Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
J Appl Clin Med Phys ; 22(8): 265-272, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34339583

ABSTRACT

A radiophotoluminescent glass dosimeter (RGD) is used for a postal audit of a photon beam because of its various excellent characteristics. However, it has not been used for scanning proton beams because its response characteristics have not been verified. In this study, the response of RGD to scanning protons was investigated to develop a dosimetry protocol using the linear energy transfer (LET)-based correction factor. The responses of RGD to four maximum-range-energy-pattern proton beams were verified by comparing it with ionization chamber (IC) dosimetry. The LET at each measurement depth was calculated via Monte Carlo (MC) simulation. The LET correction factor ( k LET RGD ) was the ratio between the uncorrected RGD dose ( D raw RGD ) and the IC dose at each measurement depth. k LET RGD can be represented as a function of LET using the following equation: k LET RGD LET = - 0.035 LET + 1.090 . D raw RGD showed a linear under-response with increasing LET, and the maximum dose difference between the IC dose and D raw RGD was 15.2% at an LET of 6.07 keV/µm. The LET-based correction dose ( D LET RGD ) conformed within 3.6% of the IC dose. The mean dose difference (±SD) of D raw RGD and D LET RGD was -2.5 ± 6.9% and 0.0 ± 1.6%, respectively. To achieve accurate dose verification for scanning proton beams using RGD, we derived a linear regression equation based on LET. The results show that with appropriate LET correction, RGD can be used for dose verification of scanning proton beams.


Subject(s)
Linear Energy Transfer , Proton Therapy , Humans , Monte Carlo Method , Protons , Radiation Dosimeters , Radiometry
2.
J Appl Clin Med Phys ; 20(2): 114-120, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30673145

ABSTRACT

The purpose of this study was to propose a verification method and results of intensity-modulated proton therapy (IMPT), using a commercially available heterogeneous phantom. We used a simple simulated head and neck and prostate phantom. An ionization chamber and radiochromic film were used for measurements of absolute dose and relative dose distribution. The measured doses were compared with calculated doses using a treatment planning system. We defined the uncertainty of the measurement point of the ionization chamber due to the effective point of the chamber and mechanical setup error as 2 mm and estimated the dose variation base on a 2 mm error. We prepared a HU-relative stopping power conversion table and fluence correction factor that were specific to the heterogeneous phantom. The fluence correction factor was determined as a function of depth and was obtained from the ratio of the doses in water and in the phantom at the same effective depths. In the simulated prostate plan, composite doses of measurements and calculations agreed within ±1.3% and the maximum local dose differences of each field were 10.0%. Composite doses in the simulated head and neck plan agreed within 4.0% and the maximum local dose difference for each field was 12.0%. The dose difference for each field came within 2% when taking the measurement uncertainty into consideration. In the composite plan, the maximum dose uncertainty was estimated as 4.0% in the simulated prostate plan and 5.8% in the simulated head and neck plan. Film measurements showed good agreement, with more than 92.5% of points passing a gamma value (3%/3 mm). From these results, the heterogeneous phantom should be useful for verification of IMPT by using a phantom-specific HU-relative stopping power conversion, fluence correction factor, and dose error estimation due to the effective point of the chamber.


Subject(s)
Neoplasms/radiotherapy , Phantoms, Imaging , Proton Therapy , Radiometry/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Humans , Organs at Risk/radiation effects , Radiotherapy Dosage
3.
J Appl Clin Med Phys ; 20(1): 258-264, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30597762

ABSTRACT

The purpose of this study was to provide periodic quality assurance (QA) methods for respiratory-gated proton beam with a range modulation wheel (RMW) and to clarify the characteristics and long-term stability of the respiratory-gated proton beam. A two-dimensional detector array and a solid water phantom were used to measure absolute dose, spread-out Bragg peak (SOBP) width and proton range for monthly QA. SOBP width and proton range were measured using an oblique incidence beam to the lateral side of a solid water phantom and compared between with and without a gating proton beam. To measure the delay time of beam-on/off for annual QA, we collected the beam-on/off signals and the dose monitor-detected pulse. We analyzed the results of monthly QA over a 15-month period and investigated the delay time by machine signal analysis. The dose deviations at proximal, SOBP center and distal points were -0.083 ± 0.25%, 0.026 ± 0.20%, and -0.083 ± 0.35%, respectively. The maximum dose deviation between with and without respiratory gating was -0.95% at the distal point and other deviations were within ±0.5%. Proximal and SOBP center doses showed the same trend over a 15-month period. Delay times of beam-on/off for 200 MeV/SOBP 16 cm were 140.5 ± 0.8 ms and 22.3 ± 13.0 ms, respectively. Delay times for 160 MeV/SOBP 10 cm were 167.5 ± 15.1 ms and 19.1 ± 9.8 ms. Our beam delivery system with the RMW showed sufficient stability for respiratory-gated proton therapy and the system did not show dependency on the energy and the respiratory wave form. The delay times of beam-on/off were within expectations. The proposed QA methods will be useful for managing the quality of respiratory-gated proton beams and other beam delivery systems.


Subject(s)
Neoplasms/radiotherapy , Phantoms, Imaging , Proton Therapy/methods , Quality Assurance, Health Care/standards , Radiotherapy Planning, Computer-Assisted/methods , Respiratory-Gated Imaging Techniques/methods , Humans , Monte Carlo Method , Radiotherapy Dosage , Scattering, Radiation
4.
Strahlenther Onkol ; 194(4): 343-351, 2018 04.
Article in English | MEDLINE | ID: mdl-29038831

ABSTRACT

PURPOSE: In order to clarify the biological response of tumor cells to proton beam irradiation, sublethal damage recovery (SLDR) and potentially lethal damage recovery (PLDR) induced after proton beam irradiation at the center of a 10 cm spread-out Bragg peak (SOBP) were compared with those seen after X­ray irradiation. METHODS: Cell survival was determined by a colony assay using EMT6 and human salivary gland tumor (HSG) cells. First, two doses of 4 Gy/GyE (Gray equivalents, GyE) were given at an interfraction interval of 0-6 h. Second, five fractions of 1.6 Gy/GyE were administered at interfraction intervals of 0-5 min. Third, a delayed-plating assay involving cells in plateau-phase cultures was conducted. The cells were plated in plastic dishes immediately or 2-24 h after being irradiated with 8 Gy/GyE of X­rays or proton beams. Furthermore, we investigated the degree of protection from the effects of X­rays or proton beams afforded by the radical scavenger dimethyl sulfoxide to estimate the contribution of the indirect effect of radiation. RESULTS: In both the first and second experiments, SLDR was more suppressed after proton beam irradiation than after X­ray irradiation. In the third experiment, there was no difference in PLDR between the proton beam and X­ray irradiation conditions. The degree of protection tended to be higher after X­ray irradiation than after proton beam irradiation. CONCLUSION: Compared with that seen after X­ray irradiation, SLDR might take place to a lesser extent after proton beam irradiation at the center of a 10 cm SOBP, while the extent of PLDR does not differ significantly between these two conditions.


Subject(s)
Cell Survival/radiation effects , Proton Therapy/adverse effects , Tumor Cells, Cultured/radiation effects , X-Rays/adverse effects , Animals , Cell Line, Tumor , Colony-Forming Units Assay , Dose-Response Relationship, Radiation , Humans , Linear Energy Transfer , Mice
5.
J Appl Clin Med Phys ; 19(1): 132-137, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29178546

ABSTRACT

In this study, we evaluate dosimetric advantages of using patient-specific aperture system with intensity-modulated proton therapy (IMPT) for head and neck tumors at the shallow depth. We used four types of patient-specific aperture system (PSAS) to irradiate shallow regions less than 4 g/cm2 with a sharp lateral penumbra. Ten head and neck IMPT plans with or without aperture were optimized separately with the same 95% prescription dose and same dose constraint for organs at risk (OARs). The plans were compared using dose volume histograms (DVHs), dose distributions, and some dose indexes such as volume receiving 50% of the prescribed dose (V50 ), mean or maximum dose (Dmean and Dmax ) to the OARs. All examples verified in this study had decreased V50 and OAR doses. Average, maximum, and minimum relative reductions of V50 were 15.4%, 38.9%, and 1.0%, respectively. Dmax and Dmean of OARs were decreased by 0.3% to 25.7% and by 1.0% to 46.3%, respectively. The plans with the aperture over more than half of the field showed decreased V50 or OAR dose by more than 10%. The dosimetric advantage of patient-specific apertures with IMPT was clarified in many cases. The PSAS has some dosimetric advantages for clinical use, and in some cases, it enables to fulfill dose constraints.


Subject(s)
Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/radiotherapy , Organs at Risk/radiation effects , Proton Therapy , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Humans , Radiotherapy Dosage
6.
Radiol Phys Technol ; 17(1): 280-287, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38261133

ABSTRACT

The reference dose for clinical proton beam therapy is based on ionization chamber dosimetry. However, data on uncertainties in proton dosimetry are lacking, and multifaceted studies are required. Monte Carlo simulations are useful tools for calculating ionization chamber dosimetry in radiation fields and are sensitive to the transport algorithm parameters when particles are transported in a heterogeneous region. We aimed to evaluate the proton transport algorithm of the Particle and Heavy Ion Transport Code System (PHITS) using the Fano test. The response of the ionization chamber f Q and beam quality correction factors k Q were calculated using the same parameters as those in the Fano test and compared with those of other Monte Carlo codes for verification. The geometry of the Fano test consisted of a cylindrical gas-filled cavity sandwiched between two cylindrical walls. f Q was calculated as the ratio of the absorbed dose in water to the dose in the cavity in the chamber. We compared the f Q calculated using PHITS with that of a previous study, which was calculated using other Monte Carlo codes (Geant4, FULKA, and PENH) under similar conditions. The flight mesh, a parameter for charged particle transport, passed the Fano test within 0.15%. This was shown to be sufficiently accurate compared with that observed in previous studies. The f Q calculated using PHITS were 1.116 ± 0.002 and 1.124 ± 0.003 for NACP-02 and PTW-30013, respectively, and the k Q were 0.981 ± 0.008 and 1.027 ± 0.008, respectively, at 150 MeV. Our results indicate that PHITS can calculate the f Q and k Q with high precision.


Subject(s)
Proton Therapy , Protons , Monte Carlo Method , Radiometry/methods , Computer Simulation
7.
Cureus ; 15(10): e48041, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38046495

ABSTRACT

Background This study evaluates dose perturbations caused by nonradioactive seeds in clinical cases by employing treatment planning system-based Monte Carlo (TPS-MC) simulation. Methodology We investigated dose perturbation using a water-equivalent phantom and 20 clinical cases of prostate cancer (10 cases with seeds and 10 cases without seeds) treated at Fujita Health University Hospital, Japan. First, dose calculations for a simple geometry were performed using the RayStation MC algorithm for a water-equivalent phantom with and without a seed. TPS-independent Monte Carlo (full-MC) simulations and film measurements were conducted to verify the accuracy of TPS-MC simulation. Subsequently, dose calculations using TPS-MC were performed on CT images of clinical cases of prostate cancer with and without seeds, and the dose distributions were compared. Results In clinical cases, dose calculations using MC simulations revealed hotspots around the seeds. However, the size of the hotspot was not correlated with the number of seeds. The maximum difference in dose perturbation between TPS-MC simulations and film measurements was 3.9%, whereas that between TPS-MC simulations and full-MC simulations was 3.7%. The dose error of TPS-MC was negligible for multiple beams or rotational irradiation. Conclusions Hotspots were observed in dose calculations using TPS-MC performed on CT images of clinical cases with seeds. The dose calculation accuracy around the seeds using TPS-MC simulations was comparable to that of film measurements and full-MC simulations, with differences within 3.9%. Although the clinical impact of hotspots occurring around the seeds is minimal, utilizing MC simulations on TPSs can be beneficial to verify their presence.

8.
J Cancer Res Ther ; 19(Supplement): S0, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37147973

ABSTRACT

Purpose: The spot position is an important beam parameter in the quality assurance of scanning proton therapy. In this study, we investigated dosimetric impact of systematic 15 spot position errors (SSPE) in spot scanning proton therapy using three types of optimization methods of head and neck tumor. Materials and Methods: The planning simulation was performed with ± 2 mm model SSPE in the X and Y directions. Treatment plans were created using intensity-modulated proton therapy (IMPT) and single-field uniform dose (SFUD). IMPT plans were created by two optimization methods: with worst-case optimization (WCO-IMPT) and without (IMPT). For clinical target volume (CTV), D95%, D50%, and D2cc were used for analysis. For organs at risk (OAR), Dmean was used to analyze the brain, cochlea, and parotid, and Dmax was used to analyze brainsetem, chiasm, optic nerve, and cord. Results: For CTV, the variation (1 standard deviation) of D95% was ± 0.88%, 0.97% and 0.97% to WCO-IMPT, IMPT, and SFUD plan. The variation of D50% and D2cc of CTV showed <0.5% variation in all plans. The dose variation due to SSPE was larger in OAR, and worst-case optimization reduced the dose variation, especially in Dmax. The analysis results showed that SSPE has little impact on SFUD. Conclusions: We clarified the impact of SSPE on dose distribution for three optimization methods. SFUD was shown to be a robust treatment plan for OARs, and the WCO can be used to increase robustness to SSPE in IMPT.


Subject(s)
Head and Neck Neoplasms , Proton Therapy , Radiotherapy, Intensity-Modulated , Subacute Sclerosing Panencephalitis , Humans , Proton Therapy/methods , Radiotherapy Planning, Computer-Assisted/methods , Head and Neck Neoplasms/radiotherapy , Radiotherapy, Intensity-Modulated/methods , Organs at Risk , Radiotherapy Dosage
9.
Sci Rep ; 13(1): 15413, 2023 09 18.
Article in English | MEDLINE | ID: mdl-37723226

ABSTRACT

Deep learning-based CT image reconstruction (DLR) is a state-of-the-art method for obtaining CT images. This study aimed to evaluate the usefulness of DLR in radiotherapy. Data were acquired using a large-bore CT system and an electron density phantom for radiotherapy. We compared the CT values, image noise, and CT value-to-electron density conversion table of DLR and hybrid iterative reconstruction (H-IR) for various doses. Further, we evaluated three DLR reconstruction strength patterns (Mild, Standard, and Strong). The variations of CT values of DLR and H-IR were large at low doses, and the difference in average CT values was insignificant with less than 10 HU at doses of 100 mAs and above. DLR showed less change in CT values and smaller image noise relative to H-IR. The noise-reduction effect was particularly large in the low-dose region. The difference in image noise between DLR Mild and Standard/Strong was large, suggesting the usefulness of reconstruction intensities higher than Mild. DLR showed stable CT values and low image noise for various materials, even at low doses; particularly for Standard or Strong, the reduction in image noise was significant. These findings indicate the usefulness of DLR in treatment planning using large-bore CT systems.


Subject(s)
Deep Learning , Radiation Oncology , Phantoms, Imaging , Tomography, X-Ray Computed , Image Processing, Computer-Assisted
10.
Article in English | MEDLINE | ID: mdl-37886016

ABSTRACT

Introduction: In this simulation study, we examined the effects of a de-escalation strategy with a reduced dose to subclinical nodal regions in patients with human papillomavirus (HPV)-associated oropharyngeal carcinoma (OPC). Methods: We created two patterns of intensity-modulated radiotherapy for 16 patients with HPV-associated OPC. In the standard and de-escalation plans, the initial field including elective nodal regions received 46 and 30 Gy, followed by 20 and 36 Gy to the cutdown field, respectively. Comparison metrics were set for each organ at risk (OAR). We compared these metric values and the probability of adverse effects based on the normal tissue complication probability (NTCP) model between the two plans. Results: Both plans generally met the dose constraints for the targets and all OAR. Among the comparison metrics, the mean doses to the brain, pharyngeal constrictor muscle, thyroid, and skin and the dose to a 1 % volume of the skin were higher in the standard plan than in the de-escalation plan (P = 0.031, 0.007, < 0.001, < 0.001, and 0.006, respectively). NTCP analyses revealed that the probability of adverse effects in the ipsilateral parotid gland and thyroid was higher in the standard plan than in the de-escalation plan (standard vs. de-escalation plans: ipsilateral parotid gland, 6.4 % vs. 5.0 %, P = 0.016; thyroid, 3.3 % vs. 0.5 %, P < 0.001). Conclusions: A de-escalation strategy with elective nodal regions is a promising treatment to prevent a decline in the quality of life in patients with HPV-associated OPC, particularly xerostomia, dysphagia, and hypothyroidism.

11.
Radiol Phys Technol ; 15(4): 409-416, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36261754

ABSTRACT

In single-isocenter multiple-target stereotactic radiotherapy (SIMT-SRT), it is difficult to evaluate both the geometrical accuracy and absorbed dose measurement when irradiating off-isocenter targets. This study aimed to develop a simple quality assurance (QA) method to evaluate off-isocenter irradiation position accuracy in SIMT-SRT and compare its feasibility with that of a commercial device. First, we created two types of inserts and metallic balls with a diameter of 5 mm to be inserted into a commercially available phantom (SIMT phantom). Second, we developed a dedicated analysis software using Python for the Winston-Lutz test (WLT). Third, an image processing software, including the filtered back-projection algorithm, was developed to analyze the images obtained using an electronic portal imaging device (EPID). Fourth, the feasibility of our method was evaluated by comparing it with the results of WLT using two commercially available phantoms: WL-QA and MultiMet-WL cubes. Notably, 92% of the results in one-dimensional deviations were within 0.26 mm (EPID pixel width). The correlation coefficients were 0.52, 0.92, and 0.96 in the left-right, superior-inferior, and anterior-posterior directions, respectively. In the WLT, a maximum two-dimensional deviation of 0.70 mm was detected in our method, while the deviation in the other method was within 0.5 mm. The advantage of our method is that it can evaluate the geometrical accuracy at any gantry angle during dynamic rotation irradiation using a filtered back-projection algorithm, even if the target is located off the isocenter. Our method can perform WLT at arbitrary positions and is suitable for the QA of dynamic rotation irradiation using an EPID.


Subject(s)
Particle Accelerators , Radiosurgery , Quality Assurance, Health Care/methods , Radiosurgery/methods , Phantoms, Imaging , Radiotherapy Planning, Computer-Assisted/methods
12.
Phys Med ; 81: 130-140, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33453505

ABSTRACT

PURPOSE: The conventional weighted computed tomography dose index (CTDIw) may not be suitable for cone-beam computed tomography (CBCT) dosimetry because a cross-sectional dose distribution is angularly inhomogeneous owing to partial angle irradiations. This study was conducted to develop a new dose metric (f(0)CBw) for CBCT dosimetry to determine a more accurate average dose in the central cross-sectional plane of a cylindrical phantom using Monte Carlo simulations. METHODS: First, cross-sectional dose distributions of cylindrical polymethyl methacrylate phantoms over a wide range of phantom diameters (8-40 cm) were calculated for various CBCT scan protocols. Then, by obtaining linear least-squares fits of the full datasets of the cross-sectional dose distributions, the optimal radial positions, which represented measurement positions for the average phantom dose, were determined. Finally, the f(0)CBw method was developed by averaging point doses at the optimal radial positions of the phantoms. To demonstrate its validity, the relative differences between the average doses and each dose index value were estimated for the devised f(0)CBw, conventional CTDIw, and Haba's CTDIw methods, respectively. RESULTS: The relative differences between the average doses and each dose index value were within 4.1%, 16.7%, and 11.9% for the devised, conventional CTDIw, and Haba's CTDIw methods, respectively. CONCLUSIONS: The devised f(0)CBw value was calculated by averaging four "point doses" at 90° intervals and the optimal radial positions of the cylindrical phantom. The devised method can estimate the average dose more accurately than the previously developed CTDIw methods for CBCT dosimetry.


Subject(s)
Cone-Beam Computed Tomography , Radiometry , Cross-Sectional Studies , Monte Carlo Method , Phantoms, Imaging , Radiation Dosage
13.
Phys Med ; 81: 147-154, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33461027

ABSTRACT

A radiophotoluminescent glass dosimeter (RGD) is widely used in postal audit system for photon beams in Japan. However, proton dosimetry in RGDs is scarcely used owing to a lack of clarity in their response to beam quality. In this study, we investigated RGD response to beam quality for establishing a suitable linear energy transfer (LET)-corrected dosimetry protocol in a therapeutic proton beam. The RGD response was compared with ionization chamber measurement for a 100-225 MeV passive proton beam. LET of the measurement points was calculated by the Monte Carlo method. An LET-correction factor, defined as a ratio between the non-corrected RGD dose and ionization chamber dose, of 1.226×(LET)-0.171 was derived for the RGD response. The magnitude of the LET-dependence of RGD increased with LET; for an LET of 8.2 keV/µm, the RGD under-response was up to 16%. The coefficient of determination, mean difference ± SD of non-corrected RGD dose, residual range-corrected RGD dose, and LET-corrected RGD dose to the ionization chamber are 0.923, 3.7 ± 4.2%, -2.4 ± 7.5%, and 0.04 ± 2.1%, respectively. The LET-corrected RGD dose was within 5% of the corresponding ionization chamber dose at all energies until 200 MeV, where it was 5.3% lower than the ionization chamber dose. A corrected LET-dependence of RGD using a correction factor based on a power function of LET and precise dosimetric verification close to the maximum LET were realized here. We further confirmed establishment of an accurate postal audit under various irradiation conditions.


Subject(s)
Linear Energy Transfer , Proton Therapy , Japan , Monte Carlo Method , Protons , Radiation Dosimeters , Radiometry
14.
Phys Med ; 92: 95-101, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34891108

ABSTRACT

PURPOSE: Accurate calculation of the proton beam range inside a patient is an important topic in proton therapy. In recent times, a computed tomography (CT) image reconstruction algorithm was developed for treatment planning to reduce the impact of the variation of the CT number with changes in imaging conditions. In this study, we investigated the usefulness of this new reconstruction algorithm (DirectDensity™: DD) in proton therapy based on its comparison with filtered back projection (FBP). METHODS: We evaluated the effects of variations in the X-ray tube potential and target size on the FBP- and DD-image values and investigated the usefulness of the DD algorithm based on the range variations and dosimetric quantity variations. RESULTS: For X-ray tube potential variations, the range variation in the case of FBP was up to 12.5 mm (20.8%), whereas that of DD was up to 3.3 mm (5.6%). Meanwhile, for target size variations, the range variation in the case of FBP was up to 2.2 mm (2.5%), whereas that of DD was up to 0.9 mm (1.4%). Moreover, the variations observed in the case of DD were smaller than those of FBP for all dosimetric quantities. CONCLUSION: The dose distributions obtained using DD were more robust against variations in the CT imaging conditions (X-ray tube potential and target size) than those obtained using FBP, and the range variations were often less than the dose calculation grid (2 mm). Therefore, the DD algorithm is effective in a robust workflow and reduces uncertainty in range calculations.


Subject(s)
Proton Therapy , Algorithms , Humans , Phantoms, Imaging , Radiation Dosage , Tomography, X-Ray Computed
15.
J Radiat Res ; 62(4): 726-734, 2021 Jul 10.
Article in English | MEDLINE | ID: mdl-34036361

ABSTRACT

To understand the current state of flattening filter-free (FFF) beam implementation in C-arm linear accelerators (LINAC) in Japan, the quality assurance (QA)/quality control (QC) 2018-2019 Committee of the Japan Society of Medical Physics (JSMP) conducted a 37-question survey, designed to investigate facility information and specifications regarding FFF beam adoption and usage. The survey comprised six sections: facility information, devices, clinical usage, standard calibration protocols, modeling for treatment planning (TPS) systems and commissioning and QA/QC. A web-based questionnaire was developed. Responses were collected between 18 June and 18 September 2019. Of the 846 institutions implementing external radiotherapy, 323 replied. Of these institutions, 92 had adopted FFF beams and 66 had treated patients using them. FFF beams were used in stereotactic radiation therapy (SRT) for almost all disease sites, especially for the lungs using 6 MV and liver using 10 MV in 51 and 32 institutions, respectively. The number of institutions using FFF beams for treatment increased yearly, from eight before 2015 to 60 in 2018. Farmer-type ionization chambers were used as the standard calibration protocol in 66 (72%) institutions. In 73 (80%) institutions, the beam-quality conversion factor for FFF beams was calculated from TPR20,10, via the same protocol used for beams with flattening filter (WFF). Commissioning, periodic QA and patient-specific QA for FFF beams also followed the procedures used for WFF beams. FFF beams were primarily used in high-volume centers for SRT. In most institutions, measurement and QA was conducted via the procedures used for WFF beams.


Subject(s)
Photons , Surveys and Questionnaires , Calibration , Dose-Response Relationship, Radiation , Humans , Japan , Particle Accelerators , Radiotherapy Planning, Computer-Assisted
16.
Radiol Phys Technol ; 14(3): 328-335, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34313911

ABSTRACT

The purpose of this study was to evaluate the effect of quality assurance (QA)-related setup errors in passive proton therapy for prostate cancer with and without a hydrogel spacer. We used 20 typical computed tomography (CT) images of prostate cancer: 10 patients with and 10 patients without spacers. The following 12 model errors were assumed: output error ± 2%, range error ± 1 mm, setup error ± 1 mm for three directions, and multileaf collimator (MLC) position error ± 1 mm. We created verification plans with model errors and compared the prostate-rectal (PR) distance and dose indices with and without the spacer. The mean PR distance at the isocenter was 1.1 ± 1.3 mm without the spacer and 12.9 ± 2.9 mm with the spacer (P < 0.001). The mean rectum V53.5 GyE, V50 GyE, and V34.5 GyE in the original plan were 2.3%, 4.1%, and 12.1% without the spacer and 0.1%, 0.4%, and 3.3% with the spacer (P = 0.0011, < 0.001, and < 0.001). The effects of the range and lateral setup errors were small; however, the effects of the vertical/long setup and MLC error were significant in the cases without the spacer. The means of the maximum absolute change from original plans across all scenarios in the rectum V53.5 GyE, V50 GyE, and V34.5 GyE were 1.3%, 1.5%, and 2.3% without the spacer, and 0.2%, 0.4%, and 1.3% with the spacer (P < 0.001, < 0.001, and = 0.0019). This study indicated that spacer injections were also effective in reducing the change in the rectal dose due to setup errors.


Subject(s)
Prostatic Neoplasms , Proton Therapy , Radiotherapy, Intensity-Modulated , Humans , Hydrogels , Male , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/radiotherapy , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted
17.
Phys Med Biol ; 62(23): 8869-8881, 2017 Nov 09.
Article in English | MEDLINE | ID: mdl-28980978

ABSTRACT

To measure the absorbed dose to water D w in proton beams using a radiophotoluminescent glass dosimeter (RGD), a method with the correction for the change of the mass stopping power ratio (SPR) and the linear energy transfer (LET) dependence of radiophotoluminescent efficiency [Formula: see text] is proposed. The calibration coefficient in terms of D w for RGDs (GD-302M, Asahi Techno Glass) was obtained using a 60Co γ-ray. The SPR of water to the RGD was calculated by Monte Carlo simulation, and [Formula: see text] was investigated experimentally using a 70 MeV proton beam. For clinical usage, the residual range R res was used as a quality index to determine the correction factor for the beam quality [Formula: see text] and the LET quenching effect of the RGD [Formula: see text]. The proposed method was evaluated by measuring D w at different depths in a 200 MeV proton beam. For both non-modulated and modulated proton beams, [Formula: see text] decreases rapidly where R res is less than 4 cm. The difference in [Formula: see text] between a non-modulated and a modulated proton beam is less than 0.5% for the R res range from 0 cm to 22 cm. [Formula: see text] decreases rapidly at a LET range from 1 to 2 keV µm-1. In the evaluation experiments, D w using RGDs, [Formula: see text] showed good agreement with that obtained using an ionization chamber and the relative difference was within 3% where R res was larger than 1 cm. The uncertainty budget for [Formula: see text] in a proton beam was estimated to investigate the potential of RGD postal dosimetry in proton therapy. These results demonstrate the feasibility of RGD dosimetry in a therapeutic proton beam and the general versatility of the proposed method. In conclusion, the proposed methodology for RGDs in proton dosimetry is applicable where R res > 1 cm and the RGD is feasible as a postal audit dosimeter for proton therapy.


Subject(s)
Glass , Linear Energy Transfer , Luminescence , Proton Therapy , Radiometry/methods , Calibration , Humans , Monte Carlo Method
18.
Med Phys ; 43(3): 1437-50, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26936728

ABSTRACT

PURPOSE: The main purpose in this study was to present the results of beam modeling and how the authors systematically investigated the influence of double and triple Gaussian proton kernel models on the accuracy of dose calculations for spot scanning technique. METHODS: The accuracy of calculations was important for treatment planning software (TPS) because the energy, spot position, and absolute dose had to be determined by TPS for the spot scanning technique. The dose distribution was calculated by convolving in-air fluence with the dose kernel. The dose kernel was the in-water 3D dose distribution of an infinitesimal pencil beam and consisted of an integral depth dose (IDD) and a lateral distribution. Accurate modeling of the low-dose region was important for spot scanning technique because the dose distribution was formed by cumulating hundreds or thousands of delivered beams. The authors employed a double Gaussian function as the in-air fluence model of an individual beam. Double and triple Gaussian kernel models were also prepared for comparison. The parameters of the kernel lateral model were derived by fitting a simulated in-water lateral dose profile induced by an infinitesimal proton beam, whose emittance was zero, at various depths using Monte Carlo (MC) simulation. The fitted parameters were interpolated as a function of depth in water and stored as a separate look-up table. These stored parameters for each energy and depth in water were acquired from the look-up table when incorporating them into the TPS. The modeling process for the in-air fluence and IDD was based on the method proposed in the literature. These were derived using MC simulation and measured data. The authors compared the measured and calculated absolute doses at the center of the spread-out Bragg peak (SOBP) under various volumetric irradiation conditions to systematically investigate the influence of the two types of kernel models on the dose calculations. RESULTS: The authors investigated the difference between double and triple Gaussian kernel models. The authors found that the difference between the two studied kernel models appeared at mid-depths and the accuracy of predicting the double Gaussian model deteriorated at the low-dose bump that appeared at mid-depths. When the authors employed the double Gaussian kernel model, the accuracy of calculations for the absolute dose at the center of the SOBP varied with irradiation conditions and the maximum difference was 3.4%. In contrast, the results obtained from calculations with the triple Gaussian kernel model indicated good agreement with the measurements within ±1.1%, regardless of the irradiation conditions. CONCLUSIONS: The difference between the results obtained with the two types of studied kernel models was distinct in the high energy region. The accuracy of calculations with the double Gaussian kernel model varied with the field size and SOBP width because the accuracy of prediction with the double Gaussian model was insufficient at the low-dose bump. The evaluation was only qualitative under limited volumetric irradiation conditions. Further accumulation of measured data would be needed to quantitatively comprehend what influence the double and triple Gaussian kernel models had on the accuracy of dose calculations.


Subject(s)
Monte Carlo Method , Proton Therapy , Radiation Dosage , Radiotherapy Planning, Computer-Assisted/methods , Algorithms , Normal Distribution , Radiotherapy Dosage , Software
19.
Int J Radiat Oncol Biol Phys ; 95(1): 95-102, 2016 May 01.
Article in English | MEDLINE | ID: mdl-27084632

ABSTRACT

PURPOSE: To determine the relative biological effectiveness (RBE), oxygen enhancement ratio (OER), and contribution of the indirect effect of spot scanning proton beams, passive scattering proton beams, or both in cultured cells in comparison with clinically used photons. METHODS AND MATERIALS: The RBE of passive scattering proton beams at the center of the spread-out Bragg peak (SOBP) was determined from dose-survival curves in 4 cell lines using 6-MV X rays as controls. Survival of 2 cell lines after spot scanning and passive scattering proton irradiation was then compared. Biological effects at the distal end region of the SOBP were also investigated. The OER of passive scattering proton beams and 6 MX X rays were investigated in 2 cell lines. The RBE and OER values were estimated at a 10% cell survival level. The maximum degree of protection of radiation effects by dimethyl sulfoxide was determined to estimate the contribution of the indirect effect against DNA damage. All experiments comparing protons and X rays were made under the same biological conditions. RESULTS: The RBE values of passive scattering proton beams in the 4 cell lines examined were 1.01 to 1.22 (average, 1.14) and were almost identical to those of spot scanning beams. Biological effects increased at the distal end of the SOBP. In the 2 cell lines examined, the OER was 2.74 (95% confidence interval, 2.56-2.80) and 3.08 (2.84-3.11), respectively, for X rays, and 2.39 (2.38-2.43) and 2.72 (2.69-2.75), respectively, for protons (P<.05 for both cells between X rays and protons). The maximum degree of protection was significantly higher for X rays than for proton beams (P<.05). CONCLUSIONS: The RBE values of spot scanning and passive scattering proton beams were almost identical. The OER was lower for protons than for X rays. The lower contribution of the indirect effect may partly account for the lower OER of protons.


Subject(s)
Linear Energy Transfer , Oxygen/radiation effects , Proton Therapy , Protons , Relative Biological Effectiveness , Animals , Cell Line , Cell Survival/drug effects , Cell Survival/radiation effects , Colony-Forming Units Assay , Cricetinae , DNA Damage , Dose-Response Relationship, Radiation , Humans , Mice , Oxygen/metabolism , Photons , Radiation-Protective Agents/pharmacology , Scattering, Radiation , Sulfides/pharmacology , X-Rays
20.
Australas Phys Eng Sci Med ; 39(3): 645-54, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27271800

ABSTRACT

The purpose of this paper is to describe an outline of a proton therapy system in Nagoya Proton Therapy Center (NPTC). The NPTC has a synchrotron with a linac injector and three treatment rooms: two rooms are equipped with a gantry and the other one is equipped with a fixed horizontal beamline. One gantry treatment room has a pencil beam scanning treatment delivery nozzle. The other two treatment rooms have a passive scattering treatment delivery nozzle. In the scanning treatment delivery nozzle, an energy absorber and an aperture system to treat head and neck cancer have been equipped. In the passive treatment delivery nozzle, a multi-leaf collimator is equipped. We employ respiratory gating to treat lung and liver cancers for passive irradiation. The proton therapy system passed all acceptance tests. The first patient was treated on February 25, 2013, using passive scattering fixed beams. Respiratory gating is commonly used to treat lung and liver cancers in the passive scattering system. The MLCs are our first choice to limit the irradiation field. The use of the aperture for scanning irradiation reduced the lateral fall off by half or less. The energy absorber and aperture system in scanning delivery is beneficial to treat head and neck cancer.


Subject(s)
Proton Therapy , Dose-Response Relationship, Radiation , Humans , Japan , Radiographic Image Interpretation, Computer-Assisted , Radiotherapy Dosage
SELECTION OF CITATIONS
SEARCH DETAIL