Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
1.
Proc Natl Acad Sci U S A ; 121(22): e2322479121, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38771871

ABSTRACT

The significance of biochemical cues in the tumor immune microenvironment in affecting cancer metastasis is well established, but the role of physical factors in the microenvironment remains largely unexplored. In this article, we investigated how the mechanical interaction between cancer cells and immune cells, mediated by extracellular matrix (ECM), influences immune escape of cancer cells. We focus on the mechanical regulation of macrophages' targeting ability on two distinct types of colorectal carcinoma (CRC) cells with different metastatic potentials. Our results show that macrophages can effectively target CRC cells with low metastatic potential, due to the strong contraction exhibited by the cancer cells on the ECM, and that cancer cells with high metastatic potential demonstrated weakened contractions on the ECM and can thus evade macrophage attack to achieve immune escape. Our findings regarding the intricate mechanical interactions between immune cells and cancer cells can serve as a crucial reference for further exploration of cancer immunotherapy strategies.


Subject(s)
Colorectal Neoplasms , Extracellular Matrix , Macrophages , Tumor Escape , Tumor Microenvironment , Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Macrophages/immunology , Humans , Tumor Microenvironment/immunology , Extracellular Matrix/metabolism , Extracellular Matrix/immunology , Cell Line, Tumor , Neoplasm Metastasis , Animals , Mice , Cell Communication/immunology
2.
Proc Natl Acad Sci U S A ; 120(37): e2305995120, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37669392

ABSTRACT

To minimize the incorrect use of antibiotics, there is a great need for rapid and inexpensive tests to identify the pathogens that cause an infection. The gold standard of pathogen identification is based on the recognition of DNA sequences that are unique for a given pathogen. Here, we propose and test a strategy to develop simple, fast, and highly sensitive biosensors that make use of multivalency. Our approach uses DNA-functionalized polystyrene colloids that distinguish pathogens on the basis of the frequency of selected short DNA sequences in their genome. Importantly, our method uses entire genomes and does not require nucleic acid amplification. Polystyrene colloids grafted with specially designed surface DNA probes can bind cooperatively to frequently repeated sequences along the entire genome of the target bacteria, resulting in the formation of large and easily detectable colloidal aggregates. Our detection strategy allows "mix and read" detection of the target analyte; it is robust and highly sensitive over a wide concentration range covering, in the case of our test target genome Escherichia coli bl21-de3, 10 orders of magnitude from [Formula: see text] to [Formula: see text] copies/mL. The sensitivity compares well with state-of-the-art sensing techniques and has excellent specificity against nontarget bacteria. When applied to real samples, the proposed technique shows an excellent recovery rate. Our detection strategy opens the way to developing a robust platform for pathogen detection in the fields of food safety, disease control, and environmental monitoring.


Subject(s)
DNA , Polystyrenes , Anti-Bacterial Agents , Colloids , Environmental Monitoring , Escherichia coli
3.
Proc Natl Acad Sci U S A ; 119(42): e2201279119, 2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36215475

ABSTRACT

Broken time-reversal and parity symmetries in active spinner fluids imply a nondissipative "odd viscosity," engendering phenomena unattainable in traditional passive or active fluids. Here we show that the odd viscosity itself can lead to a Hall-like transport when the active chiral fluid flows through a quenched matrix of obstacles, reminiscent of the anomalous Hall effect. The Hall-like velocity depends significantly on the spinner activity and longitudinal flow due to the interplay between odd viscosity and spinner-obstacle collisions. Our findings underscore the importance of odd viscosity in active chiral matter and elucidate its essential role in the anomalous Hall-like effect.

4.
Inorg Chem ; 63(18): 8462-8475, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38642052

ABSTRACT

In recent years, pyclen-based complexes have attracted a great deal of interest as magnetic resonance imaging (MRI) contrast agents (CAs) and luminescent materials, as well as radiopharmaceuticals. Remarkably, gadopiclenol, a Gd(III) bishydrated complex featuring a pyclen-based heptadentate ligand, received approval as a novel contrast agent for clinical MRI application in 2022. To maximize stability and efficiency, two novel chiral pyclen-based chelators and their complexes were developed in this study. Gd-X-PCTA-2 showed significant enhancements in both thermodynamic and kinetic stabilities compared to those of the achiral parent derivative Gd-PCTA. 1H NMRD profiles reveal that both chiral gadolinium complexes (Gd-X-PCTA-1 and Gd-X-PCTA-2) have a higher relaxivity than Gd-PCTA, while variable-temperature 17O NMR studies show that the two inner-sphere water molecules have distinct residence times τMa and τMb. Furthermore, in vivo imaging demonstrates that Gd-X-PCTA-2 enhances the signal in the heart and kidneys of the mice, and the chiral Gd complexes exhibit the ability to distinguish between tumors and normal tissues in a 4T1 mouse model more efficiently than that of the clinical agent gadobutrol. Biodistribution studies show that Gd-PCTA and Gd-X-PCTA-2 are primarily cleared by a renal pathway, with 24 h residues of Gd-X-PCTA-2 in the liver and kidney being lower than those of Gd-PCTA.


Subject(s)
Azabicyclo Compounds , Chelating Agents , Contrast Media , Gadolinium , Magnetic Resonance Imaging , Contrast Media/chemistry , Animals , Mice , Chelating Agents/chemistry , Chelating Agents/chemical synthesis , Gadolinium/chemistry , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Molecular Structure , Stereoisomerism , Humans , Female
5.
Small ; 19(28): e2207672, 2023 07.
Article in English | MEDLINE | ID: mdl-36942691

ABSTRACT

Exosomal microRNAs have been studied as a good source of noninvasive biomarkers due to their functions in genetic exchange between cells and have been already well documented in many biological activities; however, inaccuracy remains a key challenge for liver cancer surveillance. Herein, a versatile duplex photothermal digital polymerase chain reaction (PCR) strategy combined with a lipid nanoparticle-based exosome capture approach is proposed to profile microRNAs expression through a 3-h easy-to-operate process. The microfluidically-generated molybdenum disulfide-nanocomposite-doped gelatin microcarriers display attractive properties as a 2-4 °C s-1 ramping-up rate triggered by near-infrared and reversible sol-gel transforming in step with PCR activation. To achieve PCR thermocycling, the corresponding irradiation coordinating with fan cooling are automatically performed via a homemade control module with programs. Thus, taking the multiplexing capability of dual-color labeling, 19-31 folds higher in exosomal microRNA-200b-3p and microRNA-21-5p, and tenfold lower in microRNA-22-3p expressions relative to the control microRNA-26a-5p are quantified in two liver cancer cells (Huh7 and HepG2) than in those from the healthy cells. It is believed that this exosomal microRNA genotyping method would be highly applicable for liver cancer diagnostics.


Subject(s)
Exosomes , Liver Neoplasms , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Biomarkers/metabolism , Exosomes/metabolism , Polymerase Chain Reaction , Liver Neoplasms/genetics , Liver Neoplasms/metabolism
6.
Langmuir ; 39(1): 563-569, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36547264

ABSTRACT

We analyze the translocation process of a spherical vesicle, made of a membrane and incompressible fluid, through a hole smaller than the vesicle size, driven by pressure difference ΔP. We show that such a vesicle shows certain universal characteristics, which are independent of the details of the membrane elasticity: (i) there is a critical pressure ΔPc below which no translocation occurs; (ii) ΔPc decreases to zero as the vesicle radius R0 approaches the hole radius a, satisfying the scaling relation ΔPc ∼ (R0 - a)3/2; and (iii) the translocation time τ diverges as ΔP decreases to ΔPc, satisfying the scaling relation τ ∼ (ΔP - ΔPc)-1/2.


Subject(s)
Elasticity , Pressure
7.
Proc Natl Acad Sci U S A ; 117(22): 11901-11907, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32430333

ABSTRACT

Due to its inherent out-of-equilibrium nature, active matter in confinement may exhibit collective behavior absent in unconfined systems. Extensive studies have indicated that hydrodynamic or steric interactions between active particles and boundary play an important role in the emergence of collective behavior. However, besides introducing external couplings at the single-particle level, the confinement also induces an inhomogeneous density distribution due to particle-position correlations, whose effect on collective behavior remains unclear. Here, we investigate this effect in a minimal chiral active matter composed of self-spinning rotors through simulation, experiment, and theory. We find that the density inhomogeneity leads to a position-dependent frictional stress that results from interrotor friction and couples the spin to the translation of the particles, which can then drive a striking spatially oscillating collective motion of the chiral active matter along the confinement boundary. Moreover, depending on the oscillation properties, the collective behavior has three different modes as the packing fraction varies. The structural origins of the transitions between the different modes are well identified by the percolation of solid-like regions or the occurrence of defect-induced particle rearrangement. Our results thus show that the confinement-induced inhomogeneity, dynamic structure, and compressibility have significant influences on collective behavior of active matter and should be properly taken into account.

8.
Chem Soc Rev ; 51(10): 4075-4093, 2022 May 23.
Article in English | MEDLINE | ID: mdl-35502858

ABSTRACT

Lifeforms are regulated by many physicochemical factors, and these factors could be controlled to play a role in the construction of artificial living systems. Among these factors, spatial confinement is an important one, which mediates biological behaviors at multiscale levels and participates in the biomanufacturing processes accordingly. This review describes how spatial confinement, as a fundamental biological phenomenon, provides cues for the construction of artificial living systems. Current knowledge about the role of spatial confinement in mediating individual cell behavior, collective cellular behavior, and tissue-level behavior are categorized. Endeavors on the synthesis of biomacromolecules, artificial cells, engineered tissues, and organoids in spatially confined bioreactors are then emphasized. After that, we discuss the cutting-edge applications of spatially confined artificial living systems in biomedical fields. Finally, we conclude by assessing the remaining challenges and future trends in the context of fundamental science, technical improvement, and practical applications.


Subject(s)
Artificial Cells , Bioreactors , Tissue Engineering
9.
J Am Chem Soc ; 144(44): 20278-20287, 2022 11 09.
Article in English | MEDLINE | ID: mdl-36288475

ABSTRACT

Protein heterogeneity in molecular expression and structures determines tumorigenesis and is the diagnostic and therapeutic cancer biomarker. Small extracellular vesicles (sEVs) are cell-released nanoscaled membrane-bound vesicles transferring bioactive molecules for intercellular communication and playing essential roles in tumor progression and metastasis. Therefore, protein heterogeneity in tumor-derived sEVs indicates the degree of malignant transformation, providing a noninvasive biomarker for cancer diagnosis and malignancy evaluation. We employ near-field infrared (nano-FTIR) spectroscopy to investigate malignancy-related protein heterogeneity in a single sEV and demonstrate the discriminability of sEV protein heterogeneity to evaluate tumor malignancy and metastasis. We found that the amide I/II adsorption ratio of the sEVs increases with tumor malignancy, the proportion of α-helix + random coil (α-helix and random coil) in sEV proteins decreases with tumor malignancy, and the proportion of ß-sheet + ß-turn (ß-sheet and ß-turn) increases with tumor malignancy. These nano-FTIR spectral signatures of the sEVs from the primary tumor tissue of breast cancer patients show high sensitivity and specificity in evaluating tumor metastasis. This study shows the advantages of nano-FTIR in single sEV characterization and demonstrates the significance of sEV protein heterogeneity in cancer diagnosis. It provides a noninvasive solution to elucidate cancer development and facilitates the exploitation of potential cancer biomarkers.


Subject(s)
Extracellular Vesicles , Neoplasms , Humans , Extracellular Vesicles/metabolism , Neoplasms/diagnosis , Neoplasms/metabolism , Biomarkers, Tumor/metabolism
10.
Small ; 18(16): e2107858, 2022 04.
Article in English | MEDLINE | ID: mdl-35212452

ABSTRACT

Digital PCR (dPCR) surpasses the performance of earlier PCR formats because of highly precise, absolute quantification and other unique merits. A simple thermocycling approach and durable microcarrier are of great value for dPCR advancement and application. Herein, a near-infrared (NIR) controlled thermocycling approach by embedding magnetic graphene oxide (GO) composite into the agarose microcarriers is developed. The core-shell composite is constructed by sequentially encapsulating GO and silica outside the magnetic nanocores. Benefiting from these additives, the resultant composite agarose gains appealing features as light-driven temperature changing, switchable gel-sol phase transforming, biocompatibility, and magnetic traction. By further emulsifying into droplets via the microfluidics method, the influence of typical parameters including material loading amount, laser intensity, and droplet diameter at various ranges is investigated for assembling microcarriers with different responsiveness. Then a paradigm of the NIR program can be easily tailored for PCR thermocycling. Finally, the feasibility of the approach is verified by detecting statistically diluted Klebsiella pneumoniae DNA samples, from 0.1 to 2 copies per drop. It is anticipated that this method has promising prospects for dPCR-based and other temperature-controlled applications.


Subject(s)
DNA , Microfluidics , Polymerase Chain Reaction/methods , Sepharose
11.
Chembiochem ; 23(6): e202100416, 2022 03 18.
Article in English | MEDLINE | ID: mdl-34773331

ABSTRACT

Natural proteins are essential biomacromolecules that fulfill versatile functions in the living organism, such as their usage as cytoskeleton, nutriment transporter, homeostasis controller, catalyzer, or immune guarder. Due to the excellent mechanical properties and good biocompatibility/biodegradability, natural protein-based biomaterials are well equipped for prospective applications in various fields. Among these natural proteins, stimuli-responsive proteins can be reversibly and precisely manipulated on demand, rendering the protein-based biomaterials promising candidates for numerous applications, including disease detection, drug delivery, bio-sensing, and regenerative medicine. Therefore, we present some typical natural proteins with diverse physical stimuli-responsive properties, including temperature, light, force, electrical, and magnetic sensing in this review. The structure-function mechanism of these proteins is discussed in detail. Finally, we give a summary and perspective for the development of stimuli-responsive proteins.


Subject(s)
Biocompatible Materials , Drug Delivery Systems , Temperature
12.
Phys Rev Lett ; 129(1): 018002, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35841542

ABSTRACT

We perform experiments and computer simulations to study the effective interactions between like-charged colloidal tracers moving in a two-dimensional fluctuating background of colloidal crystal. By a counting method that properly accounts for the configurational degeneracy of tracer pairs, we extract the relative probability of finding a tracer pair in neighboring triangular cells formed by background particles. We find that this probability at the nearest neighbor cell is remarkably greater than those at cells with larger separations, implying an effective attraction between the tracers. This effective attraction weakens sharply as the background lattice constant increases. Furthermore, we clarify that the lattice-mediated effective attraction originates from the minimization of free energy increase from deformation of the crystalline background due to the presence of diffusing tracers.


Subject(s)
Colloids , Colloids/chemistry , Computer Simulation , Diffusion , Ions
13.
RNA Biol ; 19(1): 290-304, 2022 01.
Article in English | MEDLINE | ID: mdl-35130112

ABSTRACT

Simultaneous measurement of multiple modalities in single-cell analysis, represented by CITE-seq, is a promising approach to link transcriptional changes to cellular phenotype and function, requiring new computational methods to define cellular subtypes and states based on multiple data types. Here, we design a flexible single-cell multimodal analysis framework, called CITEMO, to integrate the transcriptome and antibody-derived tags (ADT) data to capture cell heterogeneity from the multi omics perspective. CITEMO uses Principal Component Analysis (PCA) to obtain a low-dimensional representation of the transcriptome and ADT, respectively, and then employs PCA again to integrate these low-dimensional multimodal data for downstream analysis. To investigate the effectiveness of the CITEMO framework, we apply CITEMO to analyse the cell subtypes of Cord Blood Mononuclear Cells (CBMC) samples. Results show that the CITEMO framework can comprehensively analyse single-cell multimodal samples and accurately identify cell subtypes. Besides, we find some specific immune cells that co-express multiple ADT markers. To better describe the co-expression phenomenon, we introduce the co-expression entropy to measure the heterogeneous distribution of the ADT combinations. To further validate the robustness of the CITEMO framework, we analyse Human Bone Marrow Cell (HBMC) samples and identify different states of the same cell type. CITEMO has an excellent performance in identifying cell subtypes and states for multimodal omics data. We suggest that the flexible design idea of CITEMO can be an inspiration for other single-cell multimodal tasks. The complete source code and dataset of the CITEMO framework can be obtained from https://github.com/studentiz/CITEMO.


Subject(s)
Computational Biology/methods , Genetic Heterogeneity , Immune System/cytology , Immune System/metabolism , Single-Cell Analysis/methods , Software , Cell Lineage/genetics , Gene Expression Regulation , Genomics/methods , Humans , Immune System/immunology
14.
Nano Lett ; 21(1): 485-491, 2021 01 13.
Article in English | MEDLINE | ID: mdl-33280386

ABSTRACT

Characterization of biomolecular dynamics at cellular membranes lags far behind that in solutions because of challenges to measure transmembrane trafficking with subnanometer precision. Herein, by introducing nonfluorescent quenchers into extracellular environment of live cells, we adopted Förster resonance energy transfer from one donor to multiple quenchers to measure positional changes of biomolecules in plasma membranes. We demonstrated the method by monitoring flip-flops of individual lipids and by capturing transient states of the host defense peptide LL-37 in plasma membranes. The method was also applied to investigate the interaction of the necroptosis-associated protein MLKL with plasma membranes, showing a few distinct depths of MLKL insertion. Our method is especially powerful to quantitate the dynamics of proteins at the cytosolic leaflets of plasma membranes which are usually not accessible by conventional techniques. The method will find wide applications in the systematic analysis of fundamental cellular processes at plasma membranes.


Subject(s)
Fluorescence Resonance Energy Transfer , Lipids , Cell Membrane
15.
Angew Chem Int Ed Engl ; 61(33): e202207425, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35726482

ABSTRACT

The inherently tenuous adhesion strength and limited environmental tolerance of supramolecular adhesives severely restrict their application scenarios. It is challenging for the development of robust adhesives with extreme temperature tolerance. Herein, we report a new type of temperature-resistant crown-ether-protein (CEP) adhesive by harnessing synergistic host-guest molecular interactions between engineered crown ether and protein building blocks. The outputs of CEP adhesive demonstrate ultrahigh shearing adhesion strength of ≈22 MPa over a wide temperature range from -196 to 200 °C, superior to other established supramolecular or polymeric adhesives. The temperature-induced phase transition and internal bound water stabilized the system and led to superb adhesion under extreme conditions. Thus, this work pioneers a molecular engineering approach for the generation of adhesives with tailored applications in extreme settings.


Subject(s)
Crown Ethers , Adhesives , Proteins , Shear Strength , Temperature
16.
Small ; 17(39): e2102579, 2021 10.
Article in English | MEDLINE | ID: mdl-34390183

ABSTRACT

Hierarchical emulsions are interesting for both scientific researches and practical applications. Hierarchical emulsions prepared by microfluidics require complicated device geometry and delicate control of flow rates. Here, a versatile method is developed to design hierarchical emulsions using microfluidic 3D droplet printing in droplet. The process of droplet printing in droplet mimics the dragonfly laying eggs and has advantages of easy processing and flexible design. To demonstrate the capability of the method, double emulsions and triple emulsions with tunable core number, core size, and core composition are prepared. The hierarchical emulsions are excellent templates for the developments of functional materials. Flattened crescent-moon-shaped particles are then fabricated using double emulsions printed in confined 2D space as templates. The particles are excellent delivery vehicles for 2D interfaces, which can load and transport cargos through a well-defined trajectory under external magnetic steering. Microfluidic 3D droplet printing in droplet provides a powerful platform with improved simplicity and flexibility for the design of hierarchical emulsions and functional materials.


Subject(s)
Microfluidics , Odonata , Animals , Emulsions , Printing, Three-Dimensional
17.
Phys Rev Lett ; 126(19): 198001, 2021 May 14.
Article in English | MEDLINE | ID: mdl-34047594

ABSTRACT

The discovery of topological edge states that unidirectionally propagate along the boundary of system without backscattering has enabled the development of new design principles for material or information transport. Here, we show that the topological edge flow supported by the chiral active fluid composed of spinners can even robustly transport an immersed intruder with the aid of the spinner-mediated depletion interaction between the intruder and boundary. Importantly, the effective interaction significantly depends on the dissipationless odd viscosity of the chiral active fluid, which originates from the spinning-induced breaking of time-reversal and parity symmetries, rendering the transport controllable. Our findings propose a novel avenue for robust cargo transport and could open a range of new possibilities throughout biological and microfluidic systems.

18.
Phys Chem Chem Phys ; 23(5): 3581-3587, 2021 Feb 07.
Article in English | MEDLINE | ID: mdl-33514954

ABSTRACT

We perform molecular dynamics simulations on a system of hard annular sector particles (ASPs) to investigate the reaction-dynamics relationship. The dimerization reaction zone, mixing reaction zone including dimerization and n-merization (n > 2), and arrested region are observed successively as area fraction φA increases from low to high. In this work, we focus on the properties of the concentrated arrested region (φA≥ 0.400). The results show that for systems at φA≥ 0.400, the ratio of n-merization increases with φA and n-merization finally becomes the dominant reaction in the system; dynamic heterogeneity (DH) is observed and is demonstrated to originate from the divergent size of clusters consisting of high-mobility particles; the particles with a high translational or rotational mobility are found to have a high ability to react with other particles at φA > 0.400; more interestingly, binding reactions are found to correlate spatially with DH at φA > 0.400. Our work sheds new light on understanding the role of DH in binding reactions or specific-site recognition assembly in a crowded environment.

19.
Proc Natl Acad Sci U S A ; 115(48): 12118-12123, 2018 11 27.
Article in English | MEDLINE | ID: mdl-30429318

ABSTRACT

Intracellular transport of cellular proteins and organelles is critical for establishing and maintaining intracellular organization and cell physiology. Apoptosis is a process of programmed cell death with dramatic changes in cell morphology and organization, during which signaling molecules are transported between different organelles within the cells. However, how the intracellular transport changes in cells undergoing apoptosis remains unknown. Here, we study the dynamics of intracellular transport by using the single-particle tracking method and find that both directed and diffusive motions of endocytic vesicles are accelerated in early apoptotic cells. With careful elimination of other factors involved in the intracellular transport, the reason for the acceleration is attributed to the elevation of adenosine triphosphate (ATP) concentration. More importantly, we show that the accelerated intracellular transport is critical for apoptosis, and apoptosis is delayed when the dynamics of intracellular transport is regulated back to the normal level. Our results demonstrate the important role of transport dynamics in apoptosis and shed light on the apoptosis mechanism from a physical perspective.


Subject(s)
Apoptosis , Cells/metabolism , Cytosol/metabolism , A549 Cells , Adenosine Triphosphate/metabolism , Biological Transport , Cells/cytology , Epidermal Growth Factor/metabolism , ErbB Receptors/metabolism , Humans
20.
Chem Soc Rev ; 49(12): 4043-4069, 2020 Jun 22.
Article in English | MEDLINE | ID: mdl-32417875

ABSTRACT

As simulators of organisms in Nature, soft robots have been developed over the past few decades. In particular, biohybrid robots constructed by integrating living cells with soft materials demonstrate the unique advantage of simulating the construction and functions of human tissues or organs, thus attracting extensive attention and research interest. Here, we present up-to-date studies concerning biohybrid robots with various biological actuators such as contractile cells and microorganisms. After presenting the basic components including biological components and synthetic materials, the controlling methods and locomotion modalities of biohybrid robots are clarified and summarized. We then focus on the applications, especially the biomedical applications, of the biohybrid robots including drug delivery, bioimaging, and tissue engineering. The challenges and prospects for the future development of biohybrid robots are also presented.


Subject(s)
Robotics , Animals , Biomimetics , Drug Carriers/chemistry , Electric Stimulation , Humans , Hydrogels/chemistry , Myocytes, Cardiac/physiology , Optical Imaging/methods , Tissue Engineering
SELECTION OF CITATIONS
SEARCH DETAIL