Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 191
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Lancet ; 403(10445): 2720-2731, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38824941

ABSTRACT

BACKGROUND: Anti-PD-1 therapy and chemotherapy is a recommended first-line treatment for recurrent or metastatic nasopharyngeal carcinoma, but the role of PD-1 blockade remains unknown in patients with locoregionally advanced nasopharyngeal carcinoma. We assessed the addition of sintilimab, a PD-1 inhibitor, to standard chemoradiotherapy in this patient population. METHODS: This multicentre, open-label, parallel-group, randomised, controlled, phase 3 trial was conducted at nine hospitals in China. Adults aged 18-65 years with newly diagnosed high-risk non-metastatic stage III-IVa locoregionally advanced nasopharyngeal carcinoma (excluding T3-4N0 and T3N1) were eligible. Patients were randomly assigned (1:1) using blocks of four to receive gemcitabine and cisplatin induction chemotherapy followed by concurrent cisplatin radiotherapy (standard therapy group) or standard therapy with 200 mg sintilimab intravenously once every 3 weeks for 12 cycles (comprising three induction, three concurrent, and six adjuvant cycles to radiotherapy; sintilimab group). The primary endpoint was event-free survival from randomisation to disease recurrence (locoregional or distant) or death from any cause in the intention-to-treat population. Secondary endpoints included adverse events. This trial is registered with ClinicalTrials.gov (NCT03700476) and is now completed; follow-up is ongoing. FINDINGS: Between Dec 21, 2018, and March 31, 2020, 425 patients were enrolled and randomly assigned to the sintilimab (n=210) or standard therapy groups (n=215). At median follow-up of 41·9 months (IQR 38·0-44·8; 389 alive at primary data cutoff [Feb 28, 2023] and 366 [94%] had at least 36 months of follow-up), event-free survival was higher in the sintilimab group compared with the standard therapy group (36-month rates 86% [95% CI 81-90] vs 76% [70-81]; stratified hazard ratio 0·59 [0·38-0·92]; p=0·019). Grade 3-4 adverse events occurred in 155 (74%) in the sintilimab group versus 140 (65%) in the standard therapy group, with the most common being stomatitis (68 [33%] vs 64 [30%]), leukopenia (54 [26%] vs 48 [22%]), and neutropenia (50 [24%] vs 46 [21%]). Two (1%) patients died in the sintilimab group (both considered to be immune-related) and one (<1%) in the standard therapy group. Grade 3-4 immune-related adverse events occurred in 20 (10%) patients in the sintilimab group. INTERPRETATION: Addition of sintilimab to chemoradiotherapy improved event-free survival, albeit with higher but manageable adverse events. Longer follow-up is necessary to determine whether this regimen can be considered as the standard of care for patients with high-risk locoregionally advanced nasopharyngeal carcinoma. FUNDING: National Natural Science Foundation of China, Key-Area Research and Development Program of Guangdong Province, Natural Science Foundation of Guangdong Province, Overseas Expertise Introduction Project for Discipline Innovation, Guangzhou Municipal Health Commission, and Cancer Innovative Research Program of Sun Yat-sen University Cancer Center. TRANSLATION: For the Chinese translation of the abstract see Supplementary Materials section.


Subject(s)
Antibodies, Monoclonal, Humanized , Chemoradiotherapy , Induction Chemotherapy , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Humans , Middle Aged , Male , Female , Nasopharyngeal Carcinoma/therapy , Nasopharyngeal Carcinoma/drug therapy , Adult , China/epidemiology , Nasopharyngeal Neoplasms/drug therapy , Nasopharyngeal Neoplasms/therapy , Chemoradiotherapy/methods , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/administration & dosage , Aged , Cisplatin/therapeutic use , Cisplatin/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Gemcitabine , Deoxycytidine/analogs & derivatives , Deoxycytidine/therapeutic use , Deoxycytidine/administration & dosage , Young Adult , Adolescent , Progression-Free Survival
2.
Drug Resist Updat ; 76: 101111, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38908233

ABSTRACT

Gemcitabine (GEM) based induction chemotherapy is a standard treatment for locoregionally advanced nasopharyngeal carcinoma (NPC). However, approximately 15 % of patients are still resistant to GEM-containing chemotherapy, which leads to treatment failure. Nevertheless, the underlying mechanisms of GEM resistance remain poorly understood. Herein, based on a microarray analysis, we identified 221 dysregulated lncRNAs, of which, DYNLRB2-AS1 was one of the most upregulated lncRNAs in GEM-resistance NPC cell lines. DYNLRB2-AS1 was shown to function as contain an oncogenic lncRNA that promoted NPC GEM resistance, cell proliferation, but inhibited cell apoptosis. Mechanistically, DYNLRB2-AS1 could directly bind to the DHX9 protein and prevent its interaction with the E3 ubiquitin ligase PRPF19, and thus blocking PRPF19-mediated DHX9 degradation, which ultimately facilitated the repair of DNA damage in the presence of GEM. Clinically, higher DYNLRB2-AS1 expression indicated an unfavourable overall survival of NPC patients who received induction chemotherapy. Overall, this study identified the oncogenic lncRNA DYNLRB2-AS1 as an independent prognostic biomarker for patients with locally advanced NPC and as a potential therapeutic target for overcoming GEM chemoresistance in NPC.


Subject(s)
DEAD-box RNA Helicases , Deoxycytidine , Gemcitabine , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , RNA, Long Noncoding , Animals , Humans , Antimetabolites, Antineoplastic/pharmacology , Antimetabolites, Antineoplastic/therapeutic use , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , DEAD-box RNA Helicases/metabolism , DEAD-box RNA Helicases/genetics , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Deoxycytidine/therapeutic use , Drug Resistance, Neoplasm/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Nasopharyngeal Carcinoma/drug therapy , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Carcinoma/metabolism , Nasopharyngeal Neoplasms/drug therapy , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/pathology , Nasopharyngeal Neoplasms/metabolism , Neoplasm Proteins , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Ubiquitination/drug effects
3.
BMC Genomics ; 25(1): 255, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38448893

ABSTRACT

BACKGROUND: Drug addiction is a serious problem worldwide and is influenced by genetic factors. The present study aimed to investigate the association between genetics and drug addiction among Han Chinese. METHODS: A total of 1000 Chinese users of illicit drugs and 9693 healthy controls were enrolled and underwent single nucleotide polymorphism (SNP)-based and haplotype-based association analyses via whole-genome genotyping. RESULTS: Both single-SNP and haplotype tests revealed associations between illicit drug use and several immune-related genes in the major histocompatibility complex (MHC) region (SNP association: log10BF = 15.135, p = 1.054e-18; haplotype association: log10BF = 20.925, p = 2.065e-24). These genes may affect the risk of drug addiction via modulation of the neuroimmune system. The single-SNP test exclusively reported genome-wide significant associations between rs3782886 (SNP association: log10BF = 8.726, p = 4.842e-11) in BRAP and rs671 (SNP association: log10BF = 7.406, p = 9.333e-10) in ALDH2 and drug addiction. The haplotype test exclusively reported a genome-wide significant association (haplotype association: log10BF = 7.607, p = 3.342e-11) between a region with allelic heterogeneity on chromosome 22 and drug addiction, which may be involved in the pathway of vitamin B12 transport and metabolism, indicating a causal link between lower vitamin B12 levels and methamphetamine addiction. CONCLUSIONS: These findings provide new insights into risk-modeling and the prevention and treatment of methamphetamine and heroin dependence, which may further contribute to potential novel therapeutic approaches.


Subject(s)
Methamphetamine , Substance-Related Disorders , Humans , Genome-Wide Association Study , Haplotypes , Polymorphism, Single Nucleotide , Substance-Related Disorders/genetics , Vitamin B 12 , China , Aldehyde Dehydrogenase, Mitochondrial
4.
Cancer Sci ; 115(2): 412-426, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38115797

ABSTRACT

Docetaxel is the preferred chemotherapeutic agent in patients with castrate-resistant prostate cancer (CRPC). However, patients eventually develop docetaxel resistance and in the absence of effective treatment options. Consequently, it is essential to investigate the mechanisms generating docetaxel resistance and develop novel alternative therapeutic targets. RNA sequencing was undertaken on docetaxel-sensitive and docetaxel-resistant prostate cancer (PCa) cells. Subsequently, chemoresistance, cancer stemness, and lipid metabolism were investigated. To obtain insight into the precise activities and action mechanisms of NOTCH3 in docetaxel-resistant PCa, immunoprecipitation, mass spectrometry, ChIP, luciferase reporter assay, cell metabolism, and animal experiments were performed. Through RNA sequencing analysis, we found that NOTCH3 expression was markedly higher in docetaxel-resistant cells relative to parental cells, and that this trend was continued in docetaxel-resistant PCa tissues. Experiments in vitro and in vivo revealed that NOTCH3 enhanced stemness, lipid metabolism, and docetaxel resistance in PCa. Mechanistically, NOTCH3 is bound to TUBB3 and activates the MAPK signaling pathway. Moreover, NOTCH3 was directly regulated by MEF2A in docetaxel-resistant cells. Notably, targeting NOTCH3 and the MEF2A/TUBB3 signaling axis was related to docetaxel chemoresistance in PCa. Overall, these results demonstrated that NOTCH3 fostered stemness, lipid metabolism, and docetaxel resistance in PCa via the TUBB3 and MAPK signaling pathways. Therefore, NOTCH3 may be employed as a prognostic biomarker in PCa patients. NOTCH3 could be a therapeutic target for PCa patients, particularly those who have developed docetaxel resistance.


Subject(s)
Drug Resistance, Neoplasm , Prostatic Neoplasms , Male , Animals , Humans , Docetaxel/pharmacology , Docetaxel/therapeutic use , Drug Resistance, Neoplasm/genetics , Cell Line, Tumor , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Signal Transduction/genetics , Tubulin/metabolism , Receptor, Notch3/genetics
5.
Apoptosis ; 29(7-8): 1051-1069, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38553613

ABSTRACT

Dysregulation of deubiquitination contributes to various diseases, including cancer, and aberrant expression of deubiquitinating enzymes is involved in carcinoma progression. As a member of the ovarian tumor (OTU) deubiquitinases, OTUD4 is considered a tumor suppressor in many kinds of malignancies. The biological characteristics and mechanisms of OTUD4 in clear cell renal cell carcinoma (ccRCC) remain unclear. The downregulation of OTUD4 in ccRCC was confirmed based on the TCGA database and a validation cohort of 30-paired ccRCC and para-carcinoma samples. Moreover, OTUD4 expression was detected by immunohistochemistry in 50 cases of ccRCC tissues, and patients with lower levels of OTUD4 showed larger tumor size (p = 0.015). TCGA data revealed that patients with high expression of OTUD4 had a longer overall survival rate. In vitro and in vivo studies revealed that downregulation of OTUD4 was essential for tumor cell growth and metastasis in ccRCC, and OTUD4 overexpression inhibited these malignant phenotypes. We further found that OTUD4 sensitized ccRCC cells to Erastin-induced ferroptosis, and ferrostain-1 inhibited OTUD4-induced ferroptotic cell death. Mechanistic studies indicated that OTUD4 functioned as an anti-proliferative and anti-metastasic factor through the regulation of RNA-binding protein 47 (RBM47)-mediated activating transcription factor 3 (ATF3). OTUD4 directly interacted with RBM47 and promoted its stability via deubiquitination events. RBM47 was critical in ccRCC progression by regulating ATF3 mRNA stability, thereby promoting ATF3-mediated ferroptosis. RBM47 interference abolished the suppressive role of OTUD4 overexpression in ccRCC. Our findings provide mechanistic insight into OTUD4 of ccRCC progression and indicate a novel critical pathway OTUD4/RBM47/ATF3 may serve as a potential therapeutic pathway for ccRCC.


Subject(s)
Activating Transcription Factor 3 , Carcinoma, Renal Cell , Kidney Neoplasms , RNA-Binding Proteins , Animals , Female , Humans , Male , Mice , Middle Aged , Activating Transcription Factor 3/metabolism , Activating Transcription Factor 3/genetics , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Deubiquitinating Enzymes/genetics , Deubiquitinating Enzymes/metabolism , Ferroptosis/genetics , Ferroptosis/drug effects , Gene Expression Regulation, Neoplastic , Kidney Neoplasms/pathology , Kidney Neoplasms/genetics , Kidney Neoplasms/metabolism , Mice, Nude , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Ubiquitin-Specific Proteases/genetics , Ubiquitin-Specific Proteases/metabolism
6.
New Phytol ; 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39073209

ABSTRACT

Mycorrhizal associations are key mutualisms that shape the structure of forest communities and multiple ecosystem functions. However, we lack a framework for predicting the varying dominance of distinct mycorrhizal associations in an integrated proxy of multifunctionality across ecosystems. Here, we used the datasets containing diversity of mycorrhizal associations and 18 ecosystem processes related to supporting, provisioning, and regulating services to examine how the dominance of ectomycorrhiza (EcM) associations affects ecosystem multifunctionality in subtropical mountain forests in Southwest China. Meanwhile, we synthesized the prevalence of EcM-dominant effects on ecosystem functioning in forest biomes. Our results demonstrated that elevation significantly modified the distributions of EcM trees and fungal dominance, which in turn influenced multiple functions simultaneously. Multifunctionality increased with increasing proportion of EcM associations, supporting the ectomycorrhizal-dominance hypothesis. Meanwhile, we observed that the impacts of EcM dominance on individual ecosystem functions exhibited different relationships among forest biomes. Our findings highlight the importance of ectomycorrhizal dominance in regulating multifunctionality in subtropical forests. However, this ectomycorrhizal feedback in shaping ecosystem functions cannot necessarily be generalized across forests. Therefore, we argue that the predictions for ecosystem multifunctionality in response to the shifts of mycorrhizal composition could vary across space and time.

