Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 315
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 609(7929): 994-997, 2022 09.
Article in English | MEDLINE | ID: mdl-35952714

ABSTRACT

Accurate and timely detection of recombinant lineages is crucial for interpreting genetic variation, reconstructing epidemic spread, identifying selection and variants of interest, and accurately performing phylogenetic analyses1-4. During the SARS-CoV-2 pandemic, genomic data generation has exceeded the capacities of existing analysis platforms, thereby crippling real-time analysis of viral evolution5. Here, we use a new phylogenomic method to search a nearly comprehensive SARS-CoV-2 phylogeny for recombinant lineages. In a 1.6 million sample tree from May 2021, we identify 589 recombination events, which indicate that around 2.7% of sequenced SARS-CoV-2 genomes have detectable recombinant ancestry. Recombination breakpoints are inferred to occur disproportionately in the 3' portion of the genome that contains the spike protein. Our results highlight the need for timely analyses of recombination for pinpointing the emergence of recombinant lineages with the potential to increase transmissibility or virulence of the virus. We anticipate that this approach will empower comprehensive real-time tracking of viral recombination during the SARS-CoV-2 pandemic and beyond.


Subject(s)
COVID-19 , Genome, Viral , Pandemics , Phylogeny , Recombination, Genetic , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/transmission , COVID-19/virology , Genome, Viral/genetics , Humans , Mutation , Recombination, Genetic/genetics , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Selection, Genetic/genetics , Spike Glycoprotein, Coronavirus/genetics , Virulence/genetics
2.
J Immunol ; 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39240167

ABSTRACT

EBV-induced gene 3 (Ebi3) is a ß subunit within the IL-12 cytokine family that canonically binds to α subunits p19, p28, or p35 to form the heterodimeric cytokines IL-39, IL-27, and IL-35, respectively. In the last decade, the binding partners for Ebi3 have continued to expand to include IL-6 and the other IL-12 family ß subunit p40, revealing the possibility that Ebi3 may be able to bind to other cytokines and have distinct functions. We first explored this possibility utilizing an in vivo mouse model of regulatory T cell-restricted deletions of the subunits composing the cytokine IL-35, p35, and Ebi3, and we observed a differential impact on CD8+ T cell inhibitory receptor expression despite comparable reduction in tumor growth. We then screened the ability of Ebi3 to bind to different cytokines with varying structural resemblance to the IL-12 family α subunits. These in vitro screens revealed extracellular binding of Ebi3 to both IFN-γ and IL-10. Ebi3 bound to IFN-γ and IL-10 abrogated signal transduction and downstream functions of both cytokines. Lastly, we validated that extracellular complex formation after mixing native proteins resulted in loss of function. These data suggest that secreted partnerless Ebi3 may bind to cytokines within the extracellular microenvironment and act as a cytokine sink, further expanding the potential immunological impact of Ebi3.

3.
Proc Natl Acad Sci U S A ; 120(49): e2312039120, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38015847

ABSTRACT

In both humans and NOD mice, type 1 diabetes (T1D) develops from the autoimmune destruction of pancreatic beta cells by T cells. Interactions between both helper CD4+ and cytotoxic CD8+ T cells are essential for T1D development in NOD mice. Previous work has indicated that pathogenic T cells arise from deleterious interactions between relatively common genes which regulate aspects of T cell activation/effector function (Ctla4, Tnfrsf9, Il2/Il21), peptide presentation (H2-A g7, B2m), and T cell receptor (TCR) signaling (Ptpn22). Here, we used a combination of subcongenic mapping and a CRISPR/Cas9 screen to identify the NOD-encoded mammary tumor virus (Mtv)3 provirus as a genetic element affecting CD4+/CD8+ T cell interactions through an additional mechanism, altering the TCR repertoire. Mtv3 encodes a superantigen (SAg) that deletes the majority of Vß3+ thymocytes in NOD mice. Ablating Mtv3 and restoring Vß3+ T cells has no effect on spontaneous T1D development in NOD mice. However, transferring Mtv3 to C57BL/6 (B6) mice congenic for the NOD H2 g7 MHC haplotype (B6.H2 g7) completely blocks their normal susceptibility to T1D mediated by transferred CD8+ T cells transgenically expressing AI4 or NY8.3 TCRs. The entire genetic effect is manifested by Vß3+CD4+ T cells, which unless deleted by Mtv3, accumulate in insulitic lesions triggering in B6 background mice the pathogenic activation of diabetogenic CD8+ T cells. Our findings provide evidence that endogenous Mtv SAgs can influence autoimmune responses. Furthermore, since most common mouse strains have gaps in their TCR Vß repertoire due to Mtvs, it raises questions about the role of Mtvs in other mouse models designed to reflect human immune disorders.


Subject(s)
Diabetes Mellitus, Type 1 , Mice , Humans , Animals , CD8-Positive T-Lymphocytes , Mice, Inbred NOD , Mammary Tumor Virus, Mouse , Mice, Inbred C57BL , Receptors, Antigen, T-Cell/genetics , CD4-Positive T-Lymphocytes , Mice, Transgenic
4.
Brief Bioinform ; 23(6)2022 11 19.
Article in English | MEDLINE | ID: mdl-36151740

ABSTRACT

Drug discovery and development is a complex and costly process. Machine learning approaches are being investigated to help improve the effectiveness and speed of multiple stages of the drug discovery pipeline. Of these, those that use Knowledge Graphs (KG) have promise in many tasks, including drug repurposing, drug toxicity prediction and target gene-disease prioritization. In a drug discovery KG, crucial elements including genes, diseases and drugs are represented as entities, while relationships between them indicate an interaction. However, to construct high-quality KGs, suitable data are required. In this review, we detail publicly available sources suitable for use in constructing drug discovery focused KGs. We aim to help guide machine learning and KG practitioners who are interested in applying new techniques to the drug discovery field, but who may be unfamiliar with the relevant data sources. The datasets are selected via strict criteria, categorized according to the primary type of information contained within and are considered based upon what information could be extracted to build a KG. We then present a comparative analysis of existing public drug discovery KGs and an evaluation of selected motivating case studies from the literature. Additionally, we raise numerous and unique challenges and issues associated with the domain and its datasets, while also highlighting key future research directions. We hope this review will motivate KGs use in solving key and emerging questions in the drug discovery domain.


Subject(s)
Machine Learning , Pattern Recognition, Automated , Drug Discovery , Knowledge , Information Storage and Retrieval
5.
Bioinformatics ; 39(9)2023 09 02.
Article in English | MEDLINE | ID: mdl-37651464

ABSTRACT

MOTIVATION: Identifying and tracking recombinant strains of SARS-CoV-2 is critical to understanding the evolution of the virus and controlling its spread. But confidently identifying SARS-CoV-2 recombinants from thousands of new genome sequences that are being shared online every day is quite challenging, causing many recombinants to be missed or suffer from weeks of delay in being formally identified while undergoing expert curation. RESULTS: We present RIVET-a software pipeline and visual platform that takes advantage of recent algorithmic advances in recombination inference to comprehensively and sensitively search for potential SARS-CoV-2 recombinants and organize the relevant information in a web interface that would help greatly accelerate the process of identifying and tracking recombinants. AVAILABILITY AND IMPLEMENTATION: RIVET-based web interface displaying the most updated analysis of potential SARS-CoV-2 recombinants is available at https://rivet.ucsd.edu/. RIVET's frontend and backend code is freely available under the MIT license at https://github.com/TurakhiaLab/rivet and the documentation for RIVET is available at https://turakhialab.github.io/rivet/. The inputs necessary for running RIVET's backend workflow for SARS-CoV-2 are available through a public database maintained and updated daily by UCSC (https://hgdownload.soe.ucsc.edu/goldenPath/wuhCor1/UShER_SARS-CoV-2/).


Subject(s)
COVID-19 , Humans , SARS-CoV-2/genetics , Databases, Factual , Documentation , Software
6.
Bioconjug Chem ; 35(3): 277-285, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38417023

ABSTRACT

Peptides and proteins undergo crucial modifications to alter their physicochemical properties to expand their applications in diverse fields. Various techniques, such as unnatural amino acid incorporation, enzyme catalysis, and chemoselective methods, have been employed for site-selective peptide and protein modification. While traditional methods remain valuable, advancement in host-guest chemistry introduces innovative and promising approaches for the selective modification of peptides and proteins. Macrocycles exhibit robust binding affinities, particularly with natural amino acids, which facilitates their use in selectively binding to specific sequences. This distinctive property endows macrocycles with the potential for modification of target peptides and proteins. This review provides a comprehensive overview of strategies utilizing macrocycles for the selective modification of peptides and proteins. These strategies unlock new possibilities for constructing antibody-drug conjugates and stabilizing volatile medications.


Subject(s)
Peptides , Proteins , Peptides/chemistry , Proteins/chemistry , Amino Acids/chemistry , Protein Processing, Post-Translational
7.
Syst Biol ; 72(5): 1039-1051, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37232476

ABSTRACT

Phylogenetics has been foundational to SARS-CoV-2 research and public health policy, assisting in genomic surveillance, contact tracing, and assessing emergence and spread of new variants. However, phylogenetic analyses of SARS-CoV-2 have often relied on tools designed for de novo phylogenetic inference, in which all data are collected before any analysis is performed and the phylogeny is inferred once from scratch. SARS-CoV-2 data sets do not fit this mold. There are currently over 14 million sequenced SARS-CoV-2 genomes in online databases, with tens of thousands of new genomes added every day. Continuous data collection, combined with the public health relevance of SARS-CoV-2, invites an "online" approach to phylogenetics, in which new samples are added to existing phylogenetic trees every day. The extremely dense sampling of SARS-CoV-2 genomes also invites a comparison between likelihood and parsimony approaches to phylogenetic inference. Maximum likelihood (ML) and pseudo-ML methods may be more accurate when there are multiple changes at a single site on a single branch, but this accuracy comes at a large computational cost, and the dense sampling of SARS-CoV-2 genomes means that these instances will be extremely rare because each internal branch is expected to be extremely short. Therefore, it may be that approaches based on maximum parsimony (MP) are sufficiently accurate for reconstructing phylogenies of SARS-CoV-2, and their simplicity means that they can be applied to much larger data sets. Here, we evaluate the performance of de novo and online phylogenetic approaches, as well as ML, pseudo-ML, and MP frameworks for inferring large and dense SARS-CoV-2 phylogenies. Overall, we find that online phylogenetics produces similar phylogenetic trees to de novo analyses for SARS-CoV-2, and that MP optimization with UShER and matOptimize produces equivalent SARS-CoV-2 phylogenies to some of the most popular ML and pseudo-ML inference tools. MP optimization with UShER and matOptimize is thousands of times faster than presently available implementations of ML and online phylogenetics is faster than de novo inference. Our results therefore suggest that parsimony-based methods like UShER and matOptimize represent an accurate and more practical alternative to established ML implementations for large SARS-CoV-2 phylogenies and could be successfully applied to other similar data sets with particularly dense sampling and short branch lengths.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Phylogeny , Probability , Genomics
8.
Environ Res ; 250: 118474, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38368920

ABSTRACT

Dual-source drinking water distribution systems (DWDS) over single-source water supply systems are becoming more practical in providing water for megacities. However, the more complex water supply problems are also generated, especially at the hydraulic junction. Herein, we have sampled for a one-year and analyzed the water quality at the hydraulic junction of a dual-source DWDS. The results show that visible changes in drinking water quality, including turbidity, pH, UV254, DOC, residual chlorine, and trihalomethanes (TMHs), are observed at the sample point between 10 and 12 km to one drinking water plant. The average concentration of residual chlorine decreases from 0.74 ± 0.05 mg/L to 0.31 ± 0.11 mg/L during the water supplied from 0 to 10 km and then increases to 0.75 ± 0.05 mg/L at the end of 22 km. Whereas the THMs shows an opposite trend, the concentration reaches to a peak level at hydraulic junction area (10-12 km). According to parallel factor (PARAFAC) and high-performance size-exclusion chromatography (HPSEC) analysis, organic matters vary significantly during water distribution, and tryptophan-like substances and amino acids are closely related to the level of THMs. The hydraulic junction area is confirmed to be located at 10-12 km based on the water quality variation. Furthermore, data-driven models are established by machine learning (ML) with test R2 higher than 0.8 for THMs prediction. And the SHAP analysis explains the model results and identifies the positive (water temperature and water supply distance) and negative (residual chlorine and pH) key factors influencing the THMs formation. This study conducts a deep understanding of water quality at the hydraulic junction areas and establishes predictive models for THMs formation in dual-sources DWDS.


Subject(s)
Drinking Water , Machine Learning , Water Quality , Water Supply , Drinking Water/chemistry , Drinking Water/analysis , Trihalomethanes/analysis , Models, Theoretical , Water Pollutants, Chemical/analysis , Chlorine/analysis
9.
BMC Musculoskelet Disord ; 25(1): 118, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38336663

ABSTRACT

BACKGROUND: Intervertebral disc calcification (IDC) combined with calcification in children has been sporadically reported, while ossification of the posterior longitudinal ligament (OPLL) in the cervical spine in pediatric patients is exceedingly rare. The aim of this study is to investigate the potential prognosis and outcomes associated with this condition. CASE PRESENTATION: We present an unusual case involving a 10-year-old Chinese child diagnosed with calcified cervical disc herniation and ossification of the posterior longitudinal ligament. Conservative treatment measures were implemented, and at the 1-month and 6-month follow-up, the patient's pain exhibited significant improvement. Subsequent cervical MRI and CT scans revealed the complete disappearance of OPLL and substantial absorption of the calcified disc. During the three-month follow-up, CT demonstrated slight residual disc calcification, however, the patient remained asymptomatic with no discernible limitation in cervical motion. CONCLUSIONS: We conducted a comprehensive review of several cases presenting with the same diagnosis. It is noteworthy that IDC combined with OPLL in children constitutes a rare clinical entity. Despite imaging indications of potential spinal canal occupation, the majority of such cases demonstrate complete absorption following conservative treatment, with OPLL exhibiting a faster absorption rate than calcified discs.


Subject(s)
Calcinosis , Chondrocalcinosis , Intervertebral Disc Degeneration , Intervertebral Disc , Ossification of Posterior Longitudinal Ligament , Humans , Child , Longitudinal Ligaments/diagnostic imaging , Osteogenesis , Intervertebral Disc Degeneration/complications , Intervertebral Disc Degeneration/diagnostic imaging , Ossification of Posterior Longitudinal Ligament/complications , Ossification of Posterior Longitudinal Ligament/diagnostic imaging , Ossification of Posterior Longitudinal Ligament/therapy , Calcinosis/complications , Calcinosis/diagnostic imaging , Calcinosis/therapy , Chondrocalcinosis/complications , Cervical Vertebrae/diagnostic imaging , Intervertebral Disc/diagnostic imaging
10.
Int J Mol Sci ; 25(15)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39125953

ABSTRACT

Targeting CDC20 can enhance the radiosensitivity of tumor cells, but the function and mechanism of CDC20 on DNA damage repair response remains vague. To examine that issue, tumor cell lines, including KYSE200, KYSE450, and HCT116, were utilized to detect the expression, function, and underlying mechanism of CDC20 in radio-chemoresistance. Western blot and immunofluorescence staining were employed to confirm CDC20 expression and location, and radiation could upregulate the expression of CDC20 in the cell nucleus. The homologous recombination (HR) and non-homologous end joining (NHEJ) reporter gene systems were utilized to explore the impact of CDC20 on DNA damage repair, indicating that CDC20 could promote HR repair and radio/chemo-resistance. In the early stages of DNA damage, CDC20 stabilizes the RPA1 protein through protein-protein interactions, activating the ATR-mediated signaling cascade, thereby aiding in genomic repair. In the later stages, CDC20 assists in the subsequent steps of damage repair by the ubiquitin-mediated degradation of RPA1. CCK-8 and colony formation assay were used to detect the function of CDC20 in cell vitality and proliferation, and targeting CDC20 can exacerbate the increase in DNA damage levels caused by cisplatin or etoposide. A tumor xenograft model was conducted in BALB/c-nu/nu mice to confirm the function of CDC20 in vivo, confirming the in vitro results. In conclusion, this study provides further validation of the potential clinical significance of CDC20 as a strategy to overcome radio-chemoresistance via uncovering a novel role of CDC20 in regulating RPA1 during DNA damage repair.


Subject(s)
Cdc20 Proteins , DNA Damage , Drug Resistance, Neoplasm , Radiation Tolerance , Replication Protein A , Humans , Animals , Replication Protein A/metabolism , Replication Protein A/genetics , Mice , Radiation Tolerance/drug effects , Radiation Tolerance/genetics , Drug Resistance, Neoplasm/genetics , Cdc20 Proteins/metabolism , Cdc20 Proteins/genetics , Cell Line, Tumor , Mice, Inbred BALB C , Mice, Nude , DNA Repair/drug effects , Xenograft Model Antitumor Assays , Cell Proliferation/drug effects , Cisplatin/pharmacology , HCT116 Cells , Gene Expression Regulation, Neoplastic/drug effects
11.
Environ Geochem Health ; 46(10): 379, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39167328

ABSTRACT

In recent years, the prevalence and danger of organophosphorus flame retardants (OPFRs) have drawn attention from all around the world. This study examined twenty-five OPFRs observed in water and sediment samples from the Qiantang River in eastern China, as well as their occurrence, spatial distribution, possible origins, and ecological hazards. All the 25 OPFRs were detected in water and sediment samples. The levels of Σ25OPFRs in water and sediment were 35.5-192 ng/L and 8.84-48.5 ng/g dw, respectively. Chlorinated OPFRs were the main contributions in water, whereas alkyl-OPFRs were the most common congeners found in sediment. Spatial analysis revealed that sample locations in neighboring cities had somewhat higher water concentrations of OPFRs. Slowing down the river current and making the reservoir the main sink of OPFRs, the dam can prevent OPFRs from moving via the Qiantang River. Positive matrix factorization indicated that plasticizer in polyvinyl chloride, polyester resins, and polyurethane foam made the greatest contributions in water, whereas polyurethane foam and textile were the predominant source in sediment. Analysis of sediment-water exchange of OPFRs showed that twelve OPFRs in sediments can re-enter into the water body. The risk quotients showed the ecological risk was low to medium, but trixylyl phosphate exposures posed high ecological risk to aquatic organisms.


Subject(s)
Environmental Monitoring , Flame Retardants , Geologic Sediments , Organophosphorus Compounds , Rivers , Water Pollutants, Chemical , Flame Retardants/analysis , China , Rivers/chemistry , Risk Assessment , Water Pollutants, Chemical/analysis , Geologic Sediments/chemistry , Organophosphorus Compounds/analysis
12.
Angew Chem Int Ed Engl ; 63(14): e202317570, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38366960

ABSTRACT

Nucleophilic substitutions are fundamentally important transformations in synthetic organic chemistry. Despite the substantial advances in bimolecular nucleophilic substitutions (SN2) at saturated carbon centers, analogous SN2 reaction at the amide nitrogen atom remains extremely limited. Here we report an SN2 substitution method at the amide nitrogen atom with amine nucleophiles for nitrogen-nitrogen (N-N) bond formation that leads to a novel strategy toward biologically and medicinally important hydrazide derivatives. We found the use of sulfonate-leaving groups at the amide nitrogen atom played a pivotal role in the reaction. This new N-N coupling reaction allows the use of O-tosyl hydroxamates as electrophiles and readily available amines, including acyclic aliphatic amines and saturated N-heterocycles as nucleophiles. The reaction features mild conditions, broad substrate scope (>80 examples), excellent functional group tolerability, and scalability. The method is applicable to late-stage modification of various approved drug molecules, thus enabling complex hydrazide scaffold synthesis.

13.
J Cell Biochem ; 124(2): 221-238, 2023 02.
Article in English | MEDLINE | ID: mdl-36502529

ABSTRACT

Although the aberrant activity of fibroblast growth factor receptor 3 (FGFR3) is implicated in various cancers, the reported kinase inhibitors of FGFR3 tend to cause side effects resulting from the inhibitory activity on vascular endothelial growth factor receptor 2 (VEGFR2). Therefore, it is necessary to find a novel high-selective inhibitor of FGFR3 over VEGFR2 from the small-molecule compound database. In this study, integrated virtual screening protocols were established to screen for selective inhibitors of FGFR3 over VEGFR2 in Drugbank and Asinex databases by combining three-dimensional pharmacophore model, molecular docking, molecular dynamics (MD) simulation, and molecular mechanics Poisson-Boltzmann surface area (MMPBSA) calculations. Finally, it is found that Asinex-5082, as an octahydropyrrolo[3,2-b] pyridin derivative, has larger binding free energy with FGFR3 (-39.3 kcal/mol) than reference drug Erdafitinib (-29.9 kcal/mol), while cannot bind with VEGFR2, resulting in considerable inhibitory selectivity. This is because Asinex-5082, unlike Erdafitinib, has not m-dimethoxybenzene with large steric hindrance, thus can enter the larger ATP-binding pocket of FGFR3 with DFG-in conformation to form hydrophobic interaction with residues Met529, Ile539, and Tyr557 as well as hydrogen bond with Ala558. On the other hand, due to the fact that the benzodioxane and N-heterocyclic rings are connected by carbonyl (C=O), Asinex-5082 cannot rotate freely so as to enter the smaller ATP binding pocket of VEGFR2 on the DFG-out conformation. The lead molecule Asinex-5082 may facilitate the rational design and development of novel selective inhibitors of FGFR3 over VEGFR2 as anticancer drugs.


Subject(s)
Protein Kinase Inhibitors , Vascular Endothelial Growth Factor Receptor-2 , Vascular Endothelial Growth Factor Receptor-2/metabolism , Protein Kinase Inhibitors/pharmacology , Molecular Docking Simulation , Receptor, Fibroblast Growth Factor, Type 3/metabolism , Vascular Endothelial Growth Factor A , Molecular Dynamics Simulation , Adenosine Triphosphate , Ligands
14.
J Am Chem Soc ; 145(1): 53-57, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36573889

ABSTRACT

Gibberellins (GAs) are important plant hormones, but some of their family members are in extremely limited natural supply including GA18. Herein, we report a concise synthesis of (-)-GA18 methyl ester, a member of the C20 gibberellins, from commercially available and cheap andrographolide. Our synthesis features an intramolecular ene reaction to form the C ring, an oxidative cleavage followed by aldol condensation to realize a ring contraction and form the challenging trans-hydrindane (AB ring), and a photochemical [2+2] cycloaddition accompanied by a subsequent SmI2-mediated skeletal rearrangement to construct the methylenebicyclo[3.2.1]octanol moiety (CD ring).


Subject(s)
Esters , Gibberellins , Stereoisomerism , Cyclization , Plant Growth Regulators
15.
J Am Chem Soc ; 145(44): 24338-24348, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37880928

ABSTRACT

Carbon-carbon coupling electrochemistry on a conventional copper (Cu) catalyst still undergoes low selectivity among many different multicarbon (C2+) chemicals, posing a grand challenge to achieve a single C2+ product. Here, we demonstrate a laser irradiation synthesis of a gerhardtite mineral, Cu2(OH)3NO3, as a catalyst precursor to make a Cu catalyst with abundant stacking faults under reducing conditions. Such structural perturbation modulates electronic microenvironments of Cu, leading to improved d-electron back-donation to the antibonding orbital of *CO intermediates and thus strengthening *CO adsorption. With increased *CO coverage on the defect-rich Cu, we report an acetate selectivity of 56 ± 2% (compared to 31 ± 1% for conventional Cu) and a partial current density of 222 ± 7 mA per square centimeter in CO electroreduction. When run at 400 mA per square centimeter for 40 h in a flow reactor, this catalyst produces 68.3 mmol of acetate throughout. This work highlights the value of a Cu-containing mineral phase in accessing suitable structures for improved selectivity to a single desired C2+ product.

16.
Bioinformatics ; 38(15): 3734-3740, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35731204

ABSTRACT

MOTIVATION: Phylogenetic tree optimization is necessary for precise analysis of evolutionary and transmission dynamics, but existing tools are inadequate for handling the scale and pace of data produced during the coronavirus disease 2019 (COVID-19) pandemic. One transformative approach, online phylogenetics, aims to incrementally add samples to an ever-growing phylogeny, but there are no previously existing approaches that can efficiently optimize this vast phylogeny under the time constraints of the pandemic. RESULTS: Here, we present matOptimize, a fast and memory-efficient phylogenetic tree optimization tool based on parsimony that can be parallelized across multiple CPU threads and nodes, and provides orders of magnitude improvement in runtime and peak memory usage compared to existing state-of-the-art methods. We have developed this method particularly to address the pressing need during the COVID-19 pandemic for daily maintenance and optimization of a comprehensive SARS-CoV-2 phylogeny. matOptimize is currently helping refine on a daily basis possibly the largest-ever phylogenetic tree, containing millions of SARS-CoV-2 sequences. AVAILABILITY AND IMPLEMENTATION: The matOptimize code is freely available as part of the UShER package (https://github.com/yatisht/usher) and can also be installed via bioconda (https://bioconda.github.io/recipes/usher/README.html). All scripts we used to perform the experiments in this manuscript are available at https://github.com/yceh/matOptimize-experiments. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Phylogeny , SARS-CoV-2/genetics , Pandemics , Software
17.
Gastrointest Endosc ; 97(4): 684-693, 2023 04.
Article in English | MEDLINE | ID: mdl-36403805

ABSTRACT

BACKGROUND AND AIMS: We aimed to establish a modified model of the Kyoto classification score and verify its accuracy for predicting Helicobacter pylori (HP) infection during endoscopy. METHODS: Patients who underwent gastroscopy from June 2020 to March 2021 were included in this study. Atrophy, intestinal metaplasia, hypertrophy of the gastric fold, nodularity, diffuse redness, sticky mucus, spotty redness, xanthoma, map-like redness, fundic gland polyp, and regular arrangement of collecting venules (RAC) were recorded according to the Kyoto classification of gastritis. The HP infection status of participants was determined by a 13C breath test, anti-HP antibody, and histopathologic hematoxylin and eosin staining. The modified Kyoto classification scoring model was established based on univariate analysis and logistic regression analysis. The modified scoring model was used to judge the status of HP infection in patients undergoing gastroscopy from July to September 2021 and to evaluate the accuracy of the prediction. RESULTS: Of 667 participants in the derivation dataset, 326 cases had HP infection and 341 cases did not. Atrophy, hypertrophy of the gastric fold, nodularity, diffuse redness, sticky mucus, and spotty redness were associated with HP current infection. Thus, a new scoring model, termed the modified Kyoto classification scoring model, was constructed that included atrophy, hypertrophy of the gastric fold, nodularity, diffuse redness, sticky mucus, spotty redness, fundic gland polyp, and RAC as indicators. To test the model, 808 subjects, including 251 HP-positive patients, comprised the validation dataset. CONCLUSIONS: The modified Kyoto classification scoring model improved the accuracy of endoscopic determination of HP current infection and has clinical application potential in the Chinese population.


Subject(s)
Gastritis , Helicobacter Infections , Helicobacter pylori , Humans , Gastritis/diagnosis , Gastritis/pathology , Gastroscopy , Gastric Mucosa/pathology , Helicobacter Infections/diagnosis , Helicobacter Infections/pathology , Metaplasia/pathology , Atrophy/pathology
18.
Pharmazie ; 78(9): 196-200, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-38037218

ABSTRACT

Endoplasmic reticulum stress (ER stress) is suggested to promote cardiomyocyte apoptosis and ultimately lead to ischemic injury. Inhibition of ER stress-induced apoptosis may be a therapeutic strategy for MI injury. Astragaloside-IV (AST) from Astragalus membranaceus (Fisch) Bge, was reported to have cardioprotective properties. In this study, we investigated the protective effect of AST on cardiomyocytes against hypoxia injury by regulating ER stress and inhibiting apoptosis. H9c2 cardiomyocytes were divided into three groups, normal group, hypoxia group and AST group. Cell viability was determined by CCK-8 assay. Intracellular reactive oxygen species (ROS) production was detected by DCFH-DA (2,7- dichloro-dihydrofluorescein diacetate) florescent staining. The study showed that AST treatment could significantly increase the cell viability of H9c2 cells exposed to hypoxia. Furthermore, AST could restrain cell apoptosis and decrease the production of ROS. Compared with normal group, the protein levels of Bax, caspase-3, caspase-9, GRP78, p-eIF2α, and CHOP were enhanced in the hypoxia group, whereas the protein level of Bcl-2 was dramatically reduced. Compared with hypoxia group, AST markedly inhibited the phosphorylation of eIF2α and the expression of caspase-3, caspase-9 and CHOP, and promoted the protein expression of Bcl-2. Thus, AST can inhibit the ER stress-mediated apoptosis, partly through the eIF2α/CHOP pathway suppression to inhibit ER stress.


Subject(s)
Eukaryotic Initiation Factor-2 , Myocytes, Cardiac , Humans , Caspase 3/metabolism , Caspase 9/metabolism , Reactive Oxygen Species/metabolism , Eukaryotic Initiation Factor-2/metabolism , Eukaryotic Initiation Factor-2/pharmacology , Endoplasmic Reticulum Stress , Signal Transduction , Proto-Oncogene Proteins c-bcl-2/metabolism , Hypoxia/drug therapy , Apoptosis
19.
J Immunol ; 205(7): 1763-1777, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32868408

ABSTRACT

The CD27-CD70 costimulatory pathway is essential for the full activation of T cells, but some studies show that blocking this pathway exacerbates certain autoimmune disorders. In this study, we report on the impact of CD27-CD70 signaling on disease progression in the NOD mouse model of type 1 diabetes (T1D). Specifically, our data demonstrate that CD70 ablation alters thymocyte selection and increases circulating T cell levels. CD27 signaling was particularly important for the thymic development and peripheral homeostasis of Foxp3+Helios+ regulatory T cells, which likely accounts for our finding that CD70-deficient NOD mice develop more-aggressive T1D onset. Interestingly, we found that CD27 signaling suppresses the thymic development and effector functions of T1D-protective invariant NKT cells. Thus, rather than providing costimulatory signals, the CD27-CD70 axis may represent a coinhibitory pathway for this immunoregulatory T cell population. Moreover, we showed that a CD27 agonist Ab reversed the effects of CD70 ablation, indicating that the phenotypes observed in CD70-deficient mice were likely due to a lack of CD27 signaling. Collectively, our results demonstrate that the CD27-CD70 costimulatory pathway regulates the differentiation program of multiple T cell subsets involved in T1D development and may be subject to therapeutic targeting.


Subject(s)
CD27 Ligand/metabolism , Diabetes Mellitus, Type 1/immunology , Natural Killer T-Cells/immunology , T-Lymphocytes, Regulatory/immunology , Animals , CD27 Ligand/genetics , Cell Differentiation , DNA-Binding Proteins/metabolism , Disease Models, Animal , Forkhead Transcription Factors/metabolism , Humans , Immunomodulation , Lymphocyte Activation , Mice , Mice, Inbred NOD , Mice, Knockout , Signal Transduction , Transcription Factors/metabolism , Tumor Necrosis Factor Receptor Superfamily, Member 7/metabolism
20.
Biotechnol Lett ; 44(1): 59-76, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34997407

ABSTRACT

Gene-knockout pigs have important applications in agriculture and medicine. Compared with CRISPR/Cas9, Adenine base editor (ABE) convert single A·T pairs to G·C pairs in the genome without generating DNA double-strand breaks, and this method has higher accuracy and biosafety in pig genetic modification. However, the application of ABE in pig gene knockout is limited by protospacer-adjacent motif sequences and the base-editing window. Alternative mRNA splicing is an important mechanism underlying the formation of proteins with diverse functions in eukaryotes. Spliceosome recognizes the conservative sequences of splice donors and acceptors in a precursor mRNA. Mutations in these conservative sequences induce exon skipping, leading to proteins with novel functions or to gene inactivation due to frameshift mutations. In this study, adenine base-editing-mediated exon skipping was used to expand the application of ABE in the generation of gene knockout pigs. We first constructed a modified "all-in-one" ABE vector suitable for porcine somatic cell transfection that contained an ABE for single-base editing and an sgRNA expression cassette. The "all-in-one" ABE vector induced efficient sgRNA-dependent A-to-G conversions in porcine cells during single base-editing of multiple endogenous gene loci. Subsequently, an ABE system was designed for single adenine editing of the conservative splice acceptor site (AG sequence at the 3' end of the intron 5) and splice donor site (GT sequence at the 5' end of the intron 6) in the porcine gene GHR; this method achieved highly efficient A-to-G conversion at the cellular level. Then, porcine single-cell colonies carrying a biallelic A-to-G conversion in the splice acceptor site in the intron 5 of GHR were generated. RT-PCR indicated exon 6 skipped at the mRNA level. Western blotting revealed GHR protein loss, and gene sequencing showed no sgRNA-dependent off-target effects. These results demonstrate accurate adenine base-editing-mediated exon skipping and gene knockout in porcine cells. This is the first proof-of-concept study of adenine base-editing-mediated exon skipping for gene regulation in pigs, and this work provides a new strategy for accurate and safe genetic modification of pigs for agricultural and medical applications.


Subject(s)
Adenine , Gene Editing , Adenine/metabolism , Animals , CRISPR-Cas Systems/genetics , Cell Line , Exons/genetics , Gene Editing/methods , Gene Knockout Techniques , Swine
SELECTION OF CITATIONS
SEARCH DETAIL