Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Antimicrob Agents Chemother ; 66(2): e0171521, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34978889

ABSTRACT

To date, there are no specific treatment regimens for HIV-1-related central nervous system (CNS) complications, such as HIV-1-associated neurocognitive disorders (HAND). Here, we report that two newly generated CNS-targeting HIV-1 protease (PR) inhibitors (PIs), GRL-08513 and GRL-08613, which have a P1-3,5-bis-fluorophenyl or P1-para-monofluorophenyl ring and P2-tetrahydropyrano-tetrahydrofuran (Tp-THF) with a sulfonamide isostere, are potent against wild-type HIV-1 strains and multiple clinically isolated HIV-1 strains (50% effective concentration [EC50]: 0.0001 to ∼0.0032 µM). As assessed with HIV-1 variants that had been selected in vitro to propagate at a 5 µM concentration of each HIV-1 PI (atazanavir, lopinavir, or amprenavir), GRL-08513 and GRL-08613 efficiently inhibited the replication of these highly PI-resistant variants (EC50: 0.003 to ∼0.006 µM). GRL-08513 and GRL-08613 also maintained their antiviral activities against HIV-2ROD as well as severely multidrug-resistant clinical HIV-1 variants. Additionally, when we assessed with the in vitro blood-brain barrier (BBB) reconstruction system, GRL-08513 and GRL-08613 showed the most promising properties of CNS penetration among the evaluated compounds, including the majority of FDA-approved combination antiretroviral therapy (cART) drugs. In the crystallographic analysis of compound-PR complexes, it was demonstrated that the Tp-THF rings at the P2 moiety of GRL-08513 and GRL-08613 form robust hydrogen bond interactions with the active site of HIV-1 PR. Furthermore, both the P1-3,5-bis-fluorophenyl- and P1-para-monofluorophenyl rings sustain greater contact surfaces and form stronger van der Waals interactions with PR than is the case with darunavir-PR complex. Taken together, these results strongly suggest that GRL-08513 and GRL-08613 have favorable features for patients infected with wild-type/multidrug-resistant HIV-1 strains and might serve as candidates for a preventive and/or therapeutic agent for HAND and other CNS complications.


Subject(s)
HIV Protease Inhibitors , HIV-1 , Blood-Brain Barrier , Central Nervous System/metabolism , Fluorine/pharmacology , HIV Protease/metabolism , HIV Protease Inhibitors/chemistry , HIV Protease Inhibitors/pharmacology , Humans , Virus Replication
2.
Article in English | MEDLINE | ID: mdl-31061155

ABSTRACT

There is currently no specific therapeutics for the HIV-1-related central nervous system (CNS) complications. Here we report that three newly designed CNS-targeting HIV-1 protease inhibitors (PIs), GRL-083-13, GRL-084-13, and GRL-087-13, which contain a P1-3,5-bis-fluorophenyl or P1-para-monofluorophenyl ring, and P2-bis-tetrahydrofuran (bis-THF) or P2-tetrahydropyrano-tetrahydrofuran (Tp-THF), with a sulfonamide isostere, are highly active against wild-type HIV-1 strains and primary clinical isolates (50% effective concentration [EC50], 0.0002 to ∼0.003 µM), with minimal cytotoxicity. These CNS-targeting PIs efficiently suppressed the replication of HIV-1 variants (EC50, 0.002 to ∼0.047 µM) that had been selected to propagate at high concentrations of conventional HIV-1 PIs. Such CNS-targeting PIs maintained their antiviral activity against HIV-2ROD as well as multidrug-resistant clinical HIV-1 variants isolated from AIDS patients who no longer responded to existing antiviral regimens after long-term therapy. Long-term drug selection experiments revealed that the emergence of resistant-HIV-1 against these CNS-targeting PIs was substantially delayed. In addition, the CNS-targeting PIs showed the most favorable CNS penetration properties among the tested compounds, including various FDA-approved anti-HIV-1 drugs, as assessed with the in vitro blood-brain barrier reconstruction system. Crystallographic analysis demonstrated that the bicyclic rings at the P2 moiety of the CNS-targeting PIs form strong hydrogen-bond interactions with HIV-1 protease (PR) active site. Moreover, both the P1-3,5-bis-fluorophenyl and P1-para-monofluorophenyl rings sustain greater van der Waals contacts with PR than in the case of darunavir (DRV). The data suggest that the present CNS-targeting PIs have desirable features for treating patients infected with wild-type and/or multidrug-resistant HIV-1 strains and might serve as promising preventive and/or therapeutic candidates for HIV-1-associated neurocognitive disorders (HAND) and other CNS complications.


Subject(s)
Central Nervous System Viral Diseases/drug therapy , HIV Infections/drug therapy , HIV Protease Inhibitors/chemistry , HIV Protease Inhibitors/pharmacology , HIV-1/drug effects , Animals , Astrocytes/drug effects , Astrocytes/virology , Blood-Brain Barrier/drug effects , Catalytic Domain , Central Nervous System Viral Diseases/virology , Crystallography, X-Ray , Drug Evaluation, Preclinical/methods , Drug Resistance, Viral/drug effects , HIV Infections/complications , HIV Infections/virology , HIV Protease/chemistry , HIV Protease/metabolism , HIV-1/isolation & purification , HIV-1/physiology , HIV-2/drug effects , Humans , Rats , Sulfonamides/chemistry , Virus Replication/drug effects
3.
Crit Rev Biochem Mol Biol ; 51(6): 497-512, 2016.
Article in English | MEDLINE | ID: mdl-27677933

ABSTRACT

The ubiquitin-proteasome system (UPS) plays a critical role in cellular protein homeostasis and is required for the turnover of short-lived and unwanted proteins, which are targeted by poly-ubiquitination for degradation. Proteasome is the key protease of UPS and consists of multiple subunits, which are organized into a catalytic core particle (CP) and a regulatory particle (RP). In Saccharomyces cerevisiae, proteasome holo-enzymes are engaged in degrading poly-ubiquitinated substrates and are mostly localized in the nucleus during cell proliferation. While in quiescence, the RP and CP are sequestered into motile and reversible storage granules in the cytoplasm, called proteasome storage granules (PSGs). The reversible nature of PSGs allows the proteasomes to be transported back into the nucleus upon exit from quiescence. Nuclear import of RP and CP through nuclear pores occurs via the canonical pathway that includes the importin-αß heterodimer and takes advantage of the Ran-GTP gradient across the nuclear membrane. Dependent on the growth stage, either inactive precursor complexes or mature holo-enzymes are imported into the nucleus. The present review discusses the dynamics of proteasomes including their assembly, nucleo-cytoplasmic transport during proliferation and the sequestration of proteasomes into PSGs during quiescence. [Formula: see text].


Subject(s)
Proteasome Endopeptidase Complex/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Ubiquitin/metabolism , Animals , Humans , Models, Molecular , Proteasome Endopeptidase Complex/analysis , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae Proteins/analysis , Ubiquitin/analysis , Ubiquitination
4.
Antimicrob Agents Chemother ; 60(12): 7046-7059, 2016 12.
Article in English | MEDLINE | ID: mdl-27620483

ABSTRACT

We report here that GRL-10413, a novel nonpeptidic HIV-1 protease inhibitor (PI) containing a modified P1 moiety and a hydroxyethylamine sulfonamide isostere, is highly active against laboratory HIV-1 strains and primary clinical isolates (50% effective concentration [EC50] of 0.00035 to 0.0018 µM), with minimal cytotoxicity (50% cytotoxic concentration [CC50] = 35.7 µM). GRL-10413 blocked the infectivity and replication of HIV-1NL4-3 variants selected by use of atazanavir, lopinavir, or amprenavir (APV) at concentrations of up to 5 µM (EC50 = 0.0021 to 0.0023 µM). GRL-10413 also maintained its strong antiviral activity against multidrug-resistant clinical HIV-1 variants isolated from patients who no longer responded to various antiviral regimens after long-term antiretroviral therapy. The development of resistance against GRL-10413 was significantly delayed compared to that against APV. In addition, GRL-10413 showed favorable central nervous system (CNS) penetration properties as assessed with an in vitro blood-brain barrier (BBB) reconstruction system. Analysis of the crystal structure of HIV-1 protease in complex with GRL-10413 demonstrated that the modified P1 moiety of GRL-10413 has a greater hydrophobic surface area and makes greater van der Waals contacts with active site amino acids of protease than in the case of darunavir. Moreover, the chlorine substituent in the P1 moiety interacts with protease in two distinct configurations. The present data demonstrate that GRL-10413 has desirable features for treating patients infected with wild-type and/or multidrug-resistant HIV-1 variants, with favorable CNS penetration capability, and that the newly modified P1 moiety may confer desirable features in designing novel anti-HIV-1 PIs.


Subject(s)
Drug Resistance, Multiple, Viral/drug effects , Ethylamines/pharmacology , HIV Protease Inhibitors/chemistry , HIV Protease Inhibitors/pharmacology , HIV Protease/chemistry , HIV-1/drug effects , Sulfonamides/pharmacology , Animals , Blood-Brain Barrier/drug effects , Carbamates/pharmacology , Cell Line , Central Nervous System/drug effects , Central Nervous System/virology , Crystallography, X-Ray , Darunavir/pharmacology , Drug Evaluation, Preclinical/methods , Drug Resistance, Multiple, Viral/genetics , Ethylamines/chemistry , Furans , HIV Protease/metabolism , HIV-1/genetics , Humans , Lopinavir/pharmacology , Microbial Sensitivity Tests , Peptides/chemistry , Peptides/pharmacology , Rats , Structure-Activity Relationship , Sulfonamides/chemistry , Virus Replication/drug effects
5.
J Virol ; 90(5): 2180-94, 2015 Nov 18.
Article in English | MEDLINE | ID: mdl-26581995

ABSTRACT

UNLABELLED: We identified three nonpeptidic HIV-1 protease inhibitors (PIs), GRL-015, -085, and -097, containing tetrahydropyrano-tetrahydrofuran (Tp-THF) with a C-5 hydroxyl. The three compounds were potent against a wild-type laboratory HIV-1 strain (HIV-1(WT)), with 50% effective concentrations (EC50s) of 3.0 to 49 nM, and exhibited minimal cytotoxicity, with 50% cytotoxic concentrations (CC50) for GRL-015, -085, and -097 of 80, >100, and >100 µM, respectively. All the three compounds potently inhibited the replication of highly PI-resistant HIV-1 variants selected with each of the currently available PIs and recombinant clinical HIV-1 isolates obtained from patients harboring multidrug-resistant HIV-1 variants (HIVMDR). Importantly, darunavir (DRV) was >1,000 times less active against a highly DRV-resistant HIV-1 variant (HIV-1DRV(R) P51); the three compounds remained active against HIV-1DRV(R) P51 with only a 6.8- to 68-fold reduction. Moreover, the emergence of HIV-1 variants resistant to the three compounds was considerably delayed compared to the case of DRV. In particular, HIV-1 variants resistant to GRL-085 and -097 did not emerge even when two different highly DRV-resistant HIV-1 variants were used as a starting population. In the structural analyses, Tp-THF of GRL-015, -085, and -097 showed strong hydrogen bond interactions with the backbone atoms of active-site amino acid residues (Asp29 and Asp30) of HIV-1 protease. A strong hydrogen bonding formation between the hydroxyl moiety of Tp-THF and a carbonyl oxygen atom of Gly48 was newly identified. The present findings indicate that the three compounds warrant further study as possible therapeutic agents for treating individuals harboring wild-type HIV and/or HIVMDR. IMPORTANCE: Darunavir (DRV) inhibits the replication of most existing multidrug-resistant HIV-1 strains and has a high genetic barrier. However, the emergence of highly DRV-resistant HIV-1 strains (HIVDRV(R) ) has recently been observed in vivo and in vitro. Here, we identified three novel HIV-1 protease inhibitors (PIs) containing a tetrahydropyrano-tetrahydrofuran (Tp-THF) moiety with a C-5 hydroxyl (GRL-015, -085, and -097) which potently suppress the replication of HIVDRV(R) . Moreover, the emergence of HIV-1 strains resistant to the three compounds was considerably delayed compared to the case of DRV. The C-5 hydroxyl formed a strong hydrogen bonding interaction with the carbonyl oxygen atom of Gly48 of protease as examined in the structural analyses. Interestingly, a compound with Tp-THF lacking the hydroxyl moiety substantially decreased activity against HIVDRV(R) . The three novel compounds should be further developed as potential drugs for treating individuals harboring wild-type and multi-PI-resistant HIV variants as well as HIVDRV(R) .


Subject(s)
Darunavir/pharmacology , Drug Resistance, Viral , Furans/pharmacology , HIV Protease Inhibitors/pharmacology , HIV-1/drug effects , Virus Replication/drug effects , Aged , Cell Survival/drug effects , Furans/chemistry , Furans/isolation & purification , Furans/toxicity , HIV Infections/virology , HIV Protease Inhibitors/chemistry , HIV Protease Inhibitors/isolation & purification , HIV Protease Inhibitors/toxicity , HIV-1/isolation & purification , HIV-1/physiology , Humans , Microbial Sensitivity Tests , Middle Aged , Molecular Structure , Mutation
6.
Antimicrob Agents Chemother ; 58(7): 3679-88, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24752271

ABSTRACT

In the present study, GRL008, a novel nonpeptidic human immunodeficiency virus type 1 (HIV-1) protease inhibitor (PI), and darunavir (DRV), both of which contain a P2-bis-tetrahydrofuranyl urethane (bis-THF) moiety, were found to exert potent antiviral activity (50% effective concentrations [EC50s], 0.029 and 0.002 µM, respectively) against a multidrug-resistant clinical isolate of HIV-1 (HIVA02) compared to ritonavir (RTV; EC50, >1.0 µM) and tipranavir (TPV; EC50, 0.364 µM). Additionally, GRL008 showed potent antiviral activity against an HIV-1 variant selected in the presence of DRV over 20 passages (HIVDRV(R)P20), with a 2.6-fold increase in its EC50 (0.097 µM) compared to its corresponding EC50 (0.038 µM) against wild-type HIV-1NL4-3 (HIVWT). Based on X-ray crystallographic analysis, both GRL008 and DRV showed strong hydrogen bonds (H-bonds) with the backbone-amide nitrogen/carbonyl oxygen atoms of conserved active-site amino acids G27, D29, D30, and D30' of HIVA02 protease (PRA02) and wild-type PR in their corresponding crystal structures, while TPV lacked H-bonds with G27 and D30' due to an absence of polar groups. The P2' thiazolyl moiety of RTV showed two conformations in the crystal structure of the PRA02-RTV complex, one of which showed loss of contacts in the S2' binding pocket of PRA02, supporting RTV's compromised antiviral activity (EC50, >1 µM). Thus, the conserved H-bonding network of P2-bis-THF-containing GRL008 with the backbone of G27, D29, D30, and D30' most likely contributes to its persistently greater antiviral activity against HIVWT, HIVA02, and HIVDRV(R)P20.


Subject(s)
Carbamates/pharmacology , Catalytic Domain/drug effects , Drug Resistance, Multiple, Viral/drug effects , Furans/pharmacology , HIV Protease Inhibitors/pharmacology , HIV-1/drug effects , HIV-1/enzymology , Sulfonamides/pharmacology , Crystallization , Darunavir , HIV Protease , Humans , Hydrogen Bonding , Molecular Conformation , Molecular Sequence Data , Protein Folding , Pyridines/pharmacology , Pyrones/pharmacology , X-Ray Diffraction
7.
Antimicrob Agents Chemother ; 57(10): 4920-7, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23877703

ABSTRACT

GRL007 and GRL008, two structurally related nonpeptidic human immunodeficiency virus type 1 (HIV-1) protease inhibitors (PIs) containing 3(R),3a(S),6a(R)-bis-tetrahydrofuranylurethane (bis-THF) as the P2 moiety and a sulfonamide isostere consisting of benzene carboxylic acid and benzene carboxamide as the P2' moiety, respectively, were evaluated for their antiviral activity and interactions with wild-type protease (PR(WT)). Both GRL007 (Ki of 12.7 pM with PR(WT)) and GRL008 (Ki of 8.9 pM) inhibited PR(WT) with high potency in vitro. X-ray crystallographic analysis of PR(WT) in complex with GRL007 or GRL008 showed that the bis-THF moiety of both compounds has three direct polar contacts with the backbone amide nitrogen atoms of Asp29 and Asp30 of PR(WT). The P2' moiety of both compounds showed one direct contact with the backbone of Asp30' and a bridging polar contact with Gly48' through a water molecule. Cell-based antiviral assays showed that GRL007 was inactive (50% effective concentration [EC50] of >1 µM) while GRL008 was highly active (EC50 of 0.04 µM) against wild-type HIV-1. High-performance liquid chromatography (HPLC)/mass spectrometry-based cellular uptake assays showed 8.1- and 84-fold higher intracellular concentrations of GRL008 than GRL007 in human MT-2 and MT-4 cell extracts, respectively. Thus, GRL007, in spite of its favorable enzyme-inhibitory activity and protease binding profile, exhibited a lack of antiviral activity in cell-based assays, most likely due to its compromised cellular uptake associated with its P2' benzene carboxylic acid moiety. The anti-HIV-1 potency, favorable toxicity, and binding profile of GRL008 suggest that further optimization of the P2' moiety may improve its antiretroviral features.


Subject(s)
Benzene/chemistry , Benzoates/chemistry , HIV Protease Inhibitors/chemistry , HIV Protease Inhibitors/pharmacology , HIV Protease/chemistry , Indoles/chemistry , Catalytic Domain , Cell Line , Chromatography, High Pressure Liquid , Humans , Spectrometry, Mass, Electrospray Ionization , Structure-Activity Relationship , X-Ray Diffraction
8.
Biochem Biophys Res Commun ; 430(3): 1022-7, 2013 Jan 18.
Article in English | MEDLINE | ID: mdl-23261453

ABSTRACT

The success of highly active antiretroviral therapy (HAART) in anti-HIV therapy is severely compromised by the rapidly developing drug resistance. HIV-1 protease inhibitors, part of HAART, are losing their potency and efficacy in inhibiting the target. Multi-drug resistant (MDR) 769 HIV-1 protease (resistant mutations at residues 10, 36, 46, 54, 62, 63, 71, 82, 84, 90) was selected for the present study to understand the binding to its natural substrates. The nine crystal structures of MDR769 HIV-1 protease substrate hepta-peptide complexes were analyzed in order to reveal the conserved structural elements for the purpose of drug design against MDR HIV-1 protease. Our structural studies demonstrated that highly conserved hydrogen bonds between the protease and substrate peptides, together with the conserved crystallographic water molecules, played a crucial role in the substrate recognition, substrate stabilization and protease stabilization. In addition, the absence of the key flap-ligand bridging water molecule might imply a different catalytic mechanism of MDR769 HIV-1 protease compared to that of wild type (WT) HIV-1 protease.


Subject(s)
Drug Resistance, Multiple, Viral , HIV Protease/chemistry , Water/chemistry , Crystallography, X-Ray , Drug Design , Enzyme Stability , HIV Protease/genetics , HIV Protease Inhibitors/chemistry , Humans , Hydrogen Bonding , Ligands , Mutation , Oligopeptides/chemistry , Protein Conformation , Substrate Specificity
9.
Biochem Biophys Res Commun ; 431(2): 232-8, 2013 Feb 08.
Article in English | MEDLINE | ID: mdl-23313846

ABSTRACT

Ritonavir (RTV) is a first generation HIV-1 protease inhibitor with rapidly emerging drug resistance. Mutations at residues 46, 54, 82 and 84 render the HIV-1 protease drug resistant against RTV. We report the crystal structure of multi-drug resistant (MDR) 769 HIV-1 protease (carrying resistant mutations at residues 10, 36, 46, 54, 62, 63, 71, 82, 84 and 90) complexed with RTV and the in vitro enzymatic IC(50) of RTV against MDR HIV-1 protease. The structural and functional studies demonstrate significant drug resistance of MDR HIV-1 protease against RTV, arising from reduced hydrogen bonds and Van der Waals interactions between RTV and MDR HIV-1 protease.


Subject(s)
Drug Resistance, Multiple, Viral , HIV Protease Inhibitors/chemistry , HIV Protease/chemistry , HIV-1/enzymology , Ritonavir/chemistry , Crystallography, X-Ray , HIV Protease/genetics , Humans , Hydrogen Bonding , Protein Binding , Protein Conformation , Protein Multimerization
10.
Biochem Biophys Res Commun ; 437(2): 199-204, 2013 Jul 26.
Article in English | MEDLINE | ID: mdl-23792096

ABSTRACT

Lopinavir (LPV) is a second generation HIV-1 protease inhibitor. Drug resistance has rapidly emerged against LPV since its US FDA approval on September 15, 2000. Mutations at residues 32I, L33F, 46I, 47A, I54V, V82A, I84V, and L90M render the protease drug resistant against LPV. We report the crystal structure of a clinical isolate multi-drug resistant (MDR) 769 HIV-1 protease (resistant mutations at residues 10, 36, 46, 54, 62, 63, 71, 82, 84, and 90) complexed with LPV and the in vitro enzymatic IC50 of LPV against MDR 769. The structural and functional studies demonstrate significant drug resistance of MDR 769 against LPV, arising from reduced interactions between LPV and the protease target.


Subject(s)
Crystallography, X-Ray/methods , HIV Protease Inhibitors/pharmacology , HIV Protease/chemistry , Lopinavir/pharmacology , Drug Resistance, Viral/genetics , HIV Protease Inhibitors/chemistry , Hydrogen Bonding , Lopinavir/chemistry , Models, Molecular
11.
Biochem Biophys Res Commun ; 438(4): 703-8, 2013 Sep 06.
Article in English | MEDLINE | ID: mdl-23921229

ABSTRACT

Multidrug-resistant (MDR) clinical isolate-769, human immunodeficiency virus type-1 (HIV-1) protease (PDB ID: 1TW7), was shown to exhibit wide-open flaps and an expanded active site cavity, causing loss of contacts with protease inhibitors. In the current study, the expanded active site cavity of MDR769 HIV-1 protease was screened with a series of peptide-inhibitors that were designed to mimic the natural substrate cleavage site, capsid/p2. Scanning Ala/Phe chemical mutagenesis approach was incorporated into the design of the peptide series to mimic the substrate co-evolution. Among the peptides synthesized and evaluated, a lead peptide (6a) with potent activity (IC50: 4.4nM) was identified against the MDR769 HIV-1 protease. Isothermal titration calorimetry data showed favorable binding profile for 6a against both wild type and MDR769 HIV-1 protease variants. Nuclear magnetic resonance spectrum of (15)N-labeled MDR769 HIV-1 protease in complex with 6a showed some major perturbations in chemical shift, supporting the peptide induced conformational changes in protease. Modeling analysis revealed multiple contacts between 6a and MDR769 HIV-1 protease. The lead peptide-inhibitor, 6a, with high potency and good binding profile can be used as the basis for developing potent small molecule inhibitors against MDR variants of HIV.


Subject(s)
HIV Infections/drug therapy , HIV Protease Inhibitors/chemistry , HIV Protease Inhibitors/pharmacology , HIV Protease/metabolism , HIV-1/enzymology , Peptides/chemistry , Peptides/pharmacology , Amino Acid Sequence , Drug Design , Drug Resistance, Multiple, Viral , HIV Infections/virology , HIV Protease/genetics , HIV Protease Inhibitors/metabolism , HIV-1/drug effects , HIV-1/genetics , Humans , Molecular Docking Simulation , Mutagenesis , Peptide Library , Peptides/genetics
12.
Biochem Biophys Res Commun ; 421(3): 413-7, 2012 May 11.
Article in English | MEDLINE | ID: mdl-22469467

ABSTRACT

Two potent inhibitors (compounds 1 and 2) of malarial aspartyl protease, plasmepsin-II, were evaluated against wild type (NL4-3) and multidrug-resistant clinical isolate 769 (MDR) variants of human immunodeficiency virus type-1 (HIV-1) aspartyl protease. Enzyme inhibition assays showed that both 1 and 2 have better potency against NL4-3 than against MDR protease. Crystal structures of MDR protease in complex with 1 and 2 were solved and analyzed. Crystallographic analysis revealed that the MDR protease exhibits a typical wide-open conformation of the flaps (Gly48 to Gly52) causing an overall expansion in the active site cavity, which, in turn caused unstable binding of the inhibitors. Due to the expansion of the active site cavity, both compounds showed loss of direct contacts with the MDR protease compared to the docking models of NL4-3. Multiple water molecules showed a rich network of hydrogen bonds contributing to the stability of the ligand binding in the distorted binding pockets of the MDR protease in both crystal structures. Docking analysis of 1 and 2 showed a decrease in the binding affinity for both compounds against MDR supporting our structure-function studies. Thus, compounds 1 and 2 show promising inhibitory activity against HIV-1 protease variants and hence are good candidates for further development to enhance their potency against NL4-3 as well as MDR HIV-1 protease variants.


Subject(s)
Antimalarials/chemistry , Aspartic Acid Proteases/chemistry , Drug Resistance, Multiple, Viral , HIV Protease Inhibitors/chemistry , HIV Protease/chemistry , Oligopeptides/chemistry , Pyridines/chemistry , Antimalarials/pharmacology , Aspartic Acid Proteases/antagonists & inhibitors , Crystallography, X-Ray , HIV Protease/genetics , HIV Protease/metabolism , HIV Protease Inhibitors/pharmacology , Humans , Oligopeptides/pharmacology , Pepstatins/chemistry , Pepstatins/pharmacology , Protein Conformation/drug effects , Pyridines/pharmacology
13.
Vaccines (Basel) ; 10(6)2022 May 25.
Article in English | MEDLINE | ID: mdl-35746449

ABSTRACT

Coronavirus disease-2019 (COVID-19) is a pandemic with a high morbidity rate occurring over recent years. COVID-19 is caused by the severe acute respiratory syndrome causing coronavirus type-2 (SARS-CoV-2). COVID-19 not only challenged mankind but also gave scope to the evolution of various vaccine design technologies. Although these vaccines protected and saved many lives, with the emerging viral strains, some of the strains may pose a threat to the currently existing vaccine design that is primarily based on the wild type spike protein of SARS-CoV-2. To evaluate the risk involved from such mutant viral strains, we performed a systematic in silico amino acid substitution of critical residues in the receptor binding domain (RBD) of the spike protein. Our molecular modeling analysis revealed significant topological changes in the RBD of spike protein suggesting that they could potentially contribute to the loss of antigen specificity for the currently existing therapeutic antibodies/vaccines, thus posing a challenge to the current vaccine strategies that are based on wild type viral spike protein epitopes. The structural deviations discussed in this article should be considered carefully in the future vaccine design.

14.
Acta Crystallogr D Biol Crystallogr ; 67(Pt 6): 524-32, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21636892

ABSTRACT

The flexible flaps and the 80s loops (Pro79-Ile84) of HIV-1 protease are crucial in inhibitor binding. Previously, it was reported that the crystal structure of multidrug-resistant 769 (MDR769) HIV-1 protease shows a wide-open conformation of the flaps owing to conformational rigidity acquired by the accumulation of mutations. In the current study, the effect of mutations on the conformation of the 80s loop of MDR769 HIV-1 protease variants is reported. Alternate conformations of Pro81 (proline switch) with a root-mean-square deviation of 3-4.8 Å in the C(α) atoms of the I10V mutant and a side chain with a `flipped-out' conformation in the A82F mutant cause distortion in the S1/S1' binding pockets that affects inhibitor binding. The A82S and A82T mutants show local changes in the electrostatics of inhibitor binding owing to the mutation from nonpolar to polar residues. In summary, the crystallographic studies of four variants of MDR769 HIV-1 protease presented in this article provide new insights towards understanding the drug-resistance mechanism as well as a basis for design of future protease inhibitors with enhanced potency.


Subject(s)
Drug Resistance, Multiple, Viral , HIV Protease/chemistry , HIV-1/enzymology , Mutation , Amino Acid Sequence , Crystallography, X-Ray , HIV Protease/genetics , HIV-1/genetics , Models, Molecular , Molecular Sequence Data , Protein Structure, Quaternary , Protein Structure, Tertiary , Sequence Alignment
15.
Antimicrob Agents Chemother ; 55(4): 1717-27, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21282450

ABSTRACT

We identified GRL-1388 and -1398, potent nonpeptidic human immunodeficiency virus type 1 (HIV-1) protease inhibitors (PIs) containing a bicyclic P2 functional moiety, tetrahydropyrano-tetrahydrofuran (Tp-THF). GRL-1388 was as potent as darunavir (DRV) against various drug-resistant HIV-1 laboratory strains with 50% effective concentration (EC(50)s) of 2.6 to 32.6 nM. GRL-1398 was significantly more potent against such variants than DRV with EC(50)s of 0.1 to 5.7 nM. GRL-1388 and -1398 were also potent against multiple-PI-resistant clinical HIV-1 variants ((CL)HIV-1(MDR)) with EC(50)s ranging from 2.7 to 21.3 nM and from 0.3 to 4.8 nM, respectively. A highly DRV-resistant HIV-1 variant selected in vitro remained susceptible to GRL-1398 with the EC(50) of 21.9 nM, while the EC(50) of DRV was 214.1 nM. When HIV-1(NL4-3) was selected with GRL-1398, four amino acid substitutions--leucine to phenylalanine at a position 10 (L10F), A28S, L33F, and M46I--emerged, ultimately enabling the virus to replicate in the presence of >1.0 µM the compound beyond 57 weeks of selection. When a mixture of 10 different (CL)HIV-1(MDR) strains was selected, the emergence of resistant variants was more substantially delayed with GRL-1398 than with GRL-1388 and DRV. Modeling analyses revealed that GRL-1398 had greater overall hydrogen bonding and hydrophobic interactions than GRL-1388 and DRV and that GRL-1388 and -1398 had hydrogen bonding interactions with the main chain of the active-site amino acids (Asp29 and Asp30) of protease. The present findings warrant that GRL-1398 be further developed as a potential drug for treating individuals with HIV-1 infection.


Subject(s)
Furans/chemistry , HIV Protease Inhibitors/chemistry , HIV-1/drug effects , Pyrans/chemistry , Animals , COS Cells , Carbamates/chemistry , Carbamates/pharmacology , Cell Line , Chlorocebus aethiops , Drug Resistance, Viral , HIV Protease Inhibitors/pharmacology , Humans , Sulfonamides/chemistry , Sulfonamides/pharmacology
16.
J Mol Biol ; 430(21): 4102-4118, 2018 10 19.
Article in English | MEDLINE | ID: mdl-30120952

ABSTRACT

Photoreceptors of the squid Loligo pealei contain a G-protein-coupled receptor (GPCR) signaling system that activates phospholipase C in response to light. Analogous to the mammalian visual system, signaling of the photoactivated GPCR rhodopsin is terminated by binding of squid arrestin (sArr). sArr forms a light-dependent, high-affinity complex with squid rhodopsin, which does not require prior receptor phosphorylation for interaction. This is at odds with classical mammalian GPCR desensitization where an agonist-bound phosphorylated receptor is needed to break stabilizing constraints within arrestins, the so-called "three-element interaction" and "polar core" network, before a stable receptor-arrestin complex can be established. Biophysical and mass spectrometric analysis of the squid rhodopsin-arrestin complex indicates that in contrast to mammalian arrestins, the sArr C-tail is not involved in a stable three-element interaction. We determined the crystal structure of C-terminally truncated sArr that adopts a basal conformation common to arrestins and is stabilized by a series of weak but novel polar core interactions. Unlike mammalian arrestin-1, deletion of the sArr C-tail does not influence kinetic properties of complex formation of sArr with the receptor. Hydrogen-deuterium exchange studies revealed the footprint of the light-activated rhodopsin on sArr. Furthermore, double electron-electron resonance spectroscopy experiments provide evidence that receptor-bound sArr adopts a conformation different from the one known for arrestin-1 and molecular dynamics simulations reveal the residues that account for the weak three-element interaction. Insights gleaned from studying this system add to our general understanding of GPCR-arrestin interaction.


Subject(s)
Arrestin/chemistry , Arrestin/metabolism , Decapodiformes/metabolism , Protein Interaction Domains and Motifs , Rhodopsin/chemistry , Rhodopsin/metabolism , Animals , Kinetics , Models, Molecular , Molecular Dynamics Simulation , Phosphorylation , Protein Binding , Protein Conformation , Spectrum Analysis , Structure-Activity Relationship
18.
Front Mol Biosci ; 4: 42, 2017.
Article in English | MEDLINE | ID: mdl-28676851

ABSTRACT

Proteolytic machineries containing multisubunit protease complexes and AAA-ATPases play a key role in protein quality control and the regulation of protein homeostasis. In these protein degradation machineries, the proteolytically active sites are formed by either threonines or serines which are buried inside interior cavities of cylinder-shaped complexes. In eukaryotic cells, the proteasome is the most prominent protease complex harboring AAA-ATPases. To degrade protein substrates, the gates of the axial entry ports of the protease need to be open. Gate opening is accomplished by AAA-ATPases, which form a hexameric ring flanking the entry ports of the protease. Protein substrates with unstructured domains can loop into the entry ports without the assistance of AAA-ATPases. However, folded proteins require the action of AAA-ATPases to unveil an unstructured terminus or domain. Cycles of ATP binding/hydrolysis fuel the unfolding of protein substrates which are gripped by loops lining up the central pore of the AAA-ATPase ring. The AAA-ATPases pull on the unfolded polypeptide chain for translocation into the proteolytic cavity of the protease. Conformational changes within the AAA-ATPase ring and the adjacent protease chamber create a peristaltic movement for substrate degradation. The review focuses on new technologies toward the understanding of the function and structure of AAA-ATPases to achieve substrate recognition, unfolding and translocation into proteasomes in yeast and mammalian cells and into proteasome-equivalent proteases in bacteria and archaea.

19.
Sci Rep ; 7(1): 12235, 2017 09 25.
Article in English | MEDLINE | ID: mdl-28947797

ABSTRACT

We report that GRL-09510, a novel HIV-1 protease inhibitor (PI) containing a newly-generated P2-crown-tetrahydrofuranylurethane (Crwn-THF), a P2'-methoxybenzene, and a sulfonamide isostere, is highly active against laboratory and primary clinical HIV-1 isolates (EC50: 0.0014-0.0028 µM) with minimal cytotoxicity (CC50: 39.0 µM). Similarly, GRL-09510 efficiently blocked the replication of HIV-1NL4-3 variants, which were capable of propagating at high-concentrations of atazanavir, lopinavir, and amprenavir (APV). GRL-09510 was also potent against multi-drug-resistant clinical HIV-1 variants and HIV-2ROD. Under the selection condition, where HIV-1NL4-3 rapidly acquired significant resistance to APV, an integrase inhibitor raltegravir, and a GRL-09510 congener (GRL-09610), no variants highly resistant against GRL-09510 emerged over long-term in vitro passage of the virus. Crystallographic analysis demonstrated that the Crwn-THF moiety of GRL-09510 forms strong hydrogen-bond-interactions with HIV-1 protease (PR) active-site amino acids and is bulkier with a larger contact surface, making greater van der Waals contacts with PR than the bis-THF moiety of darunavir. The present data demonstrate that GRL-09510 has favorable features for treating patients infected with wild-type and/or multi-drug-resistant HIV-1 variants, that the newly generated P2-Crwn-THF moiety confers highly desirable anti-HIV-1 potency. The use of the novel Crwn-THF moiety sheds lights in the design of novel PIs.


Subject(s)
Antiviral Agents/pharmacology , Furans/pharmacology , HIV Protease Inhibitors/pharmacology , HIV-1/drug effects , Antiviral Agents/toxicity , Cell Survival/drug effects , Crystallography, X-Ray , Drug Resistance, Viral , Furans/toxicity , HIV Protease/chemistry , HIV Protease/metabolism , HIV Protease Inhibitors/toxicity , Humans , Microbial Sensitivity Tests , Models, Molecular , Protein Binding , Serial Passage
20.
Mol Biol Cell ; 28(19): 2479-2491, 2017 Sep 15.
Article in English | MEDLINE | ID: mdl-28768827

ABSTRACT

Proteasomes are essential for protein degradation in proliferating cells. Little is known about proteasome functions in quiescent cells. In nondividing yeast, a eukaryotic model of quiescence, proteasomes are depleted from the nucleus and accumulate in motile cytosolic granules termed proteasome storage granules (PSGs). PSGs enhance resistance to genotoxic stress and confer fitness during aging. Upon exit from quiescence PSGs dissolve, and proteasomes are rapidly delivered into the nucleus. To identify key players in PSG organization, we performed high-throughput imaging of green fluorescent protein (GFP)-labeled proteasomes in the yeast null-mutant collection. Mutants with reduced levels of ubiquitin are impaired in PSG formation. Colocalization studies of PSGs with proteins of the yeast GFP collection, mass spectrometry, and direct stochastic optical reconstitution microscopy of cross-linked PSGs revealed that PSGs are densely packed with proteasomes and contain ubiquitin but no polyubiquitin chains. Our results provide insight into proteasome dynamics between proliferating and quiescent yeast in response to cellular requirements for ubiquitin-dependent degradation.


Subject(s)
Proteasome Endopeptidase Complex/metabolism , Saccharomyces cerevisiae/metabolism , Ubiquitin/metabolism , Cell Nucleus/metabolism , Cell Proliferation/physiology , Cytoplasm/metabolism , Cytoplasmic Granules/metabolism , Cytosol/metabolism , Proteolysis , Saccharomyces cerevisiae Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL