Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Virol ; 96(18): e0133722, 2022 09 28.
Article in English | MEDLINE | ID: mdl-36069551

ABSTRACT

COVID-19 and influenza are both highly contagious respiratory diseases that have been serious threats to global public health. It is necessary to develop a bivalent vaccine to control these two infectious diseases simultaneously. In this study, we generated three attenuated replicating recombinant vesicular stomatitis virus (rVSV)-based vaccine candidates against both SARS-CoV-2 and influenza viruses. These rVSV-based vaccines coexpress SARS-CoV-2 Delta spike protein (SP) bearing the C-terminal 17 amino acid (aa) deletion (SPΔC) and I742A point mutation, or the SPΔC with a deletion of S2 domain, or the RBD domain, and a tandem repeat harboring four copies of the highly conserved influenza M2 ectodomain (M2e) that fused with the Ebola glycoprotein DC-targeting/activation domain. Animal immunization studies have shown that these rVSV bivalent vaccines induced efficient humoral and cellular immune responses against both SARS-CoV-2 SP and influenza M2 protein, including high levels of neutralizing antibodies against SARS-CoV-2 Delta and other variant SP-pseudovirus infections. Importantly, immunization of the rVSV bivalent vaccines effectively protected hamsters or mice against the challenges of SARS-CoV-2 Delta variant and lethal H1N1 and H3N2 influenza viruses and significantly reduced respiratory viral loads. Overall, this study provides convincing evidence for the high efficacy of this bivalent vaccine platform to be used and/or easily adapted to produce new vaccines against new or reemerging SARS-CoV-2 variants and influenza A virus infections. IMPORTANCE Given that both COVID-19 and influenza are preferably transmitted through respiratory droplets during the same seasons, it is highly advantageous to develop a bivalent vaccine that could simultaneously protect against both COVID-19 and influenza. In this study, we generated the attenuated replicating recombinant vesicular stomatitis virus (rVSV)-based vaccine candidates that target both spike protein of SARS-Cov-2 Delta variant and the conserved influenza M2 domain. Importantly, these vaccine candidates effectively protected hamsters or mice against the challenges of SARS-CoV-2 Delta variant and lethal H1N1 and H3N2 influenza viruses and significantly reduced respiratory viral loads.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Vaccines, Combined , Vesicular Stomatitis , Amino Acids/genetics , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Cricetinae , Glycoproteins/genetics , Glycoproteins/immunology , Humans , Influenza A Virus, H3N2 Subtype , Influenza Vaccines/genetics , Influenza Vaccines/immunology , Influenza, Human/prevention & control , Mice , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Combined/immunology , Vaccines, Synthetic/genetics , Vesiculovirus/immunology
2.
J Eur Acad Dermatol Venereol ; 37(3): 627-632, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36448684

ABSTRACT

BACKGROUND: Capillary malformation (CM) is the most common vascular malformation. Large scale studies on its incidence and risk factors are limited in China. OBJECTIVE: Our study aimed to investigate the incidence of CM in Chinese infants and to evaluate its potential risk factors. METHODS: A cross-sectional study, including 7299 infants (aged < 1 year) were collected by a self-administered questionnaire. Independent-samples T tests or χ2 tests and multivariable logistic models were used to examine the potential risk factors for CM. RESULTS: The incidences of salmon patches and port-wine stains (PWSs) were 9.10% and 0.80%, respectively. In analyses, male sex (OR: 1.32, 95% CI: 1.12-1.55) and birth hypoxia (OR: 5.61, 95% CI: 4.39-7.16) were risk factors for salmon patches. Birth hypoxia (OR: 12.58, 95% CI: 7.26-21.79) and pregnancy-induced hypertension syndrome (PIH; OR: 3.66, 95% CI: 1.49-8.99) were associated with a higher risk of PWSs. CONCLUSION: This epidemiological study had the largest sample size of infants with CM in the world thus far, which updated its incidence in Chinese infants and found the potential risk factors for CM.


Subject(s)
Port-Wine Stain , Vascular Malformations , Pregnancy , Female , Humans , Male , Infant , Cross-Sectional Studies , Epidemiologic Studies , China/epidemiology , Hypoxia
3.
J Virol ; 95(15): e0236820, 2021 07 12.
Article in English | MEDLINE | ID: mdl-34011553

ABSTRACT

The development of efficient vaccine approaches against HIV infection remains challenging in the vaccine field. Here, we developed an Ebola virus envelope glycoprotein (EboGP)-based chimeric fusion protein system and demonstrated that replacement of the mucin-like domain (MLD) of EboGP with HIV C2-V3-C3 (134 amino acids [aa]) or C2-V3-C3-V4-C4-V5-C5 (243 aa) polypeptides (EbGPΔM-V3 and EbGPΔM-V3-V5, respectively) still maintained the efficiency of EboGP-mediated viral entry into human macrophages and dendritic cells (DCs). Animal studies using mice revealed that immunization with virus-like particles (VLPs) containing the above chimeric proteins, especially EbGPΔM-V3, induced significantly more potent anti-HIV antibodies than HIV gp120 alone in mouse serum and vaginal fluid. Moreover, the splenocytes isolated from mice immunized with VLPs containing EbGPΔM-V3 produced significantly higher levels of gamma interferon (IFN-γ), interleukin 2 (IL-2), IL-4, IL-5, and macrophage inflammatory protein 1α (MIP-1α). Additionally, we demonstrated that coexpression of EbGPΔM-V3 and the HIV Env glycoprotein in a recombinant vesicular stomatitis virus (rVSV) vector elicited robust anti-HIV antibodies that may have specifically recognized epitopes outside or inside the C2-V3-C3 region of HIV-1 gp120 and cross-reacted with the gp120 from different HIV strains. Thus, this study has demonstrated the great potential of this DC-targeting vaccine platform as a new vaccine approach for improving immunogen delivery and increasing vaccine efficacy. IMPORTANCE Currently, there are more than 38.5 million reported cases of HIV globally. To date, there is no approved vaccine for HIV-1 infection. Thus, the development of an effective vaccine against HIV infection remains a global priority. This study revealed the efficacy of a novel dendritic cell (DC)-targeting vaccination approach against HIV-1. The results clearly show that the immunization of mice with virus-like particles (VLPs) and VSVs containing HIV Env and a fusion protein composed of a DC-targeting domain of Ebola virus GP with HIV C2-V3-C3 polypeptides (EbGPΔM-V3) could induce robust immune responses against HIV-1 Env and/or Gag in serum and vaginal mucosa. These findings provide a proof of concept of this novel and efficient DC-targeting vaccine approach in delivering various antigenic polypeptides of HIV-1 and/or other emergent infections to the host antigen-presenting cells to prevent HIV and other viral infections.


Subject(s)
AIDS Vaccines/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Dendritic Cells/immunology , HIV-1/immunology , Viral Envelope Proteins/immunology , Animals , Cell Line, Tumor , Chemokine CCL3/immunology , Chlorocebus aethiops , Ebolavirus/immunology , Female , HEK293 Cells , HIV Infections/prevention & control , Humans , Interferon-gamma/immunology , Mice , Mice, Inbred BALB C , THP-1 Cells , Vaccines, Virus-Like Particle/immunology , Vero Cells , Vesicular stomatitis Indiana virus/genetics
4.
Plant Dis ; 106(2): 737-740, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34633230

ABSTRACT

Dry rot caused by Diaporthe batatatis leads to the serious decay of sweetpotato storage roots during postharvest storage, which can result in considerable economic loss. Genomic research of the pathogen could provide a basis for study and prevention of sweetpotato dry rot. Herein, we report a high-quality draft genome sequence of D. batatatis CRI 302-4 isolated from infected sweetpotato storage roots in Taizhou City, Zhejiang Province, China. The size of the genome was 54.38 Mb and consisted of 36 scaffolds with a G+C content of 50.56% and an N50 of 2,950,914 bp. The information provided in this genome sequence will be an invaluable resource for molecular genetic research and disease control in sweetpotato production.


Subject(s)
Ipomoea batatas , Saccharomycetales , China , Plant Roots
5.
Virol J ; 16(1): 42, 2019 04 02.
Article in English | MEDLINE | ID: mdl-30940169

ABSTRACT

BACKGROUND: HIV integrase (IN) and its cellular cofactors, including lens-epithelium-derived growth factor (LEDGF/p75), Ku70, p300, and Rad52, are subject to small ubiquitin-like modifier (SUMO) modification. In addition to covalent SUMOylation, SUMO paralogs can also noncovalently bind proteins through SUMO-interacting motifs (SIMs). However, little is known about whether HIV IN contains SIMs and the roles of these motifs. RESULTS: We searched for the amino acid sequence of HIV IN and investigated three putative SIMs of IN: SIM1 72VILV75, SIM2 200IVDI203 and SIM3 257IKVV260. Our mutational analysis showed that 200IVDI203 and 257IKVV260 are two bona fide SIMs that mediate IN-SUMO noncovalent interactions. Additionally, a cell-based SUMOylation assay revealed that IN SIMs negatively regulate the SUMOylation of IN, as well as the interaction between IN and SUMO E2 conjugation enzyme Ubc9. Conversely, IN SIMs are required for its interactions with LEDGF/p75 but not with Ku70. Furthermore, our study reveals that SIM2 and SIM3 are required for the nuclear localization of IN. Finally, we investigated the impact of IN SIM2 and SIM3 on HIV single cycle replication in CD4+ C8166 T cells, and the results showed that viruses carrying IN SIM mutants are replication defective at the steps of the early viral life cycle, including reverse transcription, nuclear import and integration. CONCLUSION: Our data suggested that the INSIM-SUMO interaction constitutes a new regulatory mechanism of IN functions and might be important for HIV-1 replication.


Subject(s)
HIV Integrase/metabolism , HIV-1/physiology , SUMO-1 Protein/metabolism , Sumoylation , Virus Replication , Amino Acid Motifs , HEK293 Cells , HIV Integrase/genetics , HIV-1/enzymology , Humans , Protein Binding , Protein Interaction Domains and Motifs , Real-Time Polymerase Chain Reaction
6.
Biochim Biophys Acta ; 1849(8): 1095-103, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25959059

ABSTRACT

Splicing factors are often influenced by various signaling pathways, contributing to the dynamic changes of protein isoforms in cells. Heterogeneous ribonucleoproteins (hnRNPs) regulate many steps of RNA metabolism including pre-mRNA splicing but their control by cell signaling particularly through acetylation and ubiquitination pathways remains largely unknown. Here we show that TSA, a deacetylase inhibitor, reduced the ratio of Bcl-x splice variants Bcl-xL/xS in MDA-MB-231 breast cancer cells. This TSA effect was independent of TGFß1; however, only in the presence of TGFß1 was TSA able to change the splicing regulators hnRNP F/H by slightly reducing their mRNA transcripts but strongly preventing protein degradation. The latter was also efficiently prevented by lactacystin, a proteasome inhibitor, suggesting their protein stability control by both acetylation and ubiquitination pathways. Three lysines K87, K98 and K224 of hnRNP F are potential targets of the mutually exclusive acetylation or ubiquitination (K(Ac/Ub)) in the protein modification database PhosphoSitePlus. Mutating each of them but not a control non-K(Ac/Ub) (K68) specifically abolished the TSA enhancement of protein stability. Moreover, mutating K98 (K98R) and K224 (K224R) also abolished the TSA regulation of alternative splicing of a Bcl-x mini-gene. Furthermore, about 86% (30 of 35) of the multi-functional hnRNP proteins in the database contain lysines that are potential sites for acetylation/ubiquitination. We demonstrate that the degradation of three of them (A1, I and L) are also prevented by TSA. Thus, the deacetylase inhibitor TSA enhances hnRNP F stability through the K(Ac/Ub) lysines, with some of them essential for its regulation of alternative splicing. Such a regulation of protein stability is perhaps common for a group of hnRNPs and RNA metabolism.


Subject(s)
Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Histone Deacetylase Inhibitors/pharmacology , Hydroxamic Acids/pharmacology , Acetylcysteine/analogs & derivatives , Acetylcysteine/pharmacology , Amino Acid Sequence , Animals , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Humans , Mutation , PC12 Cells , Protein Stability/drug effects , RNA Splicing/drug effects , RNA Splicing/genetics , Rats , Transforming Growth Factor beta1/pharmacology , Tumor Cells, Cultured
7.
J Virol ; 89(7): 3497-511, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25568209

ABSTRACT

UNLABELLED: In this study, we examined the requirement for host dynein adapter proteins such as dynein light chain 1 (DYNLL1), dynein light chain Tctex-type 1 (DYNLT1), and p150(Glued) in early steps of human immunodeficiency virus type 1 (HIV-1) replication. We found that the knockdown (KD) of DYNLL1, but not DYNLT1 or p150(Glued), resulted in significantly lower levels of HIV-1 reverse transcription in cells. Following an attempt to determine how DYNLL1 could impact HIV-1 reverse transcription, we detected the DYNLL1 interaction with HIV-1 integrase (IN) but not with capsid (CA), matrix (MA), or reverse transcriptase (RT) protein. Furthermore, by mutational analysis of putative DYNLL1 interaction motifs in IN, we identified the motifs (52)GQVD and (250)VIQD in IN as essential for DYNLL1 interaction. The DYNLL1 interaction-defective IN mutant HIV-1 (HIV-1IN(Q53A/Q252A)) exhibited impaired reverse transcription. Through further investigations, we have also detected relatively smaller amounts of particulate CA in DYNLL1-KD cells or in infections with HIV-1IN(Q53A/Q252A) mutant virus. Overall, our study demonstrates the novel interaction between HIV-1 IN and cellular DYNLL1 proteins and suggests the requirement of this virus-cell interaction for proper uncoating and efficient reverse transcription of HIV-1. IMPORTANCE: Host cellular DYNLL1, DYNLT1, and p150(Glued) proteins have been implicated in the replication of several viruses. However, their roles in HIV-1 replication have not been investigated. For the first time, we demonstrated that during viral infection, HIV-1 IN interacts with DYNLL1, and their interaction was found to have a role in proper uncoating and efficient reverse transcription of HIV-1. Thus, interaction of IN and DYNLL1 may be a potential target for future anti-HIV therapy. Moreover, while our study has evaluated the involvement of IN in HIV-1 uncoating and reverse transcription, it also predicts a possible mechanism by which IN contributes to these early viral replication steps.


Subject(s)
Cytoplasmic Dyneins/metabolism , HIV Integrase/metabolism , HIV-1/physiology , Host-Pathogen Interactions , Reverse Transcription , Virus Uncoating , Amino Acid Motifs , Cell Line , DNA Mutational Analysis , Dynactin Complex , Dyneins/metabolism , Gene Knockdown Techniques , HIV Integrase/genetics , HIV-1/genetics , Humans , Microtubule-Associated Proteins/metabolism
8.
Virol J ; 13(1): 177, 2016 10 21.
Article in English | MEDLINE | ID: mdl-27769267

ABSTRACT

BACKGROUND: HIV-1 latency is a major obstacle for HIV-1 eradication. Extensive efforts are being directed toward the reactivation of latent HIV reservoirs with the aim of eliminating latently infected cells via the host immune system and/or virus-mediated cell lysis. RESULTS: We screened over 1,500 small molecules and kinase inhibitors and found that a small molecule, PKC412 (midostaurin, a broad-spectrum kinase inhibitor), can stimulate viral transcription and expression from the HIV-1 latently infected ACH2 cell line and primary resting CD4+ T cells. PKC412 reactivated HIV-1 expression in ACH2 cells in a dose- and time-dependent manner. Our results also suggest that the nuclear factor κB (NF-κB) signaling could be one of cellular pathways activated during PKC412-mediated activation of latent HIV-1 expression. Additionally, combining PKC412 with the HDAC inhibitor vorinostat (VOR) had an additive effect on HIV-1 reactivation in both ACH2 cells and infected resting CD4+ T cells. CONCLUSIONS: These studies provide evidence that PKC412 is a new compound with the potential for optimization as a latency-reactivator to eradicate HIV-1 infection.


Subject(s)
CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/virology , HIV-1/drug effects , Protein Kinase Inhibitors/metabolism , Staurosporine/analogs & derivatives , Virus Activation/drug effects , Virus Latency/drug effects , Drug Evaluation, Preclinical , HIV-1/physiology , Humans , Staurosporine/metabolism
9.
Zhonghua Xin Xue Guan Bing Za Zhi ; 43(6): 537-41, 2015 Jun.
Article in Zh | MEDLINE | ID: mdl-26420124

ABSTRACT

OBJECTIVE: To investigate the impact of calcitonin gene-related peptide (CGRP) modified bone marrow mesenchymal stem cell (MSC) on the migration of vascular smooth muscle cell (VSMC) and related mechanisms. METHODS: The MSC and VSMC were isolated from rats and cultured, CGRP was transfected to MSC with the high expression lentivirus vector, VSMC was transfected with high expression lentivirus vector of receptor activity modifying protein 1 (RAMP1) and the silence expression lentivirus vector of RAMP1. Then MSC was co-cultured with VSMC. Experimental groups were as follows: (1) Ang II group (MSC + VSMC + Ang II); (2) MSC(CGRP+) group (MSC(CGRP+) + VSMC + Ang II); (3) MSC(CGRP+) RAMP1(-) group (MSC(CGRP+) + VSMC(RAMP1-) + Ang II); (4) MSC(CGRP+) RAMP1(+) group (MSC(CGRP+) + VSMC(RAMP1+) + Ang II); (5) RAMP1(+) group (MSC + VSMC(RAMP1+) + Ang II). Transwell assay was applied to detect the migration of smooth muscle cells, Western blot was applied to detect the protein expression of cells in various groups. RESULTS: VSMC migration number was significantly lower in MSC(CGRP+) group compared with Ang II group (50.8 ± 2.6 vs. 71.4 ± 2.3, P < 0.05), but higher than in MSC(CGRP+) RAMP1(+) group (50.8 ± 2.6 vs. 30.4 ± 3.0, P < 0.05). When RAMP1 expression reduced in VSMC, compared with MSC(CGRP+) RAMP1(+) group, VSMC migration increased in the MSC(CGRP+) RAMP1(-) group compared to MSC(CGRP+)RAMP1(+) (69.0 ± 5.6 vs. 30.4 ± 3.0, P < 0.05) and was similar to Ang II group (69.0 ± 5.6 vs. 71.4 ± 2.3, P > 0.05) and RAMP1(+) group (71.6 ± 3.4). According to the result of Western blot, P-P65 protein expression in MSC(CGRP+) group was lower than that in Ang II group (0.475 ± 0.022 vs.0.642 ± 0.035, P < 0.05). P-P65 protein expression in MSC(CGRP+)RAMP1(-) group was higher than that in MSC(CGRP+) RAMP1(+) group (0.670 ± 0.030 vs. 0.373 ± 0.041, P < 0.05), and there was no difference between MSC(CGRP+)RAMP1(-) group and Ang II group (P > 0.05). P-P65 protein expression was similar between RAMP1(+) group (0.643 ± 0.039) and Ang II group (P > 0.05). CONCLUSIONS: CGRP inhibits VSMC migration through RAMP1. NF-κB and RAMP1 play crucial role in the inhibiting effects of CGRP on VSMC migration. Thus, RAMP1-CGRP signaling inhibits VSMC migration through NF-κB signal pathways.


Subject(s)
Calcitonin Gene-Related Peptide , Cell Movement , Myocytes, Smooth Muscle , Receptor Activity-Modifying Protein 1 , Animals , Bone Marrow Cells , Coculture Techniques , Hematopoietic Stem Cells , In Vitro Techniques , Muscle, Smooth, Vascular , NF-kappa B , Rats , Signal Transduction , Transfection
10.
J Virol ; 87(13): 7754-7, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23616649

ABSTRACT

Monoclonal antibodies (MAbs) are currently a promising treatment strategy against Ebola virus infection. This study combined MAbs with an adenovirus-vectored interferon (DEF201) to evaluate the efficacy in guinea pigs and extend the treatment window obtained with MAbs alone. Initiating the combination therapy at 3 days postinfection (d.p.i.) provided 100% survival, a significant improvement over survival with either treatment alone. The administration of DEF201 within 2 d.p.i. permits later MAb use, with protective efficacy observed up to 8 d.p.i.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Ebolavirus/immunology , Hemorrhagic Fever, Ebola/drug therapy , Hemorrhagic Fever, Ebola/immunology , Interferon-alpha/therapeutic use , Adenoviridae , Animals , Genetic Vectors/genetics , Guinea Pigs , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction
11.
Front Biosci (Landmark Ed) ; 29(5): 195, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38812326

ABSTRACT

BACKGROUND: To investigate the immune responses and protection ability of ultraviolet light (UV)-inactivated recombinant vesicular stomatitis (rVSV)-based vectors that expressed a fusion protein consisting of four copies of the influenza matrix 2 protein ectodomain (tM2e) and the Dendritic Cell (DC)-targeting domain of the Ebola Glycoprotein (EΔM), (rVSV-EΔM-tM2e). METHOD: In our previous study, we demonstrated the effectiveness of rVSV-EΔM-tM2e to induce robust immune responses against influenza M2e and protect against lethal challenges from H1N1 and H3N2 strains. Here, we used UV to inactivate rVSV-EΔM-tM2e and tested its immunogenicity and protection in BALB/c mice from a mouse-adapted H1N1 influenza challenge. Using Enzyme-Linked Immunosorbent Assay (ELISA) and Antibody-Dependent Cellular Cytotoxicity (ADCC), the influenza anti-M2e immune responses specific to human, avian and swine influenza strains induced were characterized. Likewise, the specificity of the anti-M2e immune responses induced in recognizing M2e antigen on the surface of the cell was investigated using Fluorescence-Activated Cell Sorting (FACS) analysis. RESULTS: Like the live attenuated rVSV-EΔM-tM2e, the UV-inactivated rVSV-EΔM-tM2e was highly immunogenic against different influenza M2e from strains of different hosts, including human, swine, and avian, and protected against influenza H1N1 challenge in mice. The FACS analysis demonstrated that the induced immune responses can recognize influenza M2 antigens from human, swine and avian influenza strains. Moreover, the rVSV-EΔM-tM2e also induced ADCC activity against influenza M2e from different host strains. CONCLUSIONS: These findings suggest that UV-inactivated rVSV-EΔM-tM2e could be used as an inactivated vaccine against influenza viruses.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Mice, Inbred BALB C , Orthomyxoviridae Infections , Ultraviolet Rays , Animals , Influenza Vaccines/immunology , Influenza A Virus, H1N1 Subtype/immunology , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/immunology , Female , Mice , Humans , Viral Matrix Proteins/immunology , Viral Matrix Proteins/genetics , Vesiculovirus/immunology , Vesiculovirus/genetics , Vaccines, Inactivated/immunology
12.
Vaccines (Basel) ; 12(4)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38675751

ABSTRACT

Currently, no effective vaccine to prevent human immunodeficiency virus (HIV) infection is available, and various platforms are being examined. The vesicular stomatitis virus (VSV) vaccine vehicle can induce robust humoral and cell-mediated immune responses, making it a suitable candidate for the development of an HIV vaccine. Here, we analyze the protective immunological impacts of recombinant VSV vaccine vectors that express chimeric HIV Envelope proteins (Env) in rhesus macaques. To improve the immunogenicity of these VSV-HIV Env vaccine candidates, we generated chimeric Envs containing the transmembrane and cytoplasmic tail of the simian immunodeficiency virus (SIV), which increases surface Env on the particle. Additionally, the Ebola virus glycoprotein was added to the VSV-HIV vaccine particles to divert tropism from CD4 T cells and enhance their replications both in vitro and in vivo. Animals were boosted with DNA constructs that encoded matching antigens. Vaccinated animals developed non-neutralizing antibody responses against both the HIV Env and the Ebola virus glycoprotein (EBOV GP) as well as systemic memory T-cell activation. However, these responses were not associated with observable protection against simian-HIV (SHIV) infection following repeated high-dose intra-rectal SHIV SF162p3 challenges.

13.
J Biol Chem ; 287(13): 10544-10555, 2012 Mar 23.
Article in English | MEDLINE | ID: mdl-22308026

ABSTRACT

HIV-1 integration is promoted by viral integrase (IN) and its cellular cofactors. The lens epithelium-derived growth factor (LEDGF/p75), an IN interacting cellular cofactor, has been shown to play an important role in HIV-1 chromatin targeting and integration. However, whether other cellular cofactors are also involved in viral replication steps is still elusive. Here, we show that nucleoporin 62 (Nup62) is a chromatin-bound protein and can specifically interact with HIV-1 IN in both soluble nuclear extract and chromatin-bound fractions. The knockdown of Nup62 by shRNA reduced the association of IN with host chromatin and significantly impaired viral integration and replication in HIV-1-susceptible cells. Furthermore, the expression of the IN-binding region of Nup62 in CD4(+) T cells significantly inhibited HIV-1 infection. Taken together, these results indicate that the cellular Nup62 is specifically recruited by HIV-1 IN and contribute to an efficient viral DNA integration.


Subject(s)
CD4-Positive T-Lymphocytes/metabolism , DNA, Viral/metabolism , HIV Infections/metabolism , HIV Integrase/metabolism , HIV-1/enzymology , Membrane Glycoproteins/metabolism , Nuclear Pore Complex Proteins/metabolism , Virus Integration/physiology , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , CD4-Positive T-Lymphocytes/virology , DNA, Viral/genetics , Gene Knockdown Techniques , HEK293 Cells , HIV Infections/genetics , HIV Integrase/genetics , HIV-1/genetics , Humans , Membrane Glycoproteins/genetics , Nuclear Pore Complex Proteins/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
14.
Antimicrob Agents Chemother ; 57(8): 3547-54, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23669388

ABSTRACT

In the absence of an effective vaccine against HIV-1 infection, anti-HIV-1 strategies play a major role in disease control. However, the rapid emergence of drug resistance against all currently used anti-HIV-1 molecules necessitates the development of new antiviral molecules and/or strategies against HIV-1 infection. In this study, we have identified a benzamide derivative named AH0109 that exhibits potent anti-HIV-1 activity at an 50% effective concentration of 0.7 µM in HIV-1-susceptible CD4(+) C8166 T cells. Mechanistic analysis revealed that AH0109 significantly inhibits both HIV-1 reverse transcription and viral cDNA nuclear import. Furthermore, our infection experiments indicated that AH0109 is capable of disrupting the replication of HIV-1 strains that are resistant to the routinely used anti-HIV-1 drugs zidovudine, lamivudine, nevirapine, and raltegravir. Together, these findings provide evidence for a newly identified antiviral molecule that can potentially be developed as an anti-HIV-1 agent.


Subject(s)
HIV-1/drug effects , Morphinans/pharmacology , Reverse Transcriptase Inhibitors/pharmacology , Active Transport, Cell Nucleus/drug effects , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/virology , DNA, Viral/genetics , Drug Evaluation, Preclinical , HEK293 Cells , HIV Integrase Inhibitors/pharmacology , HIV-1/genetics , Humans , Lamivudine/pharmacology , Microbial Sensitivity Tests , Nevirapine/pharmacology , Reverse Transcription/drug effects , Virus Replication/drug effects , Zidovudine/pharmacology
15.
J Virol ; 86(7): 3777-86, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22301159

ABSTRACT

The cytidine deaminase APOBEC3G (A3G) exerts a multifaceted antiviral effect against HIV-1 infection. First, A3G was shown to be able to terminate HIV infection by deaminating the cytosine residues to uracil in the minus strand of the viral DNA during reverse transcription. Also, a number of studies have indicated that A3G inhibits HIV-1 reverse transcription by a non-editing-mediated mechanism. However, the mechanism by which A3G directly disrupts HIV-1 reverse transcription is not fully understood. In the present study, by using a cell-based coimmunoprecipitation (Co-IP) assay, we detected the direct interaction between A3G and HIV-1 reverse transcriptase (RT) in produced viruses and in the cotransfected cells. The data also suggested that their interaction did not require viral genomic RNA bridging or other viral proteins. Additionally, a deletion analysis showed that the RT-binding region in A3G was located between amino acids 65 and 132. Overexpression of the RT-binding polypeptide A3G(65-132) was able to disrupt the interaction between wild-type A3G and RT, which consequently attenuated the anti-HIV effect of A3G on reverse transcription. Overall, this paper provides evidence for the physical and functional interaction between A3G and HIV-1 RT and demonstrates that this interaction plays an important role in the action of A3G against HIV-1 reverse transcription.


Subject(s)
Cytidine Deaminase/metabolism , HIV Infections/enzymology , HIV Reverse Transcriptase/metabolism , HIV-1/enzymology , Virus Replication , APOBEC-3G Deaminase , Amino Acid Motifs , Cell Line , Cytidine Deaminase/chemistry , Cytidine Deaminase/genetics , Down-Regulation , HIV Infections/genetics , HIV Infections/virology , HIV Reverse Transcriptase/genetics , HIV-1/genetics , HIV-1/physiology , Humans , Protein Binding
17.
STAR Protoc ; 4(1): 102083, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36853685

ABSTRACT

The excessive release of pro-inflammatory cytokines in COVID-19 patients is deleterious to organs. The contribution of SARS-CoV-2 spike protein (S) to the inflammatory response is essential to understand its pathogenesis and virulence. Here, we present a protocol to produce and characterize HIV- and SARS-CoV-2-based virus-like particles and then evaluate the inflammatory cytokines' protein and mRNA levels produced in human macrophages by S of SARS-CoV-2 original strain and Delta variant. This protocol is applicable in evaluating S from different emerging variants. For complete details on the use and execution of this protocol, please refer to Ao et al. (2022).1.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Cytokines/genetics , Macrophages
18.
Vaccines (Basel) ; 11(3)2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36992129

ABSTRACT

Over the years, several distinct pathogenic coronaviruses have emerged, including the pandemic SARS-CoV-2, which is difficult to curtail despite the availability of licensed vaccines. The difficulty in managing SARS-CoV-2 is linked to changes in the variants' proteins, especially in the spike protein (SP) used for viral entry. These mutations, especially in the SP, enable the virus to evade immune responses induced by natural infection or vaccination. However, some parts of the SP in the S1 subunit and the S2 subunit are considered conserved among coronaviruses. In this review, we will discuss the epitopes in the SARS-CoV-2 S1 and S2 subunit proteins that have been demonstrated by various studies to be conserved among coronaviruses and may be immunogenic for the development of a vaccine. Considering the higher conservancy of the S2, we will further discuss the likely challenges that could limit the S2 subunit from inducing robust immune responses and the promising approaches to increase its immunogenicity.

19.
Vaccines (Basel) ; 11(9)2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37766083

ABSTRACT

COVID-19 and influenza both cause enormous disease burdens, and vaccines are the primary measures for their control. Since these viral diseases are transmitted through the mucosal surface of the respiratory tract, developing an effective and convenient mucosal vaccine should be a high priority. We previously reported a recombinant vesicular stomatitis virus (rVSV)-based bivalent vaccine (v-EM2/SPΔC1Delta) that protects animals from both SARS-CoV-2 and influenza viruses via intramuscular and intranasal immunization. Here, we further investigated the immune response induced by oral immunization with this vaccine and its protective efficacy in mice. The results demonstrated that the oral delivery, like the intranasal route, elicited strong and protective systemic immune responses against SARS-CoV-2 and influenza A virus. This included high levels of neutralizing antibodies (NAbs) against SARS-CoV-2, as well as strong anti-SARS-CoV-2 spike protein (SP) antibody-dependent cellular cytotoxicity (ADCC) and anti-influenza M2 ADCC responses in mice sera. Furthermore, it provided efficient protection against challenge with influenza H1N1 virus in a mouse model, with a 100% survival rate and a significantly low lung viral load of influenza virus. All these findings provide substantial evidence for the effectiveness of oral immunization with the rVSV bivalent vaccine.

20.
Emerg Microbes Infect ; 12(2): 2251595, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37649434

ABSTRACT

Despite the human immunodeficiency virus (HIV) pandemic continuing worldwide for 40 years, no vaccine to combat the disease has been licenced for use in at risk populations. Here, we describe a novel recombinant vesicular stomatitis virus (rVSV) vector vaccine expressing modified HIV envelope glycoproteins and Ebola virus glycoprotein. Three heterologous immunizations successfully prevented infection by a different clade SHIV in 60% of non-human primates (NHPs). No trend was observed between resistance and antibody interactions. Resistance to infection was associated with high proportions of central memory T-cell CD69 and CD154 marker upregulation, increased IL-2 production, and a reduced IFN-γ response, offering insight into correlates of protection.


Subject(s)
HIV Infections , Vaccines , Animals , Macaca mulatta , Vesiculovirus , Up-Regulation , Antigens, Viral , Postoperative Complications , HIV Infections/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL