Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Clin Chim Acta ; 556: 117843, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38387830

ABSTRACT

BACKGROUND: It is difficult to distinguish between acute myocardial infarction (AMI) and unstable angina (UA) due to their similar clinical features. In recent years, studies have shown that microbiomes have great potential in distinguishing diseases. The purpose of this study is to describe the composition of serum microbiome in the AMI and UA by 16S rDNA sequencing. METHODS: Based on the high-throughput detection platform and 16S rDNA amplification sequencing technology, this study detected the blood microbial composition of 55 patients with AMI and 62 patients with UA. Alpha diversity and Beta diversity analysis were used to compare the differences in microbial composition and bacterial colony structure between AMI and UA groups. We perform PCoA (Principal Co-ordinates Analysis) based on Unweighted Unifrac distance. In addition, various statistical methods were employed to examine the significance of differences in microbial composition and genus between the two groups. PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) was employed to predict KEGG (Kyoto Encyclopedia of Genes and Genomes) function from 16S sequencing data. Random forest was applied to identify biomarkers and construct the diagnostic model. Subsequently, the stability of the model was verified by 10-fold cross and the diagnostic effectiveness was evaluated through ROC (Receiver Operating Characteristic). RESULTS: In this study, we found that alpha diversity index of serum microbiome in AMI group was significantly higher than in UA group. T-test analysis demonstrated that the UA group presented a higher abundance of Ralstonia, Faecalibaculum and Gammaproteobacteria, while Bacteroides, Sphingomonas, Faecalibaculum, Haemophilus, Serratia, Bifidobacterium and Chloroplast were more abundant in the AMI group. The LefSe (LDA Effect Size) analysis showed that the Gammaproteobacteria, Proteobacteria, Ralstonia pickettli, Ralstonia, Burkholderiaceae and Burkholderiales were enriched in UA group, and Bacteroidales, Bacteroidia, Bacteroidota, Clostridia and Firmicutes were more abundant in the AMI group. Ten bacterial diagnostic models were constructed in the random forest. The area under the curve (AUC) in the training set was 88.01%, and the AUC value in the test set was 95.04%. CONCLUSION: In this study, the composition of blood microorganisms in the groups of patients with AMI and UA has been analyzed, providing novel insights for understanding the pathogenesis of AMI; Blood microbiome may serve as novel diagnostic biomarkers of AMI.


Subject(s)
Microbiota , Myocardial Infarction , Humans , Phylogeny , Myocardial Infarction/diagnosis , Microbiota/genetics , Biomarkers , DNA, Ribosomal
2.
Biomed Opt Express ; 15(1): 428-445, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38223168

ABSTRACT

Regular and narrow-band RGB cameras are recently explored for contactless SpO2 monitoring. Regular RGB cameras with cross-band overlap provide a high signal-to-noise-ratio (SNR) in measuring the photoplethysmographic signals but possess high dependency on the spectra of incident light, whereas narrow-band RGB cameras have better spectral independence but lower SNR especially in dim lighting conditions, such as in the neonatal intensive care unit (NICU). This paper proposes a notch RGB camera based SpO2 measurement approach that uses an optical notch filter to attenuate the wavelengths of 580-605 nm of a regular RGB camera to improve the spectral independence while maintaining high SNR in signal measurement. The proposed setup was validated in the lab condition (e.g. dark chamber) against the existing solutions for visible-light based camera-SpO2 measurement and further verified in the NICU on preterm infants. The clinical trial conducted in the NICU with 22 preterm infants shows that the notch RGB camera can achieve a mean absolute error (MAE) less than 4% for SpO2 measurement. This is the first showcase of continuous monitoring of absolute camera-SpO2 values in the NICU.

3.
Acta Biomater ; 182: 199-212, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38734283

ABSTRACT

Reducing plaque lipid content and enhancing plaque stability without causing extensive apoptosis of foam cells are ideal requirements for developing a safe and effective treatment of atherosclerosis. In this study, we synthesized IR780-Gd-OPN nanomicelles by conjugating osteopontin (OPN) and loading a gadolinium-macrocyclic ligand (Gd-DOTA) onto near-infrared dye IR780-polyethylene glycol polymer. The nanomicelles were employed for mild phototherapy of atherosclerotic plaques and dual-mode imaging with near-infrared fluorescence and magnetic resonance. In vitro results reveal that the mild phototherapy mediated by IR780-Gd-OPN nanomicelles not only activates heat shock protein (HSP) 27 to protect foam cells against apoptosis but also inhibits the nuclear factor kappa-B (NF-κB) pathway to regulate lipid metabolism and macrophage polarization, thereby diminishing the inflammatory response. In vivo results further validate that mild phototherapy effectively reduces plaque lipid content and size while simultaneously enhancing plaque stability by regulating the ratio of M1 and M2-type macrophages. In summary, this study presents a promising approach for developing a safe and highly efficient method for the precise therapeutic visualization of atherosclerosis. STATEMENT OF SIGNIFICANCE: The rupture of unstable atherosclerotic plaques is a major cause of high mortality rates in cardiovascular diseases. Therefore, the ideal outcome of atherosclerosis treatment is to reduce plaque size while enhancing plaque stability. To address this challenge, we designed IR780-Gd-OPN nanomicelles for mild phototherapy of atherosclerosis. This treatment can effectively reduce plaque size while significantly improving plaque stability by increasing collagen fiber content and elevating the ratio of M2/M1 macrophages, which is mainly attributed to the inhibition of the NF-κB signaling pathway by mild phototherapy-activated HSP27. In summary, our proposed mild phototherapy strategy provides a promising approach for safe and effective treatment of atherosclerosis.


Subject(s)
Micelles , NF-kappa B , Phototherapy , Plaque, Atherosclerotic , Plaque, Atherosclerotic/pathology , Animals , NF-kappa B/metabolism , Mice , Indoles/chemistry , Indoles/pharmacology , Male , Gadolinium/chemistry , Gadolinium/pharmacology , RAW 264.7 Cells , Signal Transduction/drug effects , Nanoparticles/chemistry , Mice, Inbred C57BL , Disease Progression , Humans
SELECTION OF CITATIONS
SEARCH DETAIL