7.
Microvasc Res ; 151: 104612, 2024 01.
Article in English | MEDLINE | ID: mdl-37839527

ABSTRACT

BACKGROUND AND OBJECTIVE: Literature has reported that circular RNAs (circRNAs) are crucially associated with diabetic retinopathy (DR). Furthermore, circEHMT1 has been identified to maintain endothelial cell barrier function. This study aimed to investigate the mechanisms that regulate aberrant circEHMT1 expression and its role in the pathogenesis of DR. METHODS: In this study, retinal microvascular endothelial cells were exposed to a high glucose (HG) environment, and subsequently, tube formation and intercellular junction proteins were evaluated. Furthermore, the biological functions of circEHMT1 and its potential regulatory factor, eIF4A3, in microvascular endothelial cells under HG conditions were also assessed. In addition, the regulatory role of eIF4A3 on circEHMT1 expression was confirmed. Moreover, to elucidate the in vivo functions of eIF4A3 and circEHMT1, streptozotocin (STZ) was used to establish a DR model in rats. RESULTS: It was revealed that HG condition decreased circEHMT1 and eIF4A3 expressions and reduced ZO-1, Claudin-5, and Occludin levels in retinal microvascular endothelial cells. Furthermore, it was observed that eIF4A3 could regulate the expression of circEHMT1. Overexpression of eIF4A3 or circEHMT1 under HG conditions improved endothelial cell injury and decreased tube-formation ability. Additionally, in the DR rat model, eIF4A3 overexpression restored circEHMT1 levels and ameliorated retinal vasculature changes. CONCLUSION: Altogether, eIF4A3 regulates circEHMT1 expression, thereby affecting microvascular endothelial cell injury and tube formation. Further understanding the regulatory effect of eIF4A3 on circEHMT1 may provide novel therapeutic targets for DR.


Subject(s)
Diabetes Mellitus , Diabetic Retinopathy , Animals , Rats , Diabetic Retinopathy/metabolism , Endothelial Cells/metabolism , Glucose/metabolism , Retina/metabolism , Retinal Vessels/pathology
8.
Article in English | MEDLINE | ID: mdl-39140715

ABSTRACT

Four strains, designated dk4302T, dk4209, xlx-73T, and xlx-183, were isolated from Tibetan gazelle and red swamp crawfish collected from the Qinghai-Tibet Plateau and Jiangxi Province, PR China. The strains were Gram-stain-negative, aerobic, rod-shaped, non-motile, mucoid, and yellow-pigmented. Strains dk4302T and dk4209 grew at 10-40 °C and pH 6.0-9.0, while strains xlx-73T/xlx-183 grew at 15-40 °C and pH 6.0-10.0. Both strains exhibited growth in the presence of up to 3.5 % (w/v) NaCl. Phylogenetic and phylogenomic analyses based on the 16S rRNA gene sequences and 652 core genes, respectively, revealed that the four strains formed two distinct clusters in the genus Sphingobacterium. Strains dk4302T and dk4209 formed a distinct clade with Sphingobacterium hotanense XH4T and Sphingobacterium humi D1T. The most closely related strains to xlx-73T and xlx-183 were Sphingobacterium nematocida M-SX103T. The DNA G+C contents were 38.9 and 39.8 mol%. The digital DNA-DNA hybridization (dDDH) values between dk4302T and S. humi D1T and S. hotanense XH4T were 19.2 and 21.8 % (19.0 and 21.6 % for strain dk4209), respectively. The corresponding average nucleotide identity (ANI) values were 74.3 and 78.1 % (74.4 and 78.3 % for strain dk4209), respectively. The dDDH values between xlx-73T (xlx-183) and S. nematocida M-SX103T was 24.6 % (25.7 %). The corresponding ANI value was 85.7 % (85.5 % for strain xlx-183). The major fatty acid and respiratory quinone of dk4302T and xlx-73T were iso-C15:0 and MK7. The polar lipids identified in all of the novel strains were phosphatidylethanolamine, phosphoglycolipids, aminophospholipids, and phospholipids. A total of 61/190 (32.1 %) and 82/190 (43.2 %) carbon substrates were metabolized by strains dk4302T and xlx-73T in the Biolog MicroPlates, respectively. Based on the results from this polyphasic taxonomic study, two novel species in the genus Sphingobacteruim are proposed, namely Sphingobacteruim zhuxiongii sp. nov. (type strain dk4302T=CGMCC 1.16795T=JCM 33600T) and Sphingobacteruimluzhongxinii sp. nov. (type strain xlx-73T=GDMCC 1.1712T=JCM 33886T).


Subject(s)
Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Nucleic Acid Hybridization , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Sphingobacterium , Vitamin K 2 , RNA, Ribosomal, 16S/genetics , Fatty Acids/analysis , Sphingobacterium/genetics , Sphingobacterium/classification , Sphingobacterium/isolation & purification , DNA, Bacterial/genetics , Vitamin K 2/analogs & derivatives , Vitamin K 2/analysis , China , Animals , Tibet
9.
J Biochem Mol Toxicol ; 38(1): e23628, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38229317

ABSTRACT

This study aimed to explore the mechanism by which postembryonic renal ADAMTS18 methylation influences obstructive renal fibrosis in rats. After exposure to transforming growth factor (TGF)-ß1 during the embryonic period, analysis of postembryonic renal ADAMTS18 methylation and expression levels was conducted. Histological analysis was performed to assess embryonic kidney lesions and damage. Western blot analysis was used to determine the expression of renal fibrosis markers. Rats with ureteral obstruction and a healthy control group were selected. The methylation levels of ADAMTS18 in the different groups were analyzed. Western blot analysis and immunohistochemistry were performed to analyze the expression of renal fibrosis markers, and kidney-related indicators were measured. Treatment with TGF-ß1 resulted in abnormal development of the postembryonic kidney, which was characterized by rough kidney surfaces with mild depressions and irregularities on the outer surface. TGF-ß1 treatment significantly promoted ADAMTS18 methylation and activated the protein kinase B (AKT)/Notch pathway. Ureteral obstruction was induced to establish a renal hydronephrosis model, which led to renal fibrotic injury in newborn rats. Overexpression of the ADAMTS18 gene alleviated renal fibrosis. The western blot results showed that compared to that in the control group, the expression of renal fibrosis markers was significantly decreased after ADAMTS18 overexpression, and there was a thicker renal parenchymal tissue layer and significantly reduced p-AKT/AKT and Notch1 levels. TGF-ß1 can induce ADAMTS18 gene methylation in the postembryonic kidney, and the resulting downregulation of ADAMTS18 expression has long-term effects on kidney development, potentially leading to increased susceptibility to obstructive renal fibrosis. This mechanism may involve activation of the AKT/Notch pathway. Reversing ADAMTS18 gene methylation may reverse this process.


Subject(s)
ADAMTS Proteins , Kidney Diseases , Ureteral Obstruction , Animals , Rats , Fibrosis , Kidney , Kidney Diseases/metabolism , Methylation , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism , Ureteral Obstruction/metabolism , Ureteral Obstruction/pathology , ADAMTS Proteins/genetics
10.
J Appl Microbiol ; 135(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38533661

ABSTRACT

AIMS: This study explored the effects of slightly acidic electrolyzed water (SAEW) on algae to exploit technologies that effectively suppress algal growth in hydroponic systems and improve crop yield. METHODS AND RESULTS: The effects of SAEW on algal growth and the response mechanisms of algae to SAEW were investigated. Moreover, we studied whether the application of SAEW adversely affected tomato seedling growth. The results showed that SAEW significantly inhibited algal growth and destroyed the integrity of the algal cells. In addition, the intracellular oxidation-reduction system of algae was greatly influenced by SAEW. The H2O2, O2-, malondialdehyde (MDA), and reactive oxygen species (ROS) fluorescence signals were significantly induced by SAEW, and superoxide dismutase (SOD), peroxidase (POD), and glutathione reductase (GR) activities were greatly enhanced by a low SAEW concentration but significantly inhibited by SAEW with a high available chlorine concentration, which may contribute to heavy oxidative stress on algal growth and cell structure break down, eventually causing the death of algae and cell number decrease. We also found that regardless of the concentration of SAEW (from 10 to 40 mg L-1), there was no significant change in the germination index, length, or fresh weight of the hydroponic tomato seedlings. CONCLUSIONS: Our findings demonstrate that SAEW can be used in hydroponic systems to restrain algae with no negative impact on tomato plants.


Subject(s)
Hydrogen Peroxide , Hydroponics , Microalgae , Solanum lycopersicum , Water , Microalgae/growth & development , Microalgae/metabolism , Solanum lycopersicum/growth & development , Hydrogen Peroxide/metabolism , Water/metabolism , Malondialdehyde/metabolism , Reactive Oxygen Species/metabolism , Oxidative Stress/drug effects , Electrolysis , Superoxide Dismutase/metabolism , Glutathione Reductase/metabolism , Seedlings/growth & development , Seedlings/drug effects , Seedlings/metabolism , Chlorophyceae/drug effects , Chlorophyceae/growth & development , Oxidation-Reduction
11.
Environ Res ; 246: 118141, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38191046

ABSTRACT

The conventional activated sludge (CAS) process is a widely used method for wastewater treatment due to its effectiveness and affordability. However, it can be prone to sludge abnormalities such as sludge bulking/foaming and sludge loss, which can lead to a decrease in treatment efficiency. To address these issues, a novel bag-based fixed activated sludge (BBFAS) system utilizing mesh bags to contain the sludge was developed for low carbon/nitrogen ratio wastewater treatment. Pilot-scale experiments demonstrated that the BBFAS system could successfully avoid the sludge abnormalities. Moreover, it was not affected by mass transfer resistance and exhibited significantly higher nitrogen removal efficiency, surpassing that of the CAS system by up to 78%. Additionally, the BBFAS system demonstrated comparable organic matter removal efficiency to CAS system. 16S rRNA gene high-throughput sequencing revealed that the bacterial community structure within the BBFAS system was significantly different from that of the CAS system. The bacteria associated with ammonium removal were more abundant in the BBFAS system than in the CAS system. The abundance of Nitrospira in the BBFAS could reach up to 6% and significantly higher than that in the CAS system, and they were likely responsible for both ammonia-oxidizing and nitrite-oxidizing functions. Clear stratification of microbial communities was observed from the outer to inner layers of the bag components due to the gradients of dissolved oxygen and other substrates. Overall, this study presents a promising approach for avoiding activated sludge abnormalities while maintaining high pollutant removal performance.


Subject(s)
Microbiota , Sewage , Sewage/microbiology , Nitrification , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Nitrogen/analysis , Bioreactors/microbiology
12.
Environ Toxicol ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39087870

ABSTRACT

The health risks associated with microplastics have attracted widespread attention. Polystyrene microplastics (PS-MPs) can induce damage to cardiac tissue, while pyroptosis-mediated injury to the vascular endothelial plays a vital role in the pathogenesis of cardiovascular diseases. The study intended to explore the role and mechanism of NLR family pyrin domain containing 3 (NLRP3) mediated pyroptosis in PS-MPs causing the injury of vascular endothelial cells. In vivo, Wistar rats were exposed to 0.5, 5, and 50 mg/kg/d 0.5 µm PS-MPs. In vitro, the human vascular endothelial cells (HUVECs) were used for mechanistic studies. siRNA was used for silencing the NILRP3 gene. H&E staining and flow cytometry were performed to examine the vascular injury and cell membrane damage. The oxidative stress was detected by flow cytometry, immunofluorescence, and corresponding kits. ELISA were used to measure the levels of inflammatory factors. Real-time PCR and western blot were used to measure the expression of pyroptosis signaling pathway. In rats, PS-MPs could cause vascular damage, oxidative stress, and inflammatory response, and activated the pyroptosis signaling pathway. HUVECs exposure to PS-MPs, the vitality decreased in a dose-dependent manner, ROS and MDA were significantly increased while SOD was decreased. PS-MPs induced the onset of pyroptosis signaling pathway in HUVECs. Cell membrane damage and the levels of IL-Iß and IL-18 in HUVECs significantly increased, those are symbols for the development of pyroptosis. Inhibition of NLRP3-mediated pyroptosis effectively protected HUVECs from PS-MPs-induced damage. Pyroptosis played a vital role in controlling the vascular endothelial injury caused by PS-MPs.

13.
Environ Toxicol ; 39(7): 3967-3979, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38598732

ABSTRACT

Mono-(2-ethylhexyl) phthalate (MEHP) can accumulate in the liver and then lead to hepatic steatosis, while the underlying mechanism remains unclear. Inflammation plays an important role in the disorder of hepatic lipid metabolism. This study aims to clarify the role of the inflammatory response mediated by formyl peptide receptor 2 (FPR2) in steatosis of L02 cells exposed to MEHP. L02 cells were exposed to MEHP of different concentrations and different time. A steatosis model of L02 cells was induced with oleic acid and the cells were exposed to MEHP simultaneously. In addition, L02 cells were incubated with FPR2 antagonist and then exposed to MEHP. Lipid accumulation was determined by oil red O staining and extraction assay. The indicators related to lipid metabolism and inflammatory response were measured with appropriate kits. The relative expression levels of FPR2 and its ligand were determined by Western blot, and the interaction of them was detected by co-immunoprecipitation. As a result, MEHP exposure could promote the occurrence and progression of steatosis and the secretion of chemokines and inflammatory factors in L02 cells. MEHP could also affect the expression and activation of FPR2 and the secretion of FPR2 ligands. In addition, the promotion effect of MEHP on the secretion of total cholesterol and interleukin 1ß in L02 cells could be significantly inhibited by the FPR2 antagonist. We concluded that FPR2 might affect the promotion effect of MEHP on steatosis of L02 cells by mediating inflammatory response.


Subject(s)
Diethylhexyl Phthalate , Fatty Liver , Receptors, Formyl Peptide , Receptors, Lipoxin , Diethylhexyl Phthalate/analogs & derivatives , Diethylhexyl Phthalate/toxicity , Humans , Receptors, Formyl Peptide/metabolism , Cell Line , Receptors, Lipoxin/metabolism , Fatty Liver/chemically induced , Fatty Liver/pathology , Fatty Liver/metabolism , Lipid Metabolism/drug effects
14.
Vasa ; 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39052442

ABSTRACT

Background: This study aims to analyse the efficacy and safety of aspirin in the prevention of venous thromboembolism (VTE) for patients undergoing total hip arthroplasty (THA), total knee arthroplasty (TKA) or fracture. Patients and methods: Two independent investigators searched PubMed, Embase, Cochrane and ClinicalTrials.gov from January 2000 to June 2023 to retrieve randomized control trials (RCTs) about aspirin in VTE prevention after arthroplasty or fracture. Then, the relative risk (RR) was utilized to evaluate its efficiency and safety. Results: A total of 16 RCTs with 27,864 patients were included. There was no statistical difference in the incidence of deep-vein thrombosis (RR: 1.31, p = 0.100), pulmonary embolism (RR:1.05, p = 0.850), VTE (RR:1.28, p = 0.290), major bleeding (RR:0.96, p = 0.900), and death (RR:1.01, p = 0.960) between the aspirin group and the anticoagulants group. Subgroup analysis showed that a relatively higher incidence of deep-vein thrombosis in patients undergoing TKA (RR:1.49, p = 0.030), fracture (RR:1.48, p = 0.001), patients receiving 81 mg aspirin twice daily (RR:1.48, p = 0.001) and patients from North America (RR:1.57, p<0.001) when comparing aspirin with anticoagulants. Meanwhile, the incidence of VTE was higher in patients receiving 100 mg aspirin once daily (RR:1.82, p<0.001) compared with anticoagulants. Additionally, the incidence of all bleeding (RR:2.00, p = 0.030) was higher in patients receiving aspirin in Asia compared with anticoagulants. Conclusions: In terms of clinical effectiveness and safety, aspirin (antiplatelet agent) was generally not inferior to anticoagulants in the prevention of VTE after THA, TKA, or fracture. Notably, the clinical effectiveness of aspirin was affected by different surgical types, the doses of aspirin and races.

15.
Molecules ; 29(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38930783

ABSTRACT

Ultraviolet B (UVB) exposure can contribute to photoaging of skin. Cornus officinalis is rich in ursolic acid (UA), which is beneficial to the prevention of photoaging. Because UA is hardly soluble in water, the Cornus officinalis extract (COE) was obtained using water as the antisolvent to separate the components containing UA from the crude extract of Cornus officinalis. The effect of COE on UVB damage was assessed using Caenorhabditis elegans. The results showed that COE could increase the lifespan and enhance the antioxidant enzyme activity of C. elegans exposed to UVB while decreasing the reactive oxygen species (ROS) level. At the same time, COE upregulated the expression of antioxidant-related genes and promoted the migration of SKN-1 to the nucleus. Moreover, COE inhibited the expression of the skn-1 downstream gene and the extension of the lifespan in skn-1 mutants exposed to UVB, indicating that SKN-1 was required for COE to function. Our findings indicate that COE mainly ameliorates the oxidative stress caused by UVB in C. elegans via the SKN-1/Nrf2 pathway.


Subject(s)
Antioxidants , Caenorhabditis elegans Proteins , Caenorhabditis elegans , Cornus , Oxidative Stress , Plant Extracts , Triterpenes , Ultraviolet Rays , Ursolic Acid , Animals , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/metabolism , Triterpenes/pharmacology , Triterpenes/chemistry , Ultraviolet Rays/adverse effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Oxidative Stress/drug effects , Cornus/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Reactive Oxygen Species/metabolism , Skin Aging/drug effects , Skin Aging/radiation effects , Transcription Factors/metabolism , Transcription Factors/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Longevity/drug effects , Longevity/radiation effects , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics
16.
BMC Oral Health ; 24(1): 947, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39148066

ABSTRACT

BACKGROUND: Pulp stones are a type of pulp calcification, the presence of which tends to hinder endodontic treatment. Thus, this retrospective study aimed to analyze the distribution of pulp stones in the population in southwest China and identify the influencing factors. MATERIALS: Cone-beam computed tomography (CBCT) scans of 5066 teeth of 200 patients (91 males and 109 females) aged 16-45 years were evaluated. Pulp stones were marked as either present or absent when distinct radiopaque masses were found in the pulp cavity, then evaluated the occurrence of pulp stones with regard to tooth type, sex, age group, and contact it with tooth status. The Pearson chi-square test and nonparametric test were used for statistical analysis. RESULTS: Pulp stones were detected in 49.0% of patients and 7.4% of teeth, respectively. The incidence in females was 1.9 times higher than in males (OR = 1.9, 95% CI = 1.1-3.3, p = 0.001). Pulp stones were most prevalent in patients 36-45 years of age. Furthermore, in the age range of 16-45 years, the likelihood of finding pulp stones increased 1.1 times per year with age (OR = 1.1, 95% CI = 1.0-1.1, p = 0.032). A higher incidence of pulp stones was observed in the maxilla and molars. Of the 5066 teeth studied, pulp stones were more common in non-intact teeth. CONCLUSION: Nearly half of the population in southwest China had pulp stones. Pulp stones were found significantly more often in females, maxilla, and non-intact teeth, and their frequency increased with age. For dentists, understanding the distribution of pulp stones is crucial for the proper design of root canal treatment (RCT). TRIAL REGISTRATION: This study was approved by the Ethics Committee of the Affiliated Hospital of Stomatology, Southwest Medical University (certificate number: 20220818001).


Subject(s)
Cone-Beam Computed Tomography , Dental Pulp Calcification , Humans , Male , Female , Adult , Retrospective Studies , Adolescent , China/epidemiology , Middle Aged , Young Adult , Dental Pulp Calcification/diagnostic imaging , Dental Pulp Calcification/epidemiology , Age Factors , Sex Factors
18.
Cancers (Basel) ; 16(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38791985

ABSTRACT

Hyaluronic acid (HA) is a prominent component of the extracellular matrix, and its interactions with HA-interacting molecules (HAIMs) play a critical role in cancer development and disease progression. This review explores the multifaceted role of HAIMs in the context of cancer, focusing on their influence on disease progression by dissecting relevant cellular and molecular mechanisms in tumour cells and the tumour microenvironment. Cancer progression can be profoundly affected by the interactions between HA and HAIMs. They modulate critical processes such as cell adhesion, migration, invasion, and proliferation. The TME serves as a dynamic platform in which HAIMs contribute to the formation of a unique niche. The resulting changes in HA composition profoundly influence the biophysical properties of the TME. These modifications in the TME, in conjunction with HAIMs, impact angiogenesis, immune cell recruitment, and immune evasion. Therefore, understanding the intricate interplay between HAIMs and HA within the cancer context is essential for developing novel therapeutic strategies. Targeting these interactions offers promising avenues for cancer treatment, as they hold the potential to disrupt critical aspects of disease progression and the TME. Further research in this field is imperative for advancing our knowledge and the treatment of cancer.

19.
Ann Biomed Eng ; 52(8): 1982-1990, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38503945

ABSTRACT

The process of lens shape change in the eye to alter focussing (accommodation) is still not fully understood. Modelling approaches have been used to complement experimental findings in order to determine how constituents in the accommodative process influence the shape change of the lens. An unexplored factor in modelling is the role of the modelling software on the results of simulated shape change. Finite element models were constructed in both Abaqus and Ansys software using biological parameters from measurements of shape and refractive index of two 35-year-old lenses. The effect of zonular insertion on simulated shape change was tested on both 35-year-old lens models and with both types of software. Comparative analysis of shape change, optical power, and stress distributions showed that lens shape and zonular insertion positions affect the results of simulated shape change and that Abaqus and Ansys show differences in their respective models. The effect of the software package used needs to be taken into account when constructing finite element models and deriving conclusions.


Subject(s)
Finite Element Analysis , Lens, Crystalline , Models, Biological , Lens, Crystalline/physiology , Lens, Crystalline/anatomy & histology , Humans , Computer Simulation , Accommodation, Ocular/physiology , Adult , Software
20.
Anticancer Res ; 44(8): 3355-3364, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39060083

ABSTRACT

BACKGROUND/AIM: As an antagonist of bone morphogenetic protein (BMP), Noggin facilitates osteolytic bone metastases from breast cancer. The present study aimed to further dissect its role in oestrogen receptor (ER) positive breast cancer. MATERIALS AND METHODS: Noggin expression in ER positive breast cancer cell lines (MCF-7 and T-47D) was determined under conditions of oestrogen deprivation and treatment with 17-ß-oestradiol (E2). Activation of Smad1/5/8 in the oestrogen-regulated Noggin was examined using recombinant human BMP7 (rhBMP7) and a BMP receptor inhibitor (LDN-193189). The influence of Noggin on cellular functions was evaluated in MCF-7 and T-47D cell lines. Responses to tamoxifen and chemotherapy drugs were determined in MCF-7 and T-47D cells with Noggin over-expression using MTT assay. RESULTS: Noggin expression was negatively correlated with ERα in breast cancers. Noggin was up-regulated upon oestrogen deprivation, an effect that was eliminated by E2 Furthermore, increased levels of phosphorylated Smad1/5/8 were observed in the oestrogen-deprived MCF-7 and T-47D cells, which was prevented by E2 and LDN-193189, respectively. BMP7-induced Noggin expression and activation of Smad1/5/8 was also prevented by E2 and LDN-193189. Noggin over-expression resulted in an increase in the proliferation of both MCF-7 and T-47D cells. MCF-7 and T-47D cells over-expressing Noggin exhibited a good tolerance to tamoxifen (TAM), DTX, and 5-FU, but the percentage of viable cells was higher compared with the controls. CONCLUSION: Noggin expression can be repressed by oestrogen through inference with the BMP/Smad signalling. Over-expression of Noggin promotes the proliferation of MCF-7 and T-47D cells, contributing to drug resistance.


Subject(s)
Breast Neoplasms , Carrier Proteins , Estrogens , Signal Transduction , Smad Proteins , Tamoxifen , Humans , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Carrier Proteins/metabolism , Carrier Proteins/genetics , Female , Signal Transduction/drug effects , Smad Proteins/metabolism , Estrogens/pharmacology , Estrogens/metabolism , MCF-7 Cells , Tamoxifen/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Bone Morphogenetic Protein 7/metabolism , Bone Morphogenetic Protein 7/genetics , Gene Expression Regulation, Neoplastic/drug effects , Bone Morphogenetic Proteins/metabolism , Bone Morphogenetic Proteins/genetics , Estrogen Receptor alpha/metabolism , Estrogen Receptor alpha/genetics , Estradiol/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL