Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Cell ; 187(11): 2817-2837.e31, 2024 05 23.
Article in English | MEDLINE | ID: mdl-38701783

ABSTRACT

FMS-related tyrosine kinase 3 ligand (FLT3L), encoded by FLT3LG, is a hematopoietic factor essential for the development of natural killer (NK) cells, B cells, and dendritic cells (DCs) in mice. We describe three humans homozygous for a loss-of-function FLT3LG variant with a history of various recurrent infections, including severe cutaneous warts. The patients' bone marrow (BM) was hypoplastic, with low levels of hematopoietic progenitors, particularly myeloid and B cell precursors. Counts of B cells, monocytes, and DCs were low in the patients' blood, whereas the other blood subsets, including NK cells, were affected only moderately, if at all. The patients had normal counts of Langerhans cells (LCs) and dermal macrophages in the skin but lacked dermal DCs. Thus, FLT3L is required for B cell and DC development in mice and humans. However, unlike its murine counterpart, human FLT3L is required for the development of monocytes but not NK cells.


Subject(s)
Killer Cells, Natural , Membrane Proteins , Animals , Female , Humans , Male , Mice , B-Lymphocytes/metabolism , B-Lymphocytes/cytology , Bone Marrow/metabolism , Cell Lineage , Dendritic Cells/metabolism , Hematopoiesis , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/cytology , Killer Cells, Natural/metabolism , Killer Cells, Natural/immunology , Langerhans Cells/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Monocytes/metabolism , Skin/metabolism , Mice, Inbred C57BL
2.
Nature ; 632(8024): 390-400, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39048830

ABSTRACT

Most cases of herpes simplex virus 1 (HSV-1) encephalitis (HSE) remain unexplained1,2. Here, we report on two unrelated people who had HSE as children and are homozygous for rare deleterious variants of TMEFF1, which encodes a cell membrane protein that is preferentially expressed by brain cortical neurons. TMEFF1 interacts with the cell-surface HSV-1 receptor NECTIN-1, impairing HSV-1 glycoprotein D- and NECTIN-1-mediated fusion of the virus and the cell membrane, blocking viral entry. Genetic TMEFF1 deficiency allows HSV-1 to rapidly enter cortical neurons that are either patient specific or derived from CRISPR-Cas9-engineered human pluripotent stem cells, thereby enhancing HSV-1 translocation to the nucleus and subsequent replication. This cellular phenotype can be rescued by pretreatment with type I interferon (IFN) or the expression of exogenous wild-type TMEFF1. Moreover, ectopic expression of full-length TMEFF1 or its amino-terminal extracellular domain, but not its carboxy-terminal intracellular domain, impairs HSV-1 entry into NECTIN-1-expressing cells other than neurons, increasing their resistance to HSV-1 infection. Human TMEFF1 is therefore a host restriction factor for HSV-1 entry into cortical neurons. Its constitutively high abundance in cortical neurons protects these cells from HSV-1 infection, whereas inherited TMEFF1 deficiency renders them susceptible to this virus and can therefore underlie HSE.


Subject(s)
Brain , Encephalitis, Herpes Simplex , Herpesvirus 1, Human , Membrane Proteins , Virus Internalization , Animals , Female , Humans , Male , Brain/cytology , Brain/metabolism , Brain/virology , Encephalitis, Herpes Simplex/virology , Encephalitis, Herpes Simplex/metabolism , Herpesvirus 1, Human/pathogenicity , Herpesvirus 1, Human/physiology , Homozygote , Interferon Type I/metabolism , Interferon Type I/immunology , Membrane Proteins/deficiency , Membrane Proteins/genetics , Membrane Proteins/metabolism , Nectins/genetics , Nectins/metabolism , Neurons/cytology , Neurons/metabolism , Neurons/virology , Pluripotent Stem Cells/cytology , Virus Replication , Child, Preschool , Young Adult , Pedigree
3.
J Exp Med ; 221(5)2024 May 06.
Article in English | MEDLINE | ID: mdl-38448036

ABSTRACT

Autoinflammation is a sterile inflammatory process resulting from increased neutrophil infiltration and overexpression of IL-1 cytokines. The factors that trigger these events are, however, poorly understood. By investigating pustular forms of psoriasis, we show that human neutrophils constitutively express IL-26 and abundantly release it from granular stores upon activation. In pustular psoriasis, neutrophil-derived IL-26 drives the pathogenic autoinflammation process by inducing the expression of IL-1 cytokines and chemokines that further recruit neutrophils. This occurs via activation of IL-26R in keratinocytes and via the formation of complexes between IL-26 and microbiota DNA, which trigger TLR9 activation of neutrophils. Thus our findings identify neutrophils as an important source of IL-26 and point to IL-26 as the key link between neutrophils and a self-sustaining autoinflammation loop in pustular psoriasis.


Subject(s)
Neutrophils , Psoriasis , Humans , Interleukins , Cytokines , Interleukin-1
4.
J Clin Invest ; 134(8)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38470480

ABSTRACT

BACKGROUNDWeakly virulent environmental mycobacteria (EM) can cause severe disease in HLA-DRB1*15:02 or 16:02 adults harboring neutralizing anti-IFN-γ autoantibodies (nAIGAs). The overall prevalence of nAIGAs in the general population is unknown, as are the penetrance of nAIGAs in HLA-DRB1*15:02 or 16:02 individuals and the proportion of patients with unexplained, adult-onset EM infections carrying nAIGAs.METHODSThis study analyzed the detection and neutralization of anti-IFN-γ autoantibodies (auto-Abs) from 8,430 healthy individuals of the general population, 257 HLA-DRB1*15:02 or 16:02 carriers, 1,063 patients with autoimmune disease, and 497 patients with unexplained severe disease due to EM.RESULTSWe found that anti-IFN-γ auto-Abs detected in 4,148 of 8,430 healthy individuals (49.2%) from the general population of an unknown HLA-DRB1 genotype were not neutralizing. Moreover, we did not find nAIGAs in 257 individuals carrying HLA-DRB1* 15:02 or 16:02. Additionally, nAIGAs were absent in 1,063 patients with an autoimmune disease. Finally, 7 of 497 patients (1.4%) with unexplained severe disease due to EM harbored nAIGAs.CONCLUSIONThese findings suggest that nAIGAs are isolated and that their penetrance in HLA-DRB1*15:02 or 16:02 individuals is low, implying that they may be triggered by rare germline or somatic variants. In contrast, the risk of mycobacterial disease in patients with nAIGAs is high, confirming that these nAIGAs are the cause of EM disease.FUNDINGThe Laboratory of Human Genetics of Infectious Diseases is supported by the Howard Hughes Medical Institute, the Rockefeller University, the St. Giles Foundation, the National Institutes of Health (NIH) (R01AI095983 and U19AIN1625568), the National Center for Advancing Translational Sciences (NCATS), the NIH Clinical and Translational Science Award (CTSA) program (UL1 TR001866), the French National Research Agency (ANR) under the "Investments for the Future" program (ANR-10-IAHU-01), the Integrative Biology of Emerging Infectious Diseases Laboratory of Excellence (ANR-10-LABX-62-IBEID), ANR-GENMSMD (ANR-16-CE17-0005-01), ANR-MAFMACRO (ANR-22-CE92-0008), ANRSECTZ170784, the French Foundation for Medical Research (FRM) (EQU201903007798), the ANRS-COV05, ANR GENVIR (ANR-20-CE93-003), and ANR AI2D (ANR-22-CE15-0046) projects, the ANR-RHU program (ANR-21-RHUS-08-COVIFERON), the European Union's Horizon 2020 research and innovation program under grant agreement no. 824110 (EASI-genomics), the Square Foundation, Grandir - Fonds de solidarité pour l'enfance, the Fondation du Souffle, the SCOR Corporate Foundation for Science, the Battersea & Bowery Advisory Group, William E. Ford, General Atlantic's Chairman and Chief Executive Officer, Gabriel Caillaux, General Atlantic's Co-President, Managing Director, and Head of business in EMEA, and the General Atlantic Foundation, Institut National de la Santé et de la Recherche Médicale (INSERM) and of Paris Cité University. JR was supported by the INSERM PhD program for doctors of pharmacy (poste d'accueil INSERM). JR and TLV were supported by the Bettencourt-Schueller Foundation and the MD-PhD program of the Imagine Institute. MO was supported by the David Rockefeller Graduate Program, the Funai Foundation for Information Technology (FFIT), the Honjo International Scholarship Foundation (HISF), and the New York Hideyo Noguchi Memorial Society (HNMS).


Subject(s)
Autoantibodies , Autoimmune Diseases , Adult , Humans , Genetic Predisposition to Disease , Genotype , HLA-DRB1 Chains/genetics , Mycobacterium Infections, Nontuberculous
5.
iScience ; 27(8): 110525, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39156641

ABSTRACT

Elevated pernio incidence was observed during the COVID-19 pandemic. This prospective study enrolled subjects with pandemic-associated pernio in Wisconsin and Switzerland. Because pernio is a cutaneous manifestation of the interferonopathies, and type I interferon (IFN-I) immunity is critical to COVID-19 recovery, we tested the hypothesis that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-mediated IFN-I signaling might underlie some pernio cases. Tissue-level IFN-I activity and plasmacytoid dendritic cell infiltrates were demonstrated in 100% of the Wisconsin cases. Across both cohorts, sparse SARS-CoV-2 RNA was captured in 25% (6/22) of biopsies, all with high inflammation. Affected patients lacked adaptive immunity to SARS-CoV-2. A hamster model of intranasal SARS-CoV-2 infection was used as a proof-of-principle experiment: RNA was detected in lungs and toes with IFN-I activity at both the sites, while replicating virus was found only in the lung. These data support a viral trigger for some pernio cases, where sustained local IFN-I activity can be triggered in the absence of seroconversion.

SELECTION OF CITATIONS
SEARCH DETAIL