Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 360
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(8): e2309465121, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38354262

ABSTRACT

Phagocytes promptly resolve ingested targets to replenish lysosomes and maintain their responsiveness. The resolution process requires that degradative hydrolases, solute transporters, and proteins involved in lipid traffic are delivered and made active in phagolysosomes. It also involves extensive membrane remodeling. We report that cation channels that localize to phagolysosomes were essential for resolution. Specifically, the conductance of Na+ by two-pore channels (TPCs) and the presence of a Na+ gradient between the phagolysosome lumen and the cytosol were critical for the controlled release of membrane tension that permits deformation of the limiting phagolysosome membrane. In turn, membrane deformation was a necessary step to efficiently transport the cholesterol extracted from cellular targets, permeabilizing them to hydrolases. These results place TPCs as regulators of endomembrane remodeling events that precede target degradation in cases when the target is bound by a cholesterol-containing membrane. The findings may help to explain lipid metabolism dysfunction and autophagic flux impairment reported in TPC KO mice and establish stepwise regulation to the resolution process that begins with lysis of the target.


Subject(s)
Phagosomes , Two-Pore Channels , Mice , Animals , Phagosomes/metabolism , Lysosomes/metabolism , Hydrolases/metabolism , Cholesterol/metabolism
2.
Nature ; 581(7807): 221-224, 2020 05.
Article in English | MEDLINE | ID: mdl-32225175

ABSTRACT

A novel severe acute respiratory syndrome (SARS)-like coronavirus (SARS-CoV-2) recently emerged and is rapidly spreading in humans, causing COVID-191,2. A key to tackling this pandemic is to understand the receptor recognition mechanism of the virus, which regulates its infectivity, pathogenesis and host range. SARS-CoV-2 and SARS-CoV recognize the same receptor-angiotensin-converting enzyme 2 (ACE2)-in humans3,4. Here we determined the crystal structure of the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 (engineered to facilitate crystallization) in complex with ACE2. In comparison with the SARS-CoV RBD, an ACE2-binding ridge in SARS-CoV-2 RBD has a more compact conformation; moreover, several residue changes in the SARS-CoV-2 RBD stabilize two virus-binding hotspots at the RBD-ACE2 interface. These structural features of SARS-CoV-2 RBD increase its ACE2-binding affinity. Additionally, we show that RaTG13, a bat coronavirus that is closely related to SARS-CoV-2, also uses human ACE2 as its receptor. The differences among SARS-CoV-2, SARS-CoV and RaTG13 in ACE2 recognition shed light on the potential animal-to-human transmission of SARS-CoV-2. This study provides guidance for intervention strategies that target receptor recognition by SARS-CoV-2.


Subject(s)
Betacoronavirus/chemistry , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/metabolism , Receptors, Virus/chemistry , Receptors, Virus/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Zoonoses/virology , Angiotensin-Converting Enzyme 2 , Animals , Betacoronavirus/drug effects , Betacoronavirus/metabolism , Binding Sites , COVID-19 , China/epidemiology , Chiroptera/virology , Coronavirus/chemistry , Coronavirus/isolation & purification , Coronavirus Infections/drug therapy , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Coronavirus Infections/virology , Crystallization , Crystallography, X-Ray , Disease Reservoirs/virology , Eutheria/virology , Humans , Models, Molecular , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , Protein Binding , Protein Domains , Protein Stability , Severe acute respiratory syndrome-related coronavirus/chemistry , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Zoonoses/epidemiology , Zoonoses/transmission
3.
Proc Natl Acad Sci U S A ; 119(44): e2206509119, 2022 11.
Article in English | MEDLINE | ID: mdl-36256797

ABSTRACT

The sudden emergence and rapid spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) omicron variant has raised questions about its animal reservoir. Here, we investigated receptor recognition of the omicron's receptor-binding domain (RBD), focusing on four of its mutations (Q493R, Q498R, N501Y, and Y505H) surrounding two mutational hotspots. These mutations have variable effects on the RBD's affinity for human angiotensin-converting enzyme 2 (ACE2), but they all enhance the RBD's affinity for mouse ACE2. We further determined the crystal structure of omicron RBD complexed with mouse ACE2. The structure showed that all four mutations are viral adaptations to mouse ACE2: three of them (Q493R, Q498R, and Y505H) are uniquely adapted to mouse ACE2, whereas the other one (N501Y) is adapted to both human ACE2 and mouse ACE2. These data reveal that the omicron RBD was well adapted to mouse ACE2 before omicron started to infect humans, providing insight into the potential evolutionary origin of the omicron variant.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Animals , Humans , Mice , Angiotensin-Converting Enzyme 2/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/metabolism , Peptidyl-Dipeptidase A/metabolism , COVID-19/genetics , Protein Binding , Mutation
4.
Clin Infect Dis ; 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38483935

ABSTRACT

BACKGROUND: Growing evidence indicates antimicrobial resistance disproportionately affects individuals living in socially vulnerable areas. This study evaluated the association between Streptococcus pneumoniae (SP) antimicrobial resistance (AMR) and the CDC/ATSDR Social Vulnerability Index (SVI) in the United States. METHODS: Adult patients ≥ 18 years with 30-day nonduplicate SP isolates from ambulatory/hospital settings from January 2011-December 2022 with zip codes of residence were evaluated across 177 facilities in the BD Insights Research Database. Isolates were identified as SP AMR if they were non-susceptible to ≥ 1 antibiotic class (macrolide, tetracycline, extended-spectrum cephalosporins, or penicillin). Associations between SP AMR and SVI score (overall and themes) were evaluated using generalized estimating equations with repeated measurements within county to account for within-cluster correlations. RESULTS: Of 8,008 unique SP isolates from 574 US counties across 39 states, the overall proportion of AMR was 49.9%. A significant association between socioeconomic status (SES) theme and SP AMR was detected with higher SES theme SVI score (indicating greater social vulnerability) associated with greater risk of AMR. On average, a decile increase of SES, indicating greater vulnerability, was associated with a 1.28% increased risk of AMR (95% confidence interval [CI], 0.61%, 1.95%; P=0.0002). A decile increase of household characteristic score was associated with a 0.81% increased risk in SP AMR (95% CI,0.13%, 1.49%; P=0.0197). There was no association between racial/ethnic minority status, housing type and transportation theme, or overall SVI score and SP AMR. CONCLUSIONS: SES and household characteristics were the SVI themes most associated with SP AMR.

5.
J Virol ; 97(11): e0144823, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37855638

ABSTRACT

IMPORTANCE: The COVID-19 pandemic exposed limitations of conventional antibodies as therapeutics, including high cost, limited potency, ineffectiveness against new viral variants, and primary reliance on injection-only delivery. Nanobodies are single-domain antibodies with therapeutic potentials. We discovered three anti-SARS-CoV-2 nanobodies, named Nanosota-2, -3, and -4, from an immunized alpaca. Nanosota-2 is super potent against prototypic SARS-CoV-2, Nanosota-3 is highly potent against the omicron variant, and Nanosota-4 is effective against both SARS-CoV-1 and SARS-CoV-2. In addition to their super potency and combined broad antiviral spectrum, these nanobodies are cost-effective, can be easily adapted to new viral variants through phage display, and can potentially be administered as inhalers. The Nanosota series are powerful therapeutic candidates to combat circulating SARS-CoV-2 and prepare for possible future coronavirus pandemics.


Subject(s)
COVID-19 , SARS-CoV-2 , Single-Domain Antibodies , Humans , Antibodies, Neutralizing , Antibodies, Viral/therapeutic use , COVID-19/therapy , Pandemics , Single-Domain Antibodies/pharmacology , Spike Glycoprotein, Coronavirus
6.
BMC Psychiatry ; 24(1): 382, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773479

ABSTRACT

BACKGROUND: Evidence regarding the relationship between fasting blood glucose (FBG) and suicide attempts (SA) in patients with major depressive disorder (MDD) was limited. Therefore, the objective of this research was to investigate whether FBG was independently related to SA in Chinese patients with first-episode drug-naïve (FEDN) MDD after adjusting for other covariates. METHODS: The present study was a cross-sectional study. A total of 1718 participants (average age: 34.9 ± 12.4 years, 65.8% females) with FEDN MDD were involved in a hospital in China from September 2016 to December 2018. Multiple logistic regression analysis and smooth curve fitting were used to estimate the association between FBG and the risk of SA. The threshold effect was examined by the two-piecewise linear regression model. Interaction and stratified analyses were conducted according to sex, education, marital status, comorbid anxiety, and psychotic symptoms. RESULTS: The prevalence of SA in patients with FEDN MDD was 20.1%. The result of fully adjusted binary logistic regression showed FBG was positively associated with the risk of SA (odds ratio (OR) = 1.62, 95% CI: 1.13-2.32). Smoothing plots also revealed a nonlinear relationship between FBG and SA, with the inflection point of FBG being 5.34 mmol/l. The effect sizes and the confidence intervals on the left and right sides of the inflection point were 0.53 (0.32-0.88, P = 0.014) and 1.48 (1.04-2.10, P = 0.030), respectively. CONCLUSIONS: A U-shaped relationship between FBG and SA in FEDN MDD patients was found, with the lowest risk of SA at a FBG of 5.34 mmol/l, indicating that both the lower and higher FBG levels may lead to an increased risk of SA.


Subject(s)
Blood Glucose , Depressive Disorder, Major , Suicide, Attempted , Humans , Female , Male , Depressive Disorder, Major/blood , Depressive Disorder, Major/epidemiology , Adult , Cross-Sectional Studies , Suicide, Attempted/statistics & numerical data , Suicide, Attempted/psychology , China/epidemiology , Blood Glucose/analysis , Middle Aged , Fasting/blood , Young Adult , Risk Factors , Prevalence , East Asian People
7.
Nephrology (Carlton) ; 2024 May 12.
Article in English | MEDLINE | ID: mdl-38735649

ABSTRACT

AIM: The impaired function of tubular mitochondria is critical in diabetic kidney disease (DKD) progression. RUNX3 is down-regulated in DKD models. We intend to explore the effects of RUNX3 on mitochondrial dysfunction and renal tubule injury in DKD and related mechanisms. METHODS: The development of diabetes models involved injecting mice with streptozotocin while treating HK-2 cells with high glucose (HG). By using immunohistochemical techniques, the renal localizations of RUNX3 were identified. Levels of adenosine triphosphate (ATP), mitochondrial membrane potential, and biochemical index were detected by appropriate kits. Reactive oxygen species (ROS) generation was assessed with dihydroethidium and MitoSOX Red staining. Apoptosis was assessed by flow cytometry and TUNEL. RUNX3 ubiquitination was measured. RESULTS: RUNX3 was mainly present in renal tubules. Overexpressing RUNX3 increased Mfn2, Mfn1, ATP levels, and mitochondrial membrane potential, reduced Drp1 and ROS levels and cell apoptosis, as well as Cyt-C release into the cytoplasm. RUNX3 overexpression displayed a reduction in urinary albumin to creatinine ratio, Hemoglobin A1c, serum creatinine, and blood urea nitrogen. Overexpressing TLR4 attenuated the inhibitory effect of RUNX3 overexpression on mitochondrial dysfunction and cell apoptosis. HG promoted RUNX3 ubiquitination and SMURF2 expression. RUNX3 knockdown cancelled the inhibitory effect of SMURF2 on mitochondrial dysfunction and cell apoptosis. CONCLUSION: SMURF2 interference inhibits RUNX3 ubiquitination and TLR4/NF-κB signalling pathway, thereby alleviating renal tubule injury.

8.
Ecotoxicol Environ Saf ; 280: 116520, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38833985

ABSTRACT

Early studies have shown that the gut microbiota is a critical target during cadmium exposure. The prebiotic activity of epigallocatechin-3-gallate (EGCG) plays an essential role in treating intestinal inflammation and damage. However, the exact intestinal barrier protection mechanism of EGCG against cadmium exposure remains unclear. In this experiment, four-week-old mice were exposed to cadmium (5 mg kg-1) for four weeks. Through 16 S rDNA analysis, we found that cadmium disrupted the gut microbiota and inhibited the indole metabolism pathway of tryptophan (TRP), which serves as the principal microbial production route for endogenous ligands to activate the aryl hydrocarbon receptor (AhR). Additionally, cadmium downregulated the intestinal AhR signaling pathway and harmed the intestinal barrier function. Treatment with EGCG (20 mg kg-1) and the AhR agonist 6-Formylindolo[3,2-b] carbazole (FICZ) (1 µg/d) significantly activated the AhR pathway and alleviated intestinal barrier injury. Notably, EGCG partially restored the gut microbiota and upregulated the TRP-indole metabolism pathway to increase the level of indole-related AhR agonists. Our findings demonstrate that cadmium dysregulates common gut microbiota to disrupt TRP metabolism, impairing the AhR signaling pathway and intestinal barrier. EGCG reduces cadmium-induced intestinal functional impairment by intervening in the intestinal microbiota to metabolize AhR agonists. This study offers insights into the toxic mechanisms of environmental cadmium and a potential mechanism to protect the intestinal barrier with EGCG.


Subject(s)
Cadmium , Catechin , Gastrointestinal Microbiome , Receptors, Aryl Hydrocarbon , Signal Transduction , Tryptophan , Animals , Catechin/analogs & derivatives , Catechin/pharmacology , Receptors, Aryl Hydrocarbon/metabolism , Gastrointestinal Microbiome/drug effects , Mice , Tryptophan/metabolism , Tryptophan/analogs & derivatives , Cadmium/toxicity , Signal Transduction/drug effects , Male , Intestines/drug effects , Intestines/pathology , Mice, Inbred C57BL , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Indoles/pharmacology , Carbazoles/pharmacology
9.
Chem Soc Rev ; 52(1): 97-162, 2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36448270

ABSTRACT

Uranium extraction from seawater (UES), a potential approach to securing the long-term uranium supply and sustainability of nuclear energy, has experienced significant progress in the past decade. Promising adsorbents with record-high capacities have been developed by diverse innovative synthetic strategies, and scale-up marine field tests have been put forward by several countries. However, significant challenges remain in terms of the adsorbents' properties in complex marine environments, deployment methods, and the economic viability of current UES systems. This review presents an up-to-date overview of the latest advancements in the UES field, highlighting new insights into the mechanistic basis of UES and the methodologies towards the function-oriented development of uranium adsorbents with high adsorption capacity, selectivity, biofouling resistance, and durability. A distinctive emphasis is placed on emerging electrochemical and photochemical strategies that have been employed to develop efficient UES systems. The most recent achievements in marine tests by the major countries are summarized. Challenges and perspectives related to the fundamental, technical, and engineering aspects of UES are discussed. This review is envisaged to inspire innovative ideas and bring technical solutions towards the development of technically and economically viable UES systems.


Subject(s)
Uranium , Uranium/chemistry , Seawater/chemistry , Adsorption
10.
Water Sci Technol ; 89(3): 811-822, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38358504

ABSTRACT

Advanced oxidation technologies based on hydroxyl radical (•OH) and sulfate radical (SO4-•) are two common types of advanced oxidation technologies, but there are not many reports on the application of advanced oxidation methods in actual wastewater pretreatment. This article compares the pre-treatment performance of Fe2+/H2O2 and Fe2+/Persulfate systems in actual pharmaceutical wastewater, and combines EEM, GC-MS, and toxicity testing results to explore the differences in TOC, COD, and NH3-N removal rates, optimal catalyst dosage, applicable pH range, toxicity of effluent after reaction, and pollutant structure between the two systems. The results indicate that the Fe2+/H2O2 system has a higher pollutant removal rate (TOC: 71.9%, COD: 66.9%, NH3-N: 34.1%), but also requires a higher catalyst (Fe2+) concentration (6.0 g/L), and its effluent exhibits characteristic peaks of aromatic proteins. The Fe2+/Persulfate system has a wider pH range (pH ≈ 3-7) and is more advantageous in treating wastewater containing more cyclic organic compounds, but the effluent contains some sulfur-containing compounds. In addition, toxicity tests have shown that the toxicity reduction effect of the Fe2+/Persulfate system is stronger than that of the Fe2+/H2O2 system.


Subject(s)
Environmental Pollutants , Hydrogen Peroxide , Wastewater , Gas Chromatography-Mass Spectrometry , Sulfur Compounds , Pharmaceutical Preparations
11.
J Am Chem Soc ; 145(51): 28096-28110, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38088827

ABSTRACT

Bottom-up fabrication protocols for uniform 3D hierarchical structures in solution are rare. We report two different approaches to fabricate uniform 3D spherulites and their precursors using mixtures of poly(ferrocenyldimethylsilane) (PFS) block copolymer (BCP) and PFS homopolymer (HP). Both protocols are designed to promote defects in 2D assemblies that serve as intermediate structures. In a multistep seeded growth protocol, we add the BCP/HP mixture to (1D) rod-like PFS micelles in a selective solvent as first-generation seeds. This leads to 2D platelet structures. If this step is conducted at a high supersaturation, secondary crystals form on the basal surface of these platelets. Co-crystallization and rapid crystallization of BCP/HP promote the formation of defects that act as nucleation sites for secondary crystals, resulting in multilayer platelets. This is the key step. The multilayer platelets serve as second-generation seeds upon subsequent addition of BCP/HP blends and, with increasing supersaturation, lead to the sequential formation of uniform (3D) hedrites, sheaves, and spherulites. Similar structures can also be obtained by a simple one-pot direct self-assembly (heating-cooling-aging) protocol of PFS BCP/HP blends. In this case, for a carefully chosen but narrow temperature range, PFS HPs nucleate formation of uniform structures, and the annealing temperature regulates the supersaturation level. In both protocols, the competitive crystallization kinetics of HP/BCP affects the morphology. Both protocols exhibit broad generality. We believe the morphological transformation from 2D to 3D structures, regulated by defect formation, co-crystallization, and supersaturation levels, could apply to various semicrystalline polymers. Moreover, the 3D structures are sufficiently robust to serve as recoverable carriers for nanoparticle catalysts, exhibiting valuable catalytic activity and opening new possibilities for applications requiring exquisite 3D structures.

12.
Antimicrob Agents Chemother ; 67(5): e0001023, 2023 05 17.
Article in English | MEDLINE | ID: mdl-36912655

ABSTRACT

Due to the accelerated appearance of antimicrobial-resistant (AMR) pathogens in clinical infections, new first-in-class antibiotics, operating via novel modes of action, are desperately needed. Brevicidine, a bacterial nonribosomally produced cyclic lipopeptide, has shown potent and selective antimicrobial activity against Gram-negative pathogens. However, before our investigations, little was known about how brevicidine exerts its potent bactericidal effect against Gram-negative pathogens. In this study, we find that brevicidine has potent antimicrobial activity against AMR Enterobacteriaceae pathogens, with MIC values ranging between 0.5 µM (0.8 mg/L) and 2 µM (3.0 mg/L). In addition, brevicidine showed potent antibiofilm activity against the Enterobacteriaceae pathogens, with the same 100% inhibition and 100% eradication concentration of 4 µM (6.1 mg/L). Further mechanistic studies showed that brevicidine exerts its potent bactericidal activity by interacting with lipopolysaccharide in the outer membrane, targeting phosphatidylglycerol and cardiolipin in the inner membrane, and dissipating the proton motive force of bacteria. This results in metabolic perturbation, including the inhibition of ATP synthesis; the inhibition of the dehydrogenation of NADH; the accumulation of reactive oxygen species in bacteria; and the inhibition of protein synthesis. Finally, brevicidine showed a good therapeutic effect in a mouse peritonitis-sepsis model. Our findings pave the way for further research on the clinical applications of brevicidine to combat prevalent infections caused by AMR Gram-negative pathogens worldwide.


Subject(s)
Anti-Bacterial Agents , Enterobacteriaceae , Animals , Mice , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Bacteria , Lipopeptides/pharmacology , Microbial Sensitivity Tests , Gram-Negative Bacteria
13.
Hum Brain Mapp ; 44(17): 6245-6257, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37837649

ABSTRACT

Rumination is closely linked to the onset and maintenance of major depressive disorder (MDD). Prior neuroimaging studies have identified the association between self-reported rumination trait and the functional coupling among a network of brain regions using resting-state functional magnetic resonance imaging (MRI). However, little is known about the underlying neural circuitry mechanism during active rumination in MDD. Degree centrality (DC) is a simple metric to denote network integration, which is critical for higher-order psychological processes such as rumination. During an MRI scan, individuals with MDD (N = 45) and healthy controls (HC, N = 46) completed a rumination state task. We examined the interaction effect between the group (MDD vs. HC) and condition (rumination vs. distraction) on vertex-wise DC. We further characterized the identified brain region's functional involvement with Neurosynth and BrainMap. Network-wise seed-based functional connectivity (FC) analysis was also conducted for the identified region of interest. Finally, exploratory correlation analysis was conducted between the identified region of interest's network FCs and self-reported in-scanner affect levels. We found that a left superior frontal gyrus (SFG) region, generally overlapped with the frontal eye field, showed a significant interaction effect. Further analysis revealed its involvement with executive functions. FCs between this region, the frontoparietal, and the dorsal attention network (DAN) also showed significant interaction effects. Furthermore, its FC to DAN during distraction showed a marginally significant negative association with in-scanner affect level at the baseline. Our results implicated an essential role of the left SFG in the rumination's underlying neural circuitry mechanism in MDD and provided novel evidence for the conceptualization of rumination in terms of impaired executive control.


Subject(s)
Depressive Disorder, Major , Humans , Brain/diagnostic imaging , Prefrontal Cortex , Executive Function , Frontal Lobe , Magnetic Resonance Imaging , Brain Mapping
14.
Small ; 19(20): e2207771, 2023 May.
Article in English | MEDLINE | ID: mdl-36799180

ABSTRACT

Surface open polar sites within the voids of porous molecular crystals define the localized physicochemical environment for critical functions such as gas separation and molecular recognition. This study presents a new charge-assisted hydrogen bonding (H-bonding) motif, by exploiting inorganic ammonium (NH4 + ) cations as H-bond donors, to regulate the assembly of C2 -symmetric carboxylic tectons for building robust H-bonded frameworks with permanent ultra-micropores and open oxygen sites. Diverse building blocks are bridged by tetrahedral NH4 + to expand distinctive H-bonded networks with varied pore architectures. Particularly, the open polar oxygen sites can be switched by altering NH4 + sources to tune the deprotonation of carboxyl-containing tectons. The activated porous PTBA·NH4 ·DMF preserves the pore architecture and open polar oxygen sites, exhibiting remarkably selective sorption of CO2 (107.8 cm3 g-1 ,195 K) over N2 (11.2 cm3 g-1 , 77 K) and H2 (1.4 cm3 g-1 , 77 K).

15.
Small ; 19(28): e2207823, 2023 07.
Article in English | MEDLINE | ID: mdl-37029560

ABSTRACT

Macrophages as the main cause of cancer immunosuppression, how to effectively induce macrophage M1 polarization remain the major challenge in lung cancer therapy. Herein, inspired by endogenous reactions, a strategy is proposed to coactivate macrophage M1 polarization by reactive oxygen species (ROS) and nitric oxide (NO) with self-autocatalytic cascade reaction. To enhance the generation of NO and ROS, NO Precursor-Arginine as capping agents for inducing synthesis two kinds of chiral ruthenium nanozyme (D/L-Arginine@Ru). Under the properties of Ru nanozymes through synchronously mimicking the activity of oxidase and nitric oxide synthase (NOS), chiral Ru nanozyme can rapidly generate 1 O2 and O2 at first stage, and then catalyze Arginine to produce sufficient NO, thus enhance macrophage M1 polarization to reverse tumor immunosuppression. Moreover, combination the antitumor activity of 1 O2 , NO, the chiral Ru nanozymes realize the "cocktail therapy" by inducing tumor cell apoptosis as well as ferroptosis. In addition, the chirality influences the bioactivity of Ru nanozymes that L-Arginine@Ru shows the better therapeutic effect with stronger catalytic activity and natural homology. It is hoped the high performance of chiral Ru nanozyme with "cocktail therapy" is an effective therapeutic reagent and can provide a feasible treatment strategy for tumor catalytic therapy.


Subject(s)
Lung Neoplasms , Ruthenium , Humans , Reactive Oxygen Species , Nitric Oxide , Lung Neoplasms/drug therapy , Arginine , Macrophages
16.
J Virol ; 96(8): e0024922, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35343765

ABSTRACT

The highly contagious and fast-spreading omicron variant of SARS-CoV-2 infects the respiratory tracts efficiently. The receptor-binding domain (RBD) of the omicron spike protein recognizes human angiotensin-converting enzyme 2 (ACE2) as its receptor and plays a critical role in the tissue tropism of SARS-CoV-2. Here, we showed that the omicron RBD (strain BA.1) binds to ACE2 more strongly than does the prototypic RBD from the original Wuhan strain. We also measured how individual omicron mutations affect ACE2 binding. We further determined the crystal structure of the omicron RBD (engineered to facilitate crystallization) complexed with ACE2 at 2.6 Å. The structure shows that omicron mutations caused significant structural rearrangements of two mutational hot spots at the RBD/ACE2 interface, elucidating how each omicron mutation affects ACE2 binding. The enhanced ACE2 binding by the omicron RBD may facilitate the omicron variant's infection of the respiratory tracts where ACE2 expression level is low. Our study provides insights into the receptor recognition and tissue tropism of the omicron variant. IMPORTANCE Despite the scarcity of the SARS-CoV-2 receptor-human angiotensin-converting enzyme 2 (ACE2)-in the respiratory tract, the omicron variant efficiently infects the respiratory tract, causing rapid and widespread infections of COVID-19. The omicron variant contains extensive mutations in the receptor-binding domain (RBD) of its spike protein that recognizes human ACE2. Here, using a combination of biochemical and X-ray crystallographic approaches, we showed that the omicron RBD binds to ACE2 with enhanced affinity and also elucidated the role of each of the omicron mutations in ACE2 binding. The enhanced ACE2 binding by the omicron RBD may contribute to the omicron variant's new viral tropism in the respiratory tract despite the low level of ACE2 expression in the tissue. These findings help us to understand tissue tropism of the omicron variant and shed light on the molecular evolution of SARS-CoV-2.


Subject(s)
Angiotensin-Converting Enzyme 2 , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , COVID-19/virology , Humans , Mutation , Protein Binding , Protein Structure, Tertiary , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism
17.
Brain Behav Immun ; 111: 249-258, 2023 07.
Article in English | MEDLINE | ID: mdl-37146653

ABSTRACT

BACKGROUND: Growing evidence indicates high comorbid anxiety and depression in patients with asthma. However, the mechanisms underlying this comorbid condition remain unclear. The aim of this study was to investigate the role of inflammation in comorbid anxiety and depression in three asthma patient cohorts of the Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes (U-BIOPRED) project. METHODS: U-BIOPRED was conducted by a European Union consortium of 16 academic institutions in 11 European countries. A subset dataset from subjects with valid anxiety and depression measures and a large blood biomarker dataset were analysed, including 198 non-smoking patients with severe asthma (SAn), 65 smoking patients with severe asthma (SAs), 61 non-smoking patients with mild-to-moderate asthma (MMA), and 20 healthy non-smokers (HC). The Hospital Anxiety and Depression Scale was used to measure anxiety and depression and a series of inflammatory markers were analysed by the SomaScan v3 platform (SomaLogic, Boulder, Colo). ANOVA and the Kruskal-Wallis test were used for multiple-group comparisons as appropriate. RESULTS: There were significant group effects on anxiety and depression among the four cohort groups (p < 0.05). Anxiety and depression of SAn and SAs groups were significantly higher than that of MMA and HC groups (p < 0.05. There were significant differences in serum IL6, MCP1, CCL18, CCL17, IL8, and Eotaxin among the four groups (p < 0.05). Depression was significantly associated with IL6, MCP1, CCL18 level, and CCL17; whereas anxiety was associated with CCL17 only (p < 0.05). CONCLUSIONS: The current study suggests that severe asthma patients are associated with higher levels of anxiety and depression, and inflammatory responses may underlie this comorbid condition.


Subject(s)
Asthma , Interleukin-6 , Humans , Asthma/complications , Anxiety , Comorbidity , Inflammation/complications , Biomarkers
18.
Chemphyschem ; 24(7): e202200742, 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-36461716

ABSTRACT

Constructing well-organized organic frameworks with tailor-made functionalities potentially boost multi-domain applications. Hydrogen bonding (H-bonding) is a category of general and weak intermolecular interactions when compared with covalent bonding or metal-ligand coordination. Porous frameworks mainly assembled by H-bonding (named hydrogen-bonded organic frameworks, HOFs) are intrinsically capable of decomposing and regenerating, a distinctive advantage to improve their processability while expanding the applicability. This paper summarizes the basic building concepts of HOFs, including feasible hydrogen bonded motifs, effective molecular structures, and their emerging applications.

19.
BMC Gastroenterol ; 23(1): 335, 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37770848

ABSTRACT

INTRODUCE: The purpose of this study was to establish a comprehensive prognosis nomogram for patients with liver cirrhosis complicated with hepatic encephalopathy (HE) in the intensive care unit (ICU) and to evaluate the predictive value of the nomogram. METHOD: This study analyzed 620 patients with liver cirrhosis complicated with HE from the Medical Information Mart for Intensive Care III(MIMIC-III) database. The patients were randomly divided into two groups in a 7-to-3 ratio to form a training cohort (n = 434) and a validation cohort (n = 176). Cox regression analyses were used to identify associated risk variables. Based on the multivariate Cox regression model results, a nomogram was established using associated risk predictor variables to predict the 90-day survival rate of patients with cirrhosis complicated with HE. The new model was compared with the Sequential organ failure assessment (SOFA) scoring model in terms of the concordance index (C-index), the area under the curve (AUC) of receiver operating characteristic (ROC) analysis, the net reclassification improvement (NRI), the integrated discrimination improvement (IDI), calibration curve, and decision curve analysis (DCA). RESULTS: This study showed that older age, higher mean heart rate, lower mean arterial pressure, lower mean temperature, higher SOFA score, higher RDW, and the use of albumin were risk factors for the prognosis of patients with liver cirrhosis complicated with HE. The use of proton pump inhibitors (PPI) was a protective factor. The performance of the nomogram was evaluated using the C-index, AUC, IDI value, NRI value, and DCA curve, showing that the nomogram was superior to that of the SOFA model alone. Calibration curve results showed that the nomogram had excellent calibration capability. The decision curve analysis confirmed the good clinical application ability of the nomogram. CONCLUSION: This study is the first study of the 90-day survival rate prediction of cirrhotic patients with HE in ICU through the data of the MIMIC-III database. It is confirmed that the eight-factor nomogram has good efficiency in predicting the 90-day survival rate of patients.


Subject(s)
Hepatic Encephalopathy , Nomograms , Humans , Hepatic Encephalopathy/diagnosis , Hepatic Encephalopathy/etiology , Prognosis , Liver Cirrhosis/complications , Risk Factors
20.
Cell Mol Biol (Noisy-le-grand) ; 69(6): 208-213, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37605569

ABSTRACT

This study aimed to identify whether there are elevations or declines in specific plasma lipids in intertrochanteric fracture (ITF) patients which might serve as potential biomarkers for assessing the severity of trauma, or therapeutic targets for controlling post-traumatic responses. Ten metal work removal patients were enrolled. Their preoperative blood samples served as the control group (C group). Their 24-hour postoperative blood samples served as the moderate trauma group (M group). The ITF group was composed of 12 intertrochanteric fracture patients. A total of 707 lipid species were identified from 32 plasma samples (10 controls, 10 moderate trauma and 12 ITF samples). We first identified 31 lipids that were elevated and 6 lipids that were decreased in the more severe trauma group in aged patients, with an especially strong relationship among 14 lipids that are candidates as markers for trauma severity evaluation. Fourteen lipids were identified as potential markers of bone trauma. The definition of important lipids in trauma may not only provide guidance for the formulation of optimum ITF operation time, but may also have importance in other traumatic models, and in further understanding the components of the systemic inflammatory response for new drug targets.


Subject(s)
Lipids , Humans , Aged , Biomarkers , Postoperative Period
SELECTION OF CITATIONS
SEARCH DETAIL