Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 839
Filter
Add more filters

Publication year range
1.
Nature ; 616(7956): 390-397, 2023 04.
Article in English | MEDLINE | ID: mdl-37020030

ABSTRACT

The class 2 type V CRISPR effector Cas12 is thought to have evolved from the IS200/IS605 superfamily of transposon-associated TnpB proteins1. Recent studies have identified TnpB proteins as miniature RNA-guided DNA endonucleases2,3. TnpB associates with a single, long RNA (ωRNA) and cleaves double-stranded DNA targets complementary to the ωRNA guide. However, the RNA-guided DNA cleavage mechanism of TnpB and its evolutionary relationship with Cas12 enzymes remain unknown. Here we report the cryo-electron microscopy (cryo-EM) structure of Deinococcus radiodurans ISDra2 TnpB in complex with its cognate ωRNA and target DNA. In the structure, the ωRNA adopts an unexpected architecture and forms a pseudoknot, which is conserved among all guide RNAs of Cas12 enzymes. Furthermore, the structure, along with our functional analysis, reveals how the compact TnpB recognizes the ωRNA and cleaves target DNA complementary to the guide. A structural comparison of TnpB with Cas12 enzymes suggests that CRISPR-Cas12 effectors acquired an ability to recognize the protospacer-adjacent motif-distal end of the guide RNA-target DNA heteroduplex, by either asymmetric dimer formation or diverse REC2 insertions, enabling engagement in CRISPR-Cas adaptive immunity. Collectively, our findings provide mechanistic insights into TnpB function and advance our understanding of the evolution from transposon-encoded TnpB proteins to CRISPR-Cas12 effectors.


Subject(s)
Bacterial Proteins , Cryoelectron Microscopy , DNA Transposable Elements , Deinococcus , Endodeoxyribonucleases , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/ultrastructure , CRISPR-Associated Proteins/chemistry , CRISPR-Associated Proteins/metabolism , CRISPR-Cas Systems , DNA/chemistry , DNA/genetics , DNA/metabolism , DNA/ultrastructure , DNA Transposable Elements/genetics , RNA, Guide, CRISPR-Cas Systems/chemistry , RNA, Guide, CRISPR-Cas Systems/genetics , RNA, Guide, CRISPR-Cas Systems/metabolism , RNA, Guide, CRISPR-Cas Systems/ultrastructure , Endodeoxyribonucleases/chemistry , Endodeoxyribonucleases/metabolism , Endodeoxyribonucleases/ultrastructure , Deinococcus/enzymology , Deinococcus/genetics , Substrate Specificity
2.
J Pineal Res ; 76(2): e12948, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38488331

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic (DA) neurons and aggregation of α-synuclein (α-syn). Ferroptosis, a form of cell death induced by iron accumulation and lipid peroxidation, is involved in the pathogenesis of PD. It is unknown whether melatonin receptor 1 (MT1) modulates α-syn and ferroptosis in PD. Here, we used α-syn preformed fibrils (PFFs) to induce PD models in vivo and in vitro. In PD mice, α-syn aggregation led to increased iron deposition and ferroptosis. MT1 knockout exacerbated these changes and resulted in more DA neuronal loss and severe motor impairment. MT1 knockout also suppressed the Sirt1/Nrf2/Ho1/Gpx4 pathway, reducing resistance to ferroptosis, and inhibited expression of ferritin Fth1, leading to more release of ferrous ions. In vitro experiments confirmed these findings. Knockdown of MT1 enhanced α-syn PFF-induced intracellular α-syn aggregation and suppressed expression of the Sirt1/Nrf2/Ho1/Gpx4 pathway and Fth1 protein, thereby aggravating ferroptosis. Conversely, overexpression of MT1 reversed these effects. Our findings reveal a novel mechanism by which MT1 activation prevents α-syn-induced ferroptosis in PD, highlighting the neuroprotective role of MT1 in PD.


Subject(s)
Ferroptosis , Melatonin , Parkinson Disease , Mice , Animals , Parkinson Disease/metabolism , Parkinson Disease/pathology , alpha-Synuclein/metabolism , alpha-Synuclein/pharmacology , NF-E2-Related Factor 2/metabolism , Melatonin/pharmacology , Receptor, Melatonin, MT1/metabolism , Sirtuin 1/metabolism , Dopaminergic Neurons , Iron/metabolism
3.
Fish Shellfish Immunol ; 144: 109247, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38006905

ABSTRACT

Mandarin fish (Siniperca chuatsi) is a valuable freshwater fish species widely cultured in China. Its aquaculture production is challenged by bacterial septicaemia, which is one of the most common bacterial diseases. Antimicrobial peptides (AMPs) play a critical role in the innate immune system of fish, exhibiting defensive and inhibitory effects against a wide range of pathogens. This study aimed to identify the antimicrobial peptide genes in mandarin fish using transcriptomes data obtained from 17 tissue in our laboratory. Through nucleotide sequence alignment and protein structural domain analysis, 15 antimicrobial peptide genes (moronecidin, pleurocidin, lysozyme g, thymosin ß12, hepcidin, leap 2, ß-defensin, galectin 8, galectin 9, apoB, apoD, apoE, apoF, apoM, and nk-lysin) were identified, of which 9 antimicrobial peptide genes were identified for the first time. In addition, 15 AMPs were subjected to sequence characterization and protein structure analysis. After injection with Aeromonas hydrophila, the number of red blood cells, hemoglobin concentration, and platelet counts in mandarin fish showed a decreasing trend, indicating partial hemolysis. The expression change patterns of 15 AMP genes in the intestine after A. hydrophila infection were examined by using qRT-PCR. The results revealed, marked up-regulation (approximately 116.04) of the hepcidin gene, down-regulation of the piscidin family genes expression. Moreover, most AMP genes were responded in the early stages after A. hydrophila challenge. This study provides fundamental information for investigating the role of the different antimicrobial peptide genes in mandarin fish in defense against A. hydrophila infection.


Subject(s)
Fish Diseases , Perciformes , Animals , Transcriptome , Hepcidins/genetics , Hepcidins/metabolism , Aeromonas hydrophila/genetics , Antimicrobial Peptides , Fishes/genetics , Fish Proteins/chemistry , Galectins/genetics
4.
Inorg Chem ; 63(4): 1879-1887, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38240218

ABSTRACT

The development of efficient fluorescent probes and adsorbents for detecting and removing Cu2+, which pose potential environmental and health risks, is a highly active area of research. However, achieving simultaneously improved fluorescence detection efficiency and enhanced adsorption capacity in a single porous probe remains a significant challenge. In this study, we successfully synthesized a two-dimensional imine-based TAP-COF using 2,4,6-triformylphloroglucinol and tri(4-aminophenyl)amine as raw materials. TAP-COF exhibited excellent properties, including a large specific surface area of 685.65 m2·g-1, exceptional thermal stability (>440 °C), chemical stability, temporal stability, and recyclability. Fluorescence testing revealed that TAP-COF exhibited remarkable specificity and high sensitivity for detecting Cu2+. The fluorescence mechanism, in which the excited state intramolecular proton transfer was impeded by the interaction of Cu2+ with C═O and C-N bonds on TAP-COF upon the addition of Cu2+, was further elucidated through experimental and theoretical methods. Furthermore, the adsorption capacity of TAP-COF toward Cu2+ was investigated, confirming the excellence of TAP-COF as a fluorescent probe and adsorbent for the specific detection and removal of Cu2+. This work holds significant implications for improving environmental and human health concerns associated with Cu2+ contamination.

5.
J Biochem Mol Toxicol ; 38(1): e23621, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38229320

ABSTRACT

Gestational diabetes mellitus (GDM), a prevalent complication during the gestation period, has been linked to impaired proliferation and migration of trophoblasts causing placental maldevelopment. We previously found that lncRNA X-inactive specific transcript (XIST) played an essential role in GDM progression. Here, we investigated the precise biological functions as well as the upstream and downstream regulatory mechanisms of XIST in GDM. We found that XIST and forkhead box O1 (FOXO1) were conspicuously upregulated and miR-497-5p and methyltransferase-like 14 (METTL14) were downregulated in the placentas of GDM patients. XIST silencing facilitated proliferation and migration and inhibited cell apoptosis and cell cycle arrest in HG-cultured HTR8/SVneo cells. METTL14 inhibited XIST expression through m6A methylation modification. XIST overexpression abrogated the positive effect of METTL14 overexpression on HG-cultured HTR8/SVneo cell progression. MiR-497-5p and FOXO1 are downstream regulatory genes of XIST in HTR8/SVneo cells. Reverse experiments illustrated that XIST mediated HTR8/SVneo cell functions by regulating the miR-497-5p/FOXO1 axis. Additionally, XIST silencing augmented glucose tolerance and alleviated fetal detrimental changes in GDM rats. To conclude, METTL14-mediated XIST silencing facilitated proliferation and migration and inhibited cell apoptosis and cell cycle arrest in HG-cultured HTR8/SVneo cells via the miR-497-5p/FOXO1 axis, thereby alleviating GDM progression in rats.


Subject(s)
Diabetes, Gestational , Forkhead Box Protein O1 , Methyltransferases , MicroRNAs , RNA, Long Noncoding , Animals , Female , Humans , Pregnancy , Rats , Cell Line , Cell Proliferation/genetics , Diabetes, Gestational/genetics , Diabetes, Gestational/metabolism , Forkhead Box Protein O1/metabolism , Genes, Regulator , Methyltransferases/genetics , Methyltransferases/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Placenta/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Trophoblasts/metabolism
6.
Acta Pharmacol Sin ; 45(5): 975-987, 2024 May.
Article in English | MEDLINE | ID: mdl-38279042

ABSTRACT

Endothelium-dependent contraction (EDC) exists in blood vessels of normotensive animals, but is exaggerated in hypertension. An early signal in EDC is cytosolic Ca2+ rise in endothelial cells. In this study we investigated the functional role of Orai1, a major endothelial cell Ca2+ entry channel, in EDC. Hypertension model was established in WT mice by intake of L-NNA in the drinking water (0.5 g/L) for 4 weeks or osmotic pump delivery of Ang II (1.5 mg·kg-1·d-1) for 2 weeks. In TRPC5 KO mice, the concentration of L-NNA and Ang II were increased to 1 g/L or 2 mg·kg-1·d-1, respectively. Arterial segments were prepared from carotid arteries and aortas, and EDC was elicited by acetylcholine in the presence of Nω-nitro-L-arginine methyl ester. We showed that low concentration of acetylcholine (3-30 nM) initiated relaxation in phenylephrine-precontracted carotid arteries of both normotensive and hypertensive mice, while high concentration of acetylcholine (0.1-2 µM) induced contraction. Application of selective Orai1 inhibitors AnCoA4 (100 µM) or YM58483 (400 nM) had no effect on ACh-induced relaxation but markedly reduced acetylcholine-induced EDC. We found that EDC was increased in hypertensive mice compared with that of normotensive mice, which was associated with increased Orai1 expression in endothelial cells of hypertensive mice. Compared to TRPC5 and TRPV4, which were also involved in EDC, endothelial cell Orai1 had relatively greater contribution to EDC than either TRPC5 or TRPV4 alone. We identified COX-2, followed by PGF2α, PGD2 and PGE2 as the downstream signals of Orai1/TRPC5/TRPV4. In conclusion, Orai1 coordinates together with TRPC5 and TRPV4 in endothelial cells to regulate EDC responses. This study demonstrates a novel function of Orai1 in EDC in both normotensive and hypertensive mice, thus providing a general scheme about the control of EDC by Ca2+-permeable channels.


Subject(s)
Carotid Arteries , Endothelial Cells , Endothelium, Vascular , Hypertension , Mice, Inbred C57BL , Mice, Knockout , ORAI1 Protein , TRPC Cation Channels , Animals , ORAI1 Protein/metabolism , Hypertension/metabolism , Hypertension/physiopathology , Male , Mice , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Carotid Arteries/drug effects , Carotid Arteries/metabolism , TRPC Cation Channels/metabolism , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Acetylcholine/pharmacology , Angiotensin II/pharmacology , Vasoconstriction/drug effects , TRPV Cation Channels/metabolism
7.
Acta Pharmacol Sin ; 45(5): 1077-1092, 2024 May.
Article in English | MEDLINE | ID: mdl-38267547

ABSTRACT

Sepsis, a life-threatening health issue, lacks effective medicine targeting the septic response. In China, treatment combining the intravenous herbal medicine XueBiJing with conventional procedures reduces the 28-day mortality of critically ill patients by modulating septic response. In this study, we identified the combined active constituents that are responsible for the XueBiJing's anti-sepsis action. Sepsis was induced in rats by cecal ligation and puncture (CLP). The compounds were identified based on their systemic exposure levels and anti-sepsis activities in CLP rats that were given an intravenous bolus dose of XueBiJing. Furthermore, the identified compounds in combination were assessed, by comparing with XueBiJing, for levels of primary therapeutic outcome, pharmacokinetic equivalence, and pharmacokinetic compatibility. We showed that a total of 12 XueBiJing compounds, unchanged or metabolized, circulated with significant systemic exposure in CLP rats that received XueBiJing. Among these compounds, hydroxysafflor yellow A, paeoniflorin, oxypaeoniflorin, albiflorin, senkyunolide I, and tanshinol displayed significant anti-sepsis activities, which involved regulating immune responses, inhibiting excessive inflammation, modulating hemostasis, and improving organ function. A combination of the six compounds, with the same respective doses as in XueBiJing, displayed percentage survival and systemic exposure in CLP rats similar to those by XueBiJing. Both the combination and XueBiJing showed high degrees of pharmacokinetic compatibility regarding interactions among the six active compounds and influences of other circulating XueBiJing compounds. The identification of XueBiJing's pharmacologically significant constituents supports the medicine's anti-sepsis use and provides insights into a polypharmacology-based approach to develop medicines for effective sepsis management.


Subject(s)
Drugs, Chinese Herbal , Rats, Sprague-Dawley , Sepsis , Animals , Sepsis/drug therapy , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/pharmacokinetics , Male , Rats , Administration, Intravenous
8.
Molecules ; 29(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38893440

ABSTRACT

Three different iridium(III) complexes, labelled as Ir1-Ir3, each bearing a unique anchoring moiety (diethyl [2,2'-bipyridine]-4,4'-dicarboxylate, tetraethyl [2,2'-bipyridine]-4,4'-diylbis(phosphonate), or [2,2'-biquinoline]-4,4'-dicarboxylic acid), were synthesized to serve as photosensitizers. Their electrochemical and photophysical characteristics were systematically investigated. ERP measurements were employed to elucidate the impact of the anchoring groups on the photocatalytic hydrogen generation performance of the complexes. The novel iridium(III) complexes were integrated with platinized TiO2 (Pt-TiO2) nanoparticles and tested for their ability to catalyze hydrogen production under visible light. A H2 turnover number (TON) of up to 3670 was obtained upon irradiation for 120 h. The complexes with tetraethyl [2,2'-bipyridine]-4,4'-diylbis(phosphonate) anchoring groups were found to outperform those bearing other moieties, which may be one of the important steps in the development of high-efficiency iridium(III) photosensitizers for hydrogen generation by water splitting. Additionally, toxicological analyses found no significant difference in the toxicity to luminescent bacteria of any of the present iridium(III) complexes compared with that of TiO2, which implies that the complexes investigated in this study do not pose a high risk to the aquatic environment compared to TiO2.

9.
Pharmacol Res ; 187: 106565, 2023 01.
Article in English | MEDLINE | ID: mdl-36414124

ABSTRACT

A primary strategy employed in cancer therapy is the inhibition of topoisomerase II (Topo II), implicated in cell survival. However, side effects and adverse reactions restrict the utilization of Topo II inhibitors. Thus, investigations focus on the discovery of novel compounds that are capable of inhibiting the Topo II enzyme and feature safer toxicological profiles. Herein, we upgrade an old antibiotic chrysomycin A from Streptomyces sp. 891 as a compelling Topo II enzyme inhibitor. Our results show that chrysomycin A is a new chemical entity. Notably, chrysomycin A targets the DNA-unwinding enzyme Topo II with an efficient binding potency and a significant inhibition of intracellular enzyme levels. Intriguingly, chrysomycin A kills KRAS-mutant lung adenocarcinoma cells and is negligible cytotoxic to normal cells at the cellular level, thus indicating a capability of potential treatment. Furthermore, mechanism studies demonstrate that chrysomycin A inhibits the Topo II enzyme and stimulates the accumulation of reactive oxygen species, thereby inducing DNA damage-mediated cancer cell apoptosis. Importantly, chrysomycin A exhibits excellent control of cancer progression and excellent safety in tumor-bearing models. Our results provide a chemical scaffold for the synthesis of new types of Topo II inhibitors and reveal a novel target for chrysomycin A to meet its further application.


Subject(s)
Adenocarcinoma of Lung , Antineoplastic Agents , Lung Neoplasms , Proto-Oncogene Proteins p21(ras) , Topoisomerase II Inhibitors , Humans , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , DNA Topoisomerases, Type II/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Topoisomerase II Inhibitors/pharmacology , Topoisomerase II Inhibitors/therapeutic use , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology
10.
EMBO Rep ; 22(6): e51649, 2021 06 04.
Article in English | MEDLINE | ID: mdl-33855783

ABSTRACT

Pathological TDP-43 aggregation is characteristic of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD-TDP); however, how TDP-43 aggregation and function are regulated remain poorly understood. Here, we show that O-GlcNAc transferase OGT-mediated O-GlcNAcylation of TDP-43 suppresses ALS-associated proteinopathies and promotes TDP-43's splicing function. Biochemical and cell-based assays indicate that OGT's catalytic activity suppresses TDP-43 aggregation and hyperphosphorylation, whereas abolishment of TDP-43 O-GlcNAcylation impairs its RNA splicing activity. We further show that TDP-43 mutations in the O-GlcNAcylation sites improve locomotion defects of larvae and adult flies and extend adult life spans, following TDP-43 overexpression in Drosophila motor neurons. We finally demonstrate that O-GlcNAcylation of TDP-43 promotes proper splicing of many mRNAs, including STMN2, which is required for normal axonal outgrowth and regeneration. Our findings suggest that O-GlcNAcylation might be a target for the treatment of TDP-43-linked pathogenesis.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Amyotrophic Lateral Sclerosis/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Humans , RNA Splicing , RNA, Messenger/genetics
11.
Inflamm Res ; 72(3): 443-462, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36598534

ABSTRACT

BACKGROUND: Parkinson's disease (PD) is the second most common neurodegenerative disease, and is characterized by accumulation of α-synuclein (α-syn). Neuroinflammation driven by microglia is an important pathological manifestation of PD. α-Syn is a crucial marker of PD, and its accumulation leads to microglia M1-like phenotype polarization, activation of NLRP3 inflammasomes, and impaired autophagy and phagocytosis in microglia. Autophagy of microglia is related to degradation of α-syn and NLRP3 inflammasome blockage to relieve neuroinflammation. Microglial autophagy and phagocytosis of released α-syn or fragments from apoptotic neurons maintain homeostasis in the brain. A variety of PD-related genes such as LRRK2, GBA and DJ-1 also contribute to this stability process. OBJECTIVES: Further studies are needed to determine how α-syn works in microglia. METHODS: A keyword-based search was performed using the PubMed database for published articles. CONCLUSION: In this review, we discuss the interaction between microglia and α-syn in PD pathogenesis and the possible mechanism of microglial autophagy and phagocytosis in α-syn clearance and inhibition of neuroinflammation. This may provide a novel insight into treatment of PD.


Subject(s)
Neurodegenerative Diseases , Parkinson Disease , Humans , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Autophagy , Inflammasomes/metabolism , Microglia/metabolism , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Neuroinflammatory Diseases , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Parkinson Disease/genetics , Parkinson Disease/metabolism , Parkinson Disease/pathology , Phagocytosis
12.
Inorg Chem ; 62(19): 7525-7532, 2023 May 15.
Article in English | MEDLINE | ID: mdl-37133541

ABSTRACT

Electrocatalytic nitrate reduction reaction (ENO3RR) is an alternative, sustainable, and environmentally friendly value-added NH3 synthesis method under ambient conditions relative to the traditional Haber-Bosch process; however, its low NH3 yield, low Faradaic efficiency (FE), low selectivity, and low conversion rate severely restrict the development. In this work, a Cu2+1O/Ag-CC heterostructured electrocatalyst was successfully fabricated by constructing a heterogeneous interface between Cu2+1O and Ag for selective electrochemical nitrate-to-ammonia conversion. The construction of the heterogeneous interface effectively promotes the synergistic effect of the catalytically active components Cu2+1O and Ag, which enhances the material conductivity, accelerates the interfacial electron transfer, and exposes more active sites, thus improving the performance of ENO3RR. Such Cu2+1O/Ag-CC manifests a high NH3 yield of 2.2 mg h-1 cm-2 and a notable ammonia FE of 85.03% at the optimal applied potential of -0.74 V vs RHE in a relatively low concentration of 0.01 M NO3--containing 0.1 M KOH. Moreover, it shows excellent electrochemical stability during the cycle tests. Our study not only provides an efficient catalyst for ammonia electro-synthesis from ENO3RR but also an effective strategy for the construction of ENO3RR electrocatalysts for electrocatalytic applications.

13.
Environ Sci Technol ; 57(43): 16522-16531, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37844031

ABSTRACT

Reactive fillers consisting of reduced sulfur and iron species (SFe-ReFs) have received increasing attention in tertiary wastewater treatment for nitrate and phosphate coremoval. However, the existing SFe-ReFs suffer from either low performance (e.g., pyrrhotite and pyrite) or unsatisfactory use in terms of combustible risk and residual nonreactive impurities (e.g., sulfur mixing with natural iron ores). Here, we developed a new type of sulfur-siderite composite ReF (SSCReF) with a structure of natural siderite powders eventually embedded into sulfur. SSCReFs exhibited many excellent properties, including higher mechanical strengths and hardness and especially much poorer ignitability compared to pure sulfur. By using SSCReF to construct packed-bed reactors, the highest denitrification and dephosphorization rates reached 829.70 gN/m3/d (25 wt % siderite) and 36.70 gP/m3/d (75 wt % siderite), respectively. Dephosphorization was demonstrated to be dependent on sulfur-driven denitrification, in which the acid produced from the later process promoted Fe(II) dissolution, which then directly combined with phosphate to form vivianite or further converted into phosphate adsorbents (ferrihydrite, a green rust-like compound). Water flush was an effective way to finally wash out these surface deposited Fe-P compounds, as well as those nonreactive impurities (Si and Al-bearing compounds) detached from SSCReF. Such a highly efficient and safe SSCReF holds considerable application potential in secondary effluent polishing.


Subject(s)
Denitrification , Nitrates , Bioreactors , Sulfur , Iron , Phosphates , Nitrogen , Autotrophic Processes
14.
Acta Pharmacol Sin ; 44(10): 1977-1988, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37217602

ABSTRACT

Atherosclerotic diseases remain the leading cause of adult mortality and impose heavy burdens on health systems globally. Our previous study found that disturbed flow enhanced YAP activity to provoke endothelial activation and atherosclerosis, and targeting YAP alleviated endothelial inflammation and atherogenesis. Therefore, we established a luciferase reporter assay-based drug screening platform to seek out new YAP inhibitors for anti-atherosclerotic treatment. By screening the FDA-approved drug library, we identified that an anti-psychotic drug thioridazine markedly suppressed YAP activity in human endothelial cells. Thioridazine inhibited disturbed flow-induced endothelial inflammatory response in vivo and in vitro. We verified that the anti-inflammatory effects of thioridazine were mediated by inhibition of YAP. Thioridazine regulated YAP activity via restraining RhoA. Moreover, administration of thioridazine attenuated partial carotid ligation- and western diet-induced atherosclerosis in two mouse models. Overall, this work opens up the possibility of repurposing thioridazine for intervention of atherosclerotic diseases. This study also shed light on the underlying mechanisms that thioridazine inhibited endothelial activation and atherogenesis via repression of RhoA-YAP axis. As a new YAP inhibitor, thioridazine might need further investigation and development for the treatment of atherosclerotic diseases in clinical practice.


Subject(s)
Atherosclerosis , Endothelial Cells , Thioridazine , Animals , Humans , Mice , Atherosclerosis/drug therapy , Atherosclerosis/prevention & control , Inflammation/etiology , rhoA GTP-Binding Protein/drug effects , Thioridazine/therapeutic use , YAP-Signaling Proteins/drug effects
15.
Acta Pharmacol Sin ; 44(1): 32-43, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35896696

ABSTRACT

Inflammation is one of the pathogenic processes in Parkinson's disease (PD). Dopamine receptor agonist pramipexole (PPX) is extensively used for PD treatment in clinics. A number of studies show that PPX exerts neuroprotection on dopaminergic (DA) neurons, but the molecular mechanisms underlying the protective effects of PPX on DA neurons are not fully elucidated. In the present study, we investigated whether PPX modulated PD-related neuroinflammation and underlying mechanisms. PD model was established in mice by bilateral striatum injection of lipopolyssaccharide (LPS). The mice were administered PPX (0.5 mg·kg-1·d-1, i.p.) 3 days before LPS injection, and for 3 or 21 days after surgery, respectively, for biochemical and histological analyses. We showed that PPX administration significantly alleviated the loss of DA neurons, and suppressed the astrocyte activation and levels of proinflammatory cytokine IL-1ß in the substantia nigra of LPS-injected mice. Furthermore, PPX administration significantly decreased the expression of NLRP3 inflammasome-associated proteins, i.e., cleaved forms of caspase-1, IL-1ß, and apoptosis-associated speck-like protein containing a caspase recruit domain (ASC) in the striatum. These results were validated in LPS+ATP-stimulated primary mouse astrocytes in vitro. Remarkably, we showed that PPX (100-400 µM) dose-dependently enhanced the autophagy activity in the astrocytes evidenced by the elevations in LC3-II and BECN1 protein expression, as well as the increase of GFP-LC3 puncta formation. The opposite effects of PPX on astrocytic NLRP3 inflammasome and autophagy were eliminated by Drd3 depletion. Moreover, we demonstrated that both pretreatment of astrocytes with autophagy inhibitor chloroquine (40 µM) in vitro and astrocyte-specific Atg5 knockdown in vivo blocked PPX-caused inhibition on NLRP3 inflammasome and protection against DA neuron damage. Altogether, this study demonstrates an anti-neuroinflammatory activity of PPX via a Drd3-dependent enhancement of autophagy activity in astrocytes, and reveals a new mechanism for the beneficial effect of PPX in PD therapy.


Subject(s)
Parkinson Disease , Mice , Animals , Pramipexole/therapeutic use , Pramipexole/metabolism , Pramipexole/pharmacology , Parkinson Disease/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammasomes/metabolism , Astrocytes/metabolism , Lipopolysaccharides/pharmacology , Autophagy , Mice, Inbred C57BL
16.
Postgrad Med J ; 100(1179): 4-11, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-37777187

ABSTRACT

The multiple hypothesis holds that the pathogenesis of Parkinson's disease (PD) requires many factors such as heredity, environment and ageing. Mutations in Leucine-rich repeat kinase 2 (LRRK2) are recognized the risk factors of PD, and closely related to sporadic and familial PD and can regulate a variety of cellular pathways and processes. An Increasing number of studies has shown that glial hyperactivation-mediated neuroinflammation participates in dopaminergic neuron degeneration and pathogenesis of PD. LRRK2 is essential to the regulaton of chronic inflammation, especially for the central nervous system. The review spotlights on the novel development of LRRK2 on microglia and astrocytes, and explore their potential therapeutic targets, in order to provide a new insights in PD. Key messages: What is already known on this topic The G2019S mutation of LRRK2 is now recognised as a pathogenic mutation in PD. Previous studies have focused on the relationship between neurons and LRRK2 G2019S. What this study adds Neuroinflammation mediated by LRRK2 G2019S of glial cells affects the progress and development of PD and attention must be paid to the role of LRRK2 G2019S in glial cells in PD. How this study might affect research, practice or policy Developing anti-inflammatory drugs from the perspective of LRRK2 G2019S of glial cells is a new direction for the treatment of PD.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Neuroinflammatory Diseases , Mutation , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology
17.
Pol J Pathol ; 74(2): 141-143, 2023.
Article in English | MEDLINE | ID: mdl-37728473

ABSTRACT

Ectopic mammary gland tissue in the vulva is an exceptionally rare disease. We present a case of a 62-year-old woman with a left vulvar mass of 30 years duration that progressively increased in size. The patient reported having pressure and discomfort, especially during movement. Surgical excision was performed, and a histopathological examination revealed a well-differentiated ectopic breast. We also review other cases of vulvar ectopic breast to further comprehend the characteristics of this rare disease.  Clinicians and pathologists should always consider it as a differential diagnosis when presented with a vulvar mass.


Subject(s)
Rare Diseases , Vulva , Female , Humans , Middle Aged , Diagnosis, Differential
18.
Matern Child Nutr ; 19(2): e13470, 2023 04.
Article in English | MEDLINE | ID: mdl-36567573

ABSTRACT

Breastfeeding plays an important role in the growth and development of preterm infants, and exclusive breastfeeding (EBF) in the first 6 weeks post-partum is the key to continuous breastfeeding. This study was designed to explore the influencing factors that contribute to breastfeeding attrition among mothers of preterm infants at Week 6 post-partum based on the theory of planned behaviour (TPB). We herein adopted a prospective observational study design in which 97 mothers who exclusively breastfed at Week 6 post-partum at a tertiary specialised hospital in Shanghai from June 2021 to February 2022 were taken as the EBF group, and 179 mothers without EBF were assigned to the EBF attrition group. Through an extensive literature review and expert consultation, we determined the possible factors influencing EBF attrition, analysed those factors that showed statistical significance in our univariate analysis by applying binary logistic regression, and constructed a nomogram model for predicting EBF attrition. The results revealed that negative breastfeeding sentiment (odds ratio [OR] = 1.006; 95% confidence interval [CI], 1.000-1.011) generated a greater risk of breastfeeding attrition. However, positive breastfeeding sentiment (OR = 0.991; 95% CI, 0.983-0.999), social and professional support (OR = 0.993; 95% CI, 0.987-0.999), breastfeeding control (OR = 0.945; 95% CI, 0.896-0.996), knowledge (OR = 0.893; 95% CI, 0.799-0.998), and intention to EBF at Week 6 post-partum (OR = 0.522; 95% CI, 0.276-0.988) were the protective factors and facilitated the development of our nomogram model. The Hosmer-Lemeshow goodness-of-fit test generated a χ2 value of 11.344 (p = 0.183) and an area under the curve of 0.822 (95% CI, 0.771-0.873). The C-index was 0.800 in the internal bootstrap validation, indicating that the nomogram model possessed favourable predictive accuracy and discrimination.


Subject(s)
Breast Feeding , Mothers , Infant , Female , Infant, Newborn , Humans , Infant, Premature , Theory of Planned Behavior , China , Postpartum Period
19.
J Cell Mol Med ; 26(6): 1729-1741, 2022 03.
Article in English | MEDLINE | ID: mdl-33560588

ABSTRACT

Renal cell carcinoma (RCC) is the most common form of kidney cancer, with a high recurrence rate and metastasis capacity. Circular RNAs (circRNAs) have been suggested to act as the critical regulator in several diseases. This study is designed to investigate the role of circCSNK1G3 on RCC progression. We observed a highly expression of circCSNK1G3 in RCC tissues compared with normal tissues. The aberrantly circCSNK1G3 promoted the tumour growth and metastasis in RCC. In the subsequent mechanism investigation, we discovered that the tumour-promoting effects of circCSNK1G3 were, at least partly, achieved by up-regulating miR-181b. Increased miR-181b inhibits several tumour suppressor gene, including CYLD, LATS2, NDRG2 and TIMP3. Furthermore, the decreased TIMP3 leads to the enhanced epithelial to mesenchymal transition (EMT) process, thus promoting the cancer metastasis. In conclusion, we identified the oncogenic role of circCSNK1G3 in RCC progression and demonstrated the regulatory role of circCSNK1G3 induced miR-181b expression, which leads to TIMP3-mediated EMT process, thus resulting in tumour growth and metastasis in RCC. This study reveals the promise of circCSNK1G3 to be developed as a potential diagnostic and prognostic biomarker in the clinic. And the roles of circCSNK1G3 in cancer research deserve further investigation.


Subject(s)
Carcinoma, Renal Cell , Casein Kinase I/genetics , Kidney Neoplasms , MicroRNAs , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Epithelial-Mesenchymal Transition/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Male , MicroRNAs/genetics , MicroRNAs/metabolism , Protein Serine-Threonine Kinases , Tissue Inhibitor of Metalloproteinase-3/genetics , Tissue Inhibitor of Metalloproteinase-3/metabolism , Tumor Suppressor Proteins/genetics
20.
Lab Invest ; 102(7): 741-752, 2022 07.
Article in English | MEDLINE | ID: mdl-35351965

ABSTRACT

Invasive growth of glioblastoma makes residual tumor unremovable by surgery and leads to disease relapse. Temozolomide is widely used first-line chemotherapy drug to treat glioma patients, but development of temozolomide resistance is almost inevitable. Ferroptosis, an iron-dependent form of non-apoptotic cell death, is found to be related to temozolomide response of gliomas. However, whether inducing ferroptosis could affect invasive growth of glioblastoma cells and which ferroptosis-related regulators were involved in temozolomide resistance are still unclear. In this study, we treated glioblastoma cells with RSL3, a ferroptosis inducer, in vitro (cell lines) and in vivo (subcutaneous and orthotopic animal models). The treated glioblastoma cells with wild-type or mutant IDH1 were subjected to RNA sequencing for transcriptomic profiling. We then analyze data from our RNA sequencing and public TCGA glioma database to identify ferroptosis-related biomarkers for prediction of prognosis and temozolomide resistance in gliomas. Analysis of transcriptome data from RSL3-treated glioblastoma cells suggested that RSL3 could inhibit glioblastoma cell growth and suppress expression of genes involved in cell cycle. RSL3 effectively reduced mobility of glioblastoma cells through downregulation of critical genes involved in epithelial-mesenchymal transition. Moreover, RSL3 in combination with temozolomide showed suppressive efficacy on glioblastoma cell growth, providing a promising therapeutic strategy for glioblastoma treatment. Although temozolomide attenuated invasion of glioblastoma cells with mutant IDH1 more than those with wild-type IDH1, the combination of RSL3 and temozolomide similarly impaired invasive ability of glioblastoma cells in spite of IDH1 status. Finally, we noticed that both ferritin heavy chain 1 and ferritin light chain predicted unfavorable prognosis of glioma patients and were significantly correlated with mRNA levels of methylguanine methyltransferase as well as temozolomide resistance. Altogether, our study provided rationale for combination of RSL3 with temozolomide to suppress glioblastoma cells and revealed ferritin heavy chain 1 and ferritin light chain as biomarkers to predict prognosis and temozolomide resistance of glioma patients.


Subject(s)
Brain Neoplasms , Ferroptosis , Glioblastoma , Glioma , Animals , Apoferritins/pharmacology , Apoferritins/therapeutic use , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/metabolism , Glioma/drug therapy , Glioma/genetics , Glioma/metabolism , Temozolomide/pharmacology , Temozolomide/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL