Conversely, under low temperature or short-day photoperiod conditions, ROS can be effectively scavenged in anthers, resulting in fertility restoration. This indicates that ROS homeostasis is critical for fertility conversion. This relationship between ROS homeostasis and fertility conversion has also been observed in other tested rice P/TGMS lines. Therefore, we propose that ROS homeostasis is a general mechanism for the sterility-fertility conversion of rice P/TGMS lines.


Subject(s)
Fertility , Homeostasis , Oryza , Plant Infertility , Plant Proteins , Pollen , Reactive Oxygen Species , Oryza/genetics , Oryza/metabolism , Reactive Oxygen Species/metabolism , Fertility/genetics , Pollen/genetics , Pollen/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Infertility/genetics , Gene Expression Regulation, Plant , Temperature , Light , Photoperiod
6.
J Virol ; 97(9): e0056923, 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37607059

ABSTRACT

Proinflammatory factors play important roles in the pathogenesis of African swine fever virus (ASFV), which is the causative agent of African swine fever (ASF), a highly contagious and severe hemorrhagic disease. Efforts in the prevention and treatment of ASF have been severely hindered by knowledge gaps in viral proteins responsible for modulating host antiviral responses. In this study, we identified the I10L protein (pI10L) of ASFV as a potential inhibitor of the TNF-α- and IL-1ß-triggered NF-κB signaling pathway, the most canonical and important part of host inflammatory responses. The ectopically expressed pI10L remarkably suppressed the activation of NF-κB signaling in HEK293T and PK-15 cells. The ASFV mutant lacking the I10L gene (ASFVΔI10L) induced higher levels of proinflammatory cytokines production in primary porcine alveolar macrophages (PAMs) compared with its parental ASFV HLJ/2018 strain (ASFVWT). Mechanistic studies suggest that pI10L inhibits IKKß phosphorylation by reducing the K63-linked ubiquitination of NEMO, which is necessary for the activation of IKKß. Morever, pI10L interacts with the kinase domain of IKKß through its N-terminus, and consequently blocks the association of IKKß with its substrates IκBα and p65, leading to reduced phosphorylation. In addition, the nuclear translocation efficiency of p65 was also altered by pI10L. Further biochemical evidence supported that the amino acids 1-102 on pI10L were essential for the pI10L-mediated suppression of the NF-κB signaling pathway. The present study clarifies the immunosuppressive activity of pI10L, and provides novel insights into the understanding of ASFV pathobiology and the development of vaccines against ASF. IMPORTANCE African swine fever (ASF), caused by the African swine fever virus (ASFV), is now widespread in many countries and severely affects the commercial rearing of swine. To date, few safe and effective vaccines or antiviral strategies have been marketed due to large gaps in knowledge regarding ASFV pathobiology and immune evasion mechanisms. In this study, we deciphered the important role of the ASFV-encoded I10L protein in the TNF-α-/IL-1ß-triggered NF-κB signaling pathway. This study provides novel insights into the pathogenesis of ASFV and thus contributes to the development of vaccines against ASF.

7.
Plant Physiol ; 193(1): 627-642, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37233029

ABSTRACT

Protecting haploid pollen and spores against UV-B light and high temperature, 2 major stresses inherent to the terrestrial environment, is critical for plant reproduction and dispersal. Here, we show flavonoids play an indispensable role in this process. First, we identified the flavanone naringenin, which serves to defend against UV-B damage, in the sporopollenin wall of all vascular plants tested. Second, we found that flavonols are present in the spore/pollen protoplasm of all euphyllophyte plants tested and that these flavonols scavenge reactive oxygen species to protect against environmental stresses, particularly heat. Genetic and biochemical analyses showed that these flavonoids are sequentially synthesized in both the tapetum and microspores during pollen ontogeny in Arabidopsis (Arabidopsis thaliana). We show that stepwise increases in the complexity of flavonoids in spores/pollen during plant evolution mirror their progressive adaptation to terrestrial environments. The close relationship between flavonoid complexity and phylogeny and its strong association with pollen survival phenotypes suggest that flavonoids played a central role in the progression of plants from aquatic environments into progressively dry land habitats.


Subject(s)
Arabidopsis , Flavonoids , Plants , Pollen/genetics , Arabidopsis/genetics , Flavonols , Spores
8.
Opt Express ; 32(10): 16746-16760, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38858873

ABSTRACT

Strong near-field enhancements (NFEs) of nanophotonic structures are believed to be closely related to high Purcell factors (FP). Here, we theoretically show that the correlation is partially correct; the extinction cross section (σ) response is also critical in determining FP. The divergence between NFE and FP is especially pronounced in plasmonic-dielectric hybrid systems, where the plasmonic antenna supports dipolar plasmon modes and the dielectric cavity hosts Mie-like resonances. The cavity's enhanced-field environment can boost the antenna's NFEs, but the FP is not increased concurrently due to the larger effective σ that is intrinsic to the FP calculations. Interestingly, the peak FP for the coupled system can be predicted by using the NFE and σ responses. Furthermore, the limits for FP of coupled systems are considered; they are determined by the sum of the FP of a redshifted (or modified, if applicable) antenna and an individual cavity. This contrasts starkly with the behavior of NFE which is closely associated with the multiplicative effects of the NFEs provided by the antenna and the dielectric cavity. The differing behaviors of NFE and FP in hybrid cavities have varied impacts on relevant nanophotonic applications such as fluorescence, Raman scattering and enhanced light-matter interactions.

9.
Phys Rev Lett ; 132(1): 011901, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38242645

ABSTRACT

Energy-energy correlators (EECs) are promising observables to study the dynamics of jet evolution in the quark-gluon plasma (QGP) through its imprint on angular scales in the energy flux of final-state particles. We carry out the first complete calculation of EECs using realistic simulations of high-energy heavy-ion collisions and dissect the different dynamics underlying the final distribution through analyses of jet propagation in a uniform medium. The EECs of γ-jets in heavy-ion collisions are found to be enhanced by the medium response from elastic scatterings instead of induced gluon radiation at large angles. In the meantime, EECs are suppressed at small angles due to energy loss and transverse momentum broadening of jet shower partons. These modifications are further shown to be sensitive to the angular scale of the in-medium interaction, as characterized by the Debye screening mass. Experimental verification and measurement of such modifications will shed light on this scale and the short-distance structure of the QGP in heavy-ion collisions.

10.
Prev Med ; 185: 108042, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38878800

ABSTRACT

OBJECTIVE: We aimed to assess the secular trends in cardiovascular health (CVH) among U.S. adults with different glycemic statuses based on the Life's Essential 8 (LE8). METHODS: This cross-sectional study used nationally representative data from 6 cycles of the National Health and Nutrition Examination Surveys between 2007 and 2018. Survey-weighted linear models were used to assess time trends in LE8 scores. Stratified analyses and sensitivity analyses were conducted to validate the stability of the results. RESULTS: A total of 23,616 participants were included in this study. From 2007 to 2018, there was no significant improvement in overall CVH and the proportion of ideal CVH among participants with diabetes and prediabetes. We observed an opposite trend between health behavior and health factors in the diabetes group, mainly in increasing physical activity scores and sleep scores (P for trend<0.001), and declining BMI scores [difference, -6.81 (95% CI, -12.82 to -0.80)] and blood glucose scores [difference, -6.41 (95% CI, -9.86 to -2.96)]. Dietary health remained at a consistently low level among participants with different glycemic status. The blood lipid scores in the prediabetes group improved but were still at a lower level than other groups. Education/income differences persist in the CVH of participants with diabetes or prediabetes, especially in health behavior factors. Sensitivity analyses of the absolute difference and change in proportion showed a consistent trend. CONCLUSIONS: Trends in CVH among participants with diabetes or prediabetes were suboptimal from 2007 to 2018, with persistent education/income disparities.

11.
Acta Pharmacol Sin ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719954

ABSTRACT

Hypertensive cerebrovascular remodeling involves the enlargement of vascular smooth muscle cells (VSMCs), which activates volume-regulated Cl- channels (VRCCs). The leucine-rich repeat-containing family 8 A (LRRC8A) has been shown to be the molecular identity of VRCCs. However, its role in vascular remodeling during hypertension is unclear. In this study, we used vascular smooth muscle-specific LRRC8A knockout (CKO) mice and an angiotensin II (Ang II)-induced hypertension model. The results showed that cerebrovascular remodeling during hypertension was ameliorated in CKO mice, and extracellular matrix (ECM) deposition was reduced. Based on the RNA-sequencing analysis of aortic tissues, the level of matrix metalloproteinases (MMPs), such as MMP-9 and MMP-14, were reduced in CKO mice with hypertension, which was further verified in vivo by qPCR and immunofluorescence analysis. Knockdown of LRRC8A in VSMCs inhibited the Ang II-induced upregulation of collagen I, fibronectin, and matrix metalloproteinases (MMPs), and overexpression of LRRC8A had the opposite effect. Further experiments revealed an interaction between with-no-lysine (K)-1 (WNK1), which is a "Cl--sensitive kinase", and Forkhead transcription factor O3a (FOXO3a), which is a transcription factor that regulates MMP expression. Ang II induced the phosphorylation of WNK1 and downstream FOXO3a, which then increased the expression of MMP-2 and MMP-9. This process was inhibited or potentiated when LRRC8A was knocked down or overexpressed, respectively. Overall, these results demonstrate that LRRC8A knockout in vascular smooth muscle protects against cerebrovascular remodeling during hypertension by reducing ECM deposition and inhibiting the WNK1/FOXO3a/MMP signaling pathway, demonstrating that LRRC8A is a potential therapeutic target for vascular remodeling-associated diseases such as stroke.

12.
Lipids Health Dis ; 23(1): 151, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773578

ABSTRACT

OBJECTIVE: This study aims to assess the relationship between NHHR (non-high-density lipoprotein cholesterol to high-density lipoprotein cholesterol ratio) and Type 2 diabetes mellitus (T2DM) in US adults, using National Health and Nutrition Examination Survey (NHANES) data from 2007 to 2018. METHODS: This study explored the connection between NHHR and T2DM by analyzing a sample reflecting the adult population of the United States (n = 10,420; NHANES 2007-2018). NHHR was characterized as the ratio of non-high-density lipoprotein cholesterol to high-density lipoprotein cholesterol. T2DM was defined based on clinical guidelines. This research used multivariable logistic models to examine the connection between NHHR and T2DM. Additionally, it included subgroup and interaction analyses to assess variations among different groups. Generalized additive models, smooth curve fitting, and threshold effect analysis were also employed to analyze the data further. RESULTS: The study included 10,420 subjects, with 2160 diagnosed with T2DM and 8260 without. The weighted multivariate logistic regression model indicated an 8% higher probability of T2DM for each unit increase in NHHR (OR: 1.08, 95% CI: 1.01-1.15) after accounting for all covariates. Subgroup analysis outcomes were uniform across various categories, demonstrating a significant positive relationship between NHHR and T2DM. Interaction tests showed that the positive link between NHHR and T2DM remained consistent regardless of age, body mass index, smoking status, moderate recreational activities, hypertension, or stroke history, with all interaction P-values exceeding 0.05. However, participants' sex appeared to affect the magnitude of the connection between NHHR and T2DM (interaction P-value < 0.05). Also, a nonlinear association between NHHR and T2DM was discovered, featuring an inflection point at 1.50. CONCLUSIONS: Our study suggests that an increase in NHHR may be correlated with a heightened likelihood of developing T2DM. Consequently, NHHR could potentially serve as a marker for estimating the probability of T2DM development.


Subject(s)
Cholesterol, HDL , Diabetes Mellitus, Type 2 , Nutrition Surveys , Humans , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/epidemiology , Male , Female , Middle Aged , Cholesterol, HDL/blood , Adult , Risk Factors , Logistic Models , Aged , United States/epidemiology , Cholesterol, LDL/blood
13.
J Exp Child Psychol ; 246: 105982, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879930

ABSTRACT

Numerous studies have demonstrated the role of making choices as an internal motivator to improve performance, and recent studies in the domain of memory have focused on adults. To chart the developmental trend of the choice effect on memory, we conducted a series of seven experiments involving children, adolescents, and young adults. Participants (N = 512) aged 5 to 26 years performed a choice encoding task that manipulated the opportunities to choose and then took a memory test. Using different types of experimental materials and corroborated by a mini meta-analysis, we found that the choice effect on memory was significant in childhood and early adolescence but not significant in late adolescence and early adulthood. The developmental changes were statistically significant, particularly evident during the transition from early to late adolescence. These findings suggest that the internal value of choice decreases across development and contributes to our understanding of developmental differences in the role of choice in memory.

14.
Nucleic Acids Res ; 50(12): 6715-6734, 2022 07 08.
Article in English | MEDLINE | ID: mdl-35736138

ABSTRACT

In Escherichia coli, transcription-translation coupling is mediated by NusG. Although chloroplasts are descendants of endosymbiotic prokaryotes, the mechanism underlying this coupling in chloroplasts remains unclear. Here, we report transcription-translation coupling through AtNusG in chloroplasts. AtNusG is localized in chloroplast nucleoids and is closely associated with the chloroplast PEP complex by interacting with its essential component PAP9. It also comigrates with chloroplast ribosomes and interacts with their two components PRPS5 (uS5c) and PRPS10 (uS10c). These data suggest that the transcription and translation machineries are coupled in chloroplasts. In the atnusg mutant, the accumulation of chloroplast-encoded photosynthetic gene transcripts, such as psbA, psbB, psbC and psbD, was not obviously changed, but that of their proteins was clearly decreased. Chloroplast polysomic analysis indicated that the decrease in these proteins was due to the reduced efficiency of their translation in this mutant, leading to reduced photosynthetic efficiency and enhanced sensitivity to cold stress. These data indicate that AtNusG-mediated coupling between transcription and translation in chloroplasts ensures the rapid establishment of photosynthetic capacity for plant growth and the response to environmental changes. Therefore, our study reveals a conserved mechanism of transcription-translation coupling between chloroplasts and E. coli, which perhaps represents a regulatory mechanism of chloroplast gene expression. This study provides insights into the underlying mechanisms of chloroplast gene expression in higher plants.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Chloroplast Proteins , Chloroplasts , Arabidopsis/genetics , Escherichia coli/genetics , Peptide Elongation Factors , Transcription Factors , Chloroplast Proteins/metabolism , Arabidopsis Proteins/metabolism , Transcription, Genetic , Protein Biosynthesis
15.
J Integr Plant Biol ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888227

ABSTRACT

Anther dehiscence is a crucial event in plant reproduction, tightly regulated and dependent on the lignification of the anther endothecium. In this study, we investigated the rapid lignification process that ensures timely anther dehiscence in Arabidopsis. Our findings reveal that endothecium lignification can be divided into two distinct phases. During Phase I, lignin precursors are synthesized without polymerization, while Phase II involves simultaneous synthesis of lignin precursors and polymerization. The transcription factors MYB26, NST1/2, and ARF17 specifically regulate the pathway responsible for the synthesis and polymerization of lignin monomers in Phase II. MYB26-NST1/2 is the key regulatory pathway responsible for endothecium lignification, while ARF17 facilitates this process by interacting with MYB26. Interestingly, our results demonstrate that the lignification of the endothecium, which occurs within approximately 26 h, is much faster than that of the vascular tissue. These findings provide valuable insights into the regulation mechanism of rapid lignification in the endothecium, which enables timely anther dehiscence and successful pollen release during plant reproduction.

16.
Chin Med Sci J ; 39(1): 9-18, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38426412

ABSTRACT

Objective Aberrant expression of ATP binding cassette subfamily B member 1 (ABCB1) plays a key role in several cancers. However, influence of G protein coupled receptor family C group 5 type A (GPRC5A)-regulated ABCB1 expression on lung adenocarcinoma proliferation remains unclear. Therefore, this study investigated the effect of GPRC5A regulated ABCB1 expression on the proliferation of lung adenocarcinoma. Methods ABCB1 expressions in lung adenocarcinoma cell lines, human lung adenocarcinoma tissues, and tracheal epithelial cells and lung tissues of GPRC5A knockout mice and wild-type mice were analyzed with RT-PCR, Western blot, or immunohistochemical analysis. Cell counting kit-8 assay was performed to analyze the sensitivity of tracheal epithelial cells from GPRC5A knockout mice to chemotherapeutic agents. Subcutaneous tumor formation assay was performed to confirm whether down-regulation of ABCB1 could inhibit the proliferation of lung adenocarcinoma in vivo. To verify the potential regulatory relationship between GPRC5A and ABCB1, immunofluorescence and immunoprecipitation assays were performed. Results ABCB1 expression was up-regulated in lung adenocarcinoma cell lines and human lung adenocarcinoma tissues. ABCB1 expression in the tracheal epithelial cells and lung tissues of GPRC5Adeficient mice was higher than that in the wild type mice. Tracheal epithelial cells of GPRC5A knockout mice were much more sensitive to tariquidar and doxorubicin than those of GPRC5A wild type mice. Accordingly, 28 days after injection of the transplanted cells, the volume and weight of lung tumor in ABCB1knockout cell-transplanted GPRC5A-/-C57BL/6 mice were significantly smaller than those in wild type cell-transplanted mice (P= 0.0043, P= 0.0060). Furthermore, immunofluorescence and immunoprecipitation assays showed that GPRC5A regulated ABCB1 expression by direct binding.Conclusion GPRC5A reduces lung adenocarcinoma proliferation via inhibiting ABCB1 expression. The pathway by which GPRC5A regulates ABCB1 expression needs to be investigated.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Animals , Humans , Mice , Adenocarcinoma of Lung/genetics , ATP Binding Cassette Transporter, Subfamily B/genetics , Cell Line, Tumor , Cell Proliferation , Lung Neoplasms/pathology , Mice, Inbred C57BL , Mice, Knockout , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism
17.
Zhongguo Zhong Yao Za Zhi ; 49(3): 842-848, 2024 Feb.
Article in Zh | MEDLINE | ID: mdl-38621888

ABSTRACT

Due to the lack of specialized guidance, the post-marketing research on clinical effectiveness of Chinese patent medicines demonstrates varied quality and lacks high-quality evidence, failing to meet the demands of policy-making, clinical decision-making, and industrial decision-making. To address this issue, this project gathered experts in clinical medicine, clinical pharmacy, evidence-based medicine, drug epidemiology, medical ethics, and policy and regulation in China. They referred to the model of international post-marketing research on medicines and developed Guidelines for post-marketing research on clinical effectiveness of Chinese patent medicines under the framework of relevant laws and regulations and technical guidance documents in China. The guidelines were developed with consideration to the characteristics of Chinese patent medicines, China's national conditions, and all the stakeholders including marketing authorization holders, clinical researchers, drug administration, and users. The development of the guidelines followed the requirements for developing group standards set by the China Association of Chinese Medicine. The guidelines fully implement the concept of full life-cycle research, emphasizing the combination of traditional Chinese medicine(TCM) theory, human use experience, and clinical trials and pay attention to the compliance, scientificity, and ethics of research. The guidelines clarify the topic selection and decision-making path of the post-marketing research on effectiveness of Chinese patent medicines through six steps: determining research purpose, analyzing drug characteristics, evaluating research basis, proposing clinical orientation, clarifying research purpose, and implementing classified research. The general principles of research design and implementation were clarified from eight aspects: research type, research objects, sample size, efficacy indicators, bias, missing data, evidence level, and practicality. It focuses on the research on the TCM syndrome-based efficacy evaluation, clinical value-oriented mechanism of action, and the effectiveness of Chinese patent medicines with different routes of administration. The guidelines provide a universal methodological basis for the post-marketing research on clinical effectiveness of Chinese patent medicines.


Subject(s)
Drugs, Chinese Herbal , Nonprescription Drugs , Humans , Nonprescription Drugs/therapeutic use , Medicine, Chinese Traditional , Evidence-Based Medicine , Treatment Outcome , China , Drugs, Chinese Herbal/therapeutic use
18.
Zhongguo Zhong Yao Za Zhi ; 49(4): 1091-1101, 2024 Feb.
Article in Zh | MEDLINE | ID: mdl-38621916

ABSTRACT

This study aimed to systematically evaluate the effectiveness and safety of Tanreqing Injection in the treatment of severe pneumonia in the elderly. Eighteen randomized controlled trials(RCTs) involving 1 457 elderly patients with severe pneumonia were included in the study after conducting searches in both Chinese and English databases as well as clinical trial registration platforms. The quality of the included studies was assessed using the Cochrane risk of bias assessment tool. Meta-analysis were conducted using RevMan 5.4 and Stata 17 software, and trial sequential analysis(TSA) was performed using TSA 0.9.5.10 beta software. Meta-analysis results showed that compared with conventional western medicine treatment, Tanreqing Injection + conventional western medical significantly improved the clinical effectiveness in elderly patients with severe pneumonia(RR=1.26, 95%CI[1.20, 1.32], P<0.000 01), arterial oxygen partial pressure(SMD=6.23, 95%CI[3.29, 9.18], P<0.000 1), oxygenation index(SMD=11.72, 95%CI[4.41, 19.04], P=0.002), reduce procalcitonin(SMD=-6.16, 95%CI[-8.10,-4.21], P<0.000 01), C-reactive protein(SMD=-8.50, 95%CI[-11.05,-5.96], P<0.000 01), white blood cell count(SMD=-4.56, 95%CI[-5.73,-3.39], P<0.000 01), and shortened the duration of fever(SMD=-3.12, 95%CI[-4.61,-1.63], P<0.000 1), cough(SMD=-4.84, 95%CI[-6.90,-2.79], P<0.000 01), lung rales(SMD=-0.99, 95%CI[-1.54,-0.44], P=0.000 4), and mechanical ventilation time(SMD=-3.26, 95%CI[-5.03,-1.50], P=0.000 3), increase CD4~+ T-cell levels(SMD=6.73, 95%CI[5.23, 8.23], P<0.000 01) and CD8~+ T-cell levels(SMD=7.47, 95% CI[5.32, 9.61], P<0.000 01) with no significant adverse reactions. TSA confirmed the stability and reliability of the results related to clinical effectiveness. This study suggests that Tanreqing Injection, as a Chinese medicinal preparation, has a significant therapeutic effect and good safety profile in the treatment of severe pneumonia in elderly patients. Due to the limited quality of the included studies, high-quality RCT is still needed to provide evidence support for the above conclusions.


Subject(s)
Drugs, Chinese Herbal , Pneumonia , Aged , Humans , Cough/chemically induced , Drugs, Chinese Herbal/adverse effects , Pneumonia/drug therapy , Reproducibility of Results , Randomized Controlled Trials as Topic
19.
Zhongguo Zhong Yao Za Zhi ; 49(2): 565-568, 2024 Jan.
Article in Zh | MEDLINE | ID: mdl-38403331

ABSTRACT

Traditional Chinese medicine(TCM) preparations in medical institutions, as a unique and important form of preparations in China, have a long history of human use and serve as a bridge between clinical experience prescriptions and new Chinese medicine preparations. The state encourages medical institutions to transform their preparations into new traditional Chinese medicines, emphasizing their role as "incubators". Since the proposal of the traditional Chinese medicine registration and evaluation evidence system with the integration of TCM theory, human use experience(HUE), and clinical experience, the idea of transforming preparations used in medical institutions into new drugs based on HUE has been increasingly valued by drug research and development organizations. In the transformation process, pharmaceutical changes should be concerned from multiple aspects. This paper discusses the pharmaceutical changes and countermeasures based on the transformation of traditional Chinese medicine preparations in medical institutions into new drugs based on HUE from the aspects of excipients, dosage forms, production technology, production scale, packaging materials and containers, production sites, and registration standards. It is emphasized that scientific decisions should be made according to the characteristics and clinical needs of drugs to ensure the stability of drug quality. The impacts of pharmaceutical changes on drug quality should be objectively assessed based on appropriate evaluation indexes and detection methods. The layout should be carried out in advance, and the key pharmaceutical information of the preparations should be kept stable, so as to underpin the transformation of traditional Chinese medicine preparations in medical institutions into new drugs based on HUE.


Subject(s)
Drugs, Chinese Herbal , Medicine, Chinese Traditional , Humans , Drugs, Chinese Herbal/therapeutic use , Reference Standards , Quality Control , Drug Compounding , Pharmaceutical Preparations
20.
Zhongguo Zhong Yao Za Zhi ; 49(3): 849-852, 2024 Feb.
Article in Zh | MEDLINE | ID: mdl-38621889

ABSTRACT

Chinese drug registration laws and regulations have always reserved a place for the new traditional Chinese medicine(TCM) drugs for syndromes, but so far no such new drugs have been approved for registration. This paper expounded on the relevant policies, regulations, and technologies of new TCM drugs for syndromes in China and pointed out that the application of the animal model of TCM syndromes to carry out pharmacodynamics research and clinical efficacy evaluation criteria of TCM syndromes were the main technical difficulties in the research and development of new TCM drugs for syndromes. Not all syndromes are suitable for developing new drugs, and the indications for new TCM drugs should be constant syndromes. Among the three research and development models of simple syndrome, syndrome-unified disease, and combined disease and syndrome, the research and development model of combined disease and syndrome is recommended. Clinical positioning is the key to new TCM drugs for syndromes. It is encouraged to conduct high-quality human use experience studies to determine the clinical positioning of new TCM drugs for syndromes, as well as the target population, dose, course of treatment, and initial therapeutic and safety, and apply for exemption from non-clinical effectiveness studies. Clinical trials of new TCM drugs for syndromes should take the target symptoms or signs as the main efficacy index and the efficacy of TCM syndromes as the secondary efficacy index. Clinical research program design should implement the "patient-centered" concept and introduce clinical outcome evaluation indicators. In the clinical safety evaluation, special conditions such as characteristic syndromes and changes should be considered. With the construction of the human use experience technology system and the promotion of the TCM registration and evaluation evidence system featuring the "combination of TCM theory, human use experience, and clinical trials", it is believed that many high-quality new TCM drugs for syndromes will be developed in the future.


Subject(s)
Drugs, Chinese Herbal , Medicine, Chinese Traditional , Humans , Research , Syndrome , China , Drugs, Chinese Herbal/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